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Purpose of the talk:

To review various dynamical effects resulting from interplay between nonlinearity and 

flat linear dispersion bands. 

Specific model examples:

1D: Sawtooth, kagome chains and ladders (dimerized).

2D: Kagome, dimerized Lieb.

Some observed effects:

- Threshold-less bifurcation of nonlinear localized modes from linear band also in 2D.

- Symmetry-broken ground states.

- Mobility of strongly localized modes.

- Compactification tuning by nonlinearity.

R.A. Vicencio, MJ, PRA 87, 061803(R) (2013)); MJ, U.Naether and R.A. Vicencio, PRE 92, 032912 (2015); 

P.P. Beličev, G. Gligorić, A. Radosavljević, A. Maluckov, M. Stepić, R.A. Vicencio, and MJ, PRE 92, 

052916 (2015); P.P. Beličev et al, to be submitted (2017).
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The Kagome lattice

Discrete Nonlinear Schrödinger (DNLS) model: 

Cubic on-site nonlinearity + linear nearest-neighbour interactions
Defocusing nonlinearity:  = - V

n.m
 = -1

Linear spectrum ( = 0):  (e.g., Bergman et al, PRB 78, 125104 (2008))

Lower band exactly flat, built up from 6-site ring modes:

Equal amplitude, opposite phases, 
strictly zero background!

R.A. Vicencio, MJ, PRA 87, 061803(R) (2013))
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Nonlinear solutions bifurcate from flat band without excitation threshold!

DNLS conserved quantities: 

Stationary solutions: 

Two families of fundamental nonlinear modes for  < 0: 

single 6-peak ring mode: same as linear case! 

Exact discrete compacton!

single-peak mode: 

linear limit: two neighboring rings with one common site

“anticontinuous” limit (|γ|P →  ∞): single-site excitation

in-between: “ordinary” discrete soliton with exponential tails
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Stability exchange between fundamental modes

6-peak ring mode ground state for weak nonlinearity

1-peak mode ground state for strong nonlinearity

Symmetry-broken mode ground state in intermediate regime!
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Moving fundamental solutions in stability-exchange regime

Small vertical kick (phase-gradient) on unstable 1-peak mode

Finally trapped around symmetry-broken ground state!

Stronger kicks give longer propagation distances.
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The sawtooth lattice

Linear dispersion relation:  
(e.g., Derzhko et al, PRB 81, 014421 (2010))

Band structure for increasing coupling ratio  J ≡ J
t
 / J

l
 :

Lower band becomes flat for specific ratio  

Note: flat band gapped from dispersive band.

3-site compact modes with amplitude ratio α = -1/J   (            )

J=√2

J=√2
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Nonlinearity shifts the coupling ratio where compactons appear!

General DNLS: 

General existence condition for stationary compactons:

Simplifies for cubic nonlinearity: 

Stability parameter:

(lin. stable when g = 0)

 Stable compactons for:

●            (defocusing, Γ<0)

frequency below band

●                      (focusing, Γ>0)

frequency in gap

        (saturable nonlinearity gives more intricate scenario, see paper)

lin band

lin band

MJ, U.Naether and R.A. Vicencio, PRE 92, 032912 (2015)

J >√2

1.27..<J <√2
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Stable nonlinear compactons exist also in more general sawtooth-like chains:

Exists for cubic nonlinearity when

Examples of stability diagrams:

(Stable compactons in black areas)     J
1
=J

2
:                                    Δ=0:

Particularly: For Δ < - 2, a focusing 

nonlinearity may stabilize compactons

also with J < 1, with main localization

on tip sites (since α = -1/J).

(Linear compacton exists only for  Δ ≥ - 2.)
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Binary (dimerized) kagome chains/ladders 

Two types of 1D chains with flat band for arbitrary coupling strengths: P.P. Beličev et al, PRE 92, 052916 (2015)

(a) “Binary kagome strip”:

(b) “Binary kagome ladder”:  V
1

V
2

Linear dispersion relations:  (uniform chains: Derzhko et al, PRB 81, 014421 (2010))

Note: flat band gapped from dispersive bands when V
2  

 > V
1

Compact staggered ring-modes on rings coupled by V
2
 only.
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Stable compactons exist for focusing and defocusing nonlinearities  when V
2  

 > V
1

Stability diagrams for 

defocusing cases:   stable hourglass, 
unstable staggered ring

stable staggered ring,
unstable hourglass

stable staggered ring,
no hourglass

Staggered rings: 

compact, thresholdless

Hourglass: 

exponential tails, 

threshold when V
2  

 > V
1

Focusing cases: Compact staggered rings stable for most frequencies β inside the first gap

(a)   (b) 

stable hourglass, 
unstable staggered ring
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Briefly about Lieb lattice dimerizations

 

(a) 3-site unit cell and general coupling coefficients, dispersion relation:

Compact linear 4-peak ring modes:

(b) “Type I”: Special case of (a): 

e.g. Julku et al., PRL 117, 045303 (2016)
Compact modes antisymmetric w.r.t diagonal but 
asymmetric w.r.t. antidiagonal 

(c) “Type II”: 12-site unit cell; alternation of vertical coupling
also in horizontal direction
Fully (anti-)symmetric compact modes on every 2nd ring

P.P. Beličev et al, in preparation (2017)
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Nonlinear localized gap modes for both signs of nonlinearity

Gap width for both types of dimerization: 

Type I: No compact stationary modes; site-dependent nonlinear 
frequency shift
Exponentially decaying gap modes; stability diagram:

 

Type II: Nonlinear compact 4-site ring modes exist, with 

Generally unstable in gap due to various resonances (details in progress)!

V
1
/V

2
 = 0.1     V

1
/V

2
 = 0.5 V

1
/V

2
 = 0.9

P.P. Beličev et al, in preparation (2017)
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Conclusions: 

● The Kagome lattice gives a 2D example where nonlinear localized modes 
bifurcate from a flat linear band without excitation threshold for “standard” 
cubic nonlinearities. 

● Flat-band discrete solitons exchange stability, resulting in a regime with 
mobility and symmetry-broken ground state.

● Exchange regime appears for weak Kerr nonlinearity and involves strongly 
localized states  potentially interesting for optics applications.

● In sawtooth lattice, nonlinearity can be used for tuning compactness for a 
broad range of coupling coefficients.

● Dimerizations of Kagome chains and Lieb lattices gap out the flat band, and
allow for stable compact and/or strongly localized nonlinear modes also for 
focusing nonlinearities.

● Are experiments ready to reach into these nonlinear regimes yet...?

Thanks to Swedish Research Council for funding through the Swedish 
Research Links Programme!
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