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Purpose of the talk:

To review various dynamical effects resulting from interplay between nonlinearity and
flat linear dispersion bands.

Specific model examples:

1D: Sawtooth, kagome chains and ladders (dimerized).
2D: Kagome, dimerized Lieb.

Some observed effects:

- Threshold-less bifurcation of nonlinear localized modes from linear band also in 2D.
- Symmetry-broken ground states.
- Mobility of strongly localized modes.

- Compactification tuning by nonlinearity.
R.A. Vicencio, MJ, PRA 87, 061803(R) (2013)); MJ, U.Naether and R.A. Vicencio, PRE 92, 032912 (2015);

P.P. BeliCev, G. Gligori¢, A. Radosavljevi¢, A. Maluckov, M. Stepi¢, R.A. Vicencio, and MJ, PRE 92, 1
052916 (2015); P.P. BeliCev et al, to be submitted (2017).



Discrete Nonlinear Sch
R.A. Vicencio, MJ, PRA 87,

The Kagome lattice
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Cubic on-site nonlinearity + linear nearest-neighbour interactions

Defocusing nonlinearity: y=-V

Linear spectrum (y = 0):

= -1

(e.g., Bergman et al, PRB 78, 125104 (2008))

Equal amplitude, opposite phases,

Vimlm + vui|Puz = 0.

Lower band exactly flat, built up from 6-site ring modes:

strictly zero background!




Nonlinear solutions bifurcate from flat band without excitation threshold!

DNLS conserved quantities: P = ) - |z,
H = =3 > Vialumuh + ukuz) + (v /2)|uz|*}
Stationary solutions:  u;(2) = uj exp (iAz).

Two families of fundamental nonlinear modes for y < 0:

single 6-peak ring mode: same as linear case!

Exact discrete compacton! P = 6(A + 2)/}/

< 0.47 single-peak mode:

.:O:. | linear limit: two neighboring rings with one common site
[ _ . : . . . L
.0.0. I0 “anticontinuous” limit (|y|P — o0): single-site excitation

O T —0.22

one-peak in-between: “ordinary” discrete soliton with exponential tails



Stability exchange between fundamental modes
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Symmetry-broken mode ground state in intermediate regime!



Moving fundamental solutions in stability-exchange regime
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Small vertical kick (phase-gradient) on unstable 1-peak mode
Finally trapped around symmetry-broken ground state!

Stronger kicks give longer propagation distances.



The sawtooth lattice
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(e.g., Derzhko et al, PRB 81, 014421 (2010))

FIG. 1. (Color online) Geometry of the sawtooth lattice with its
compact mode (white circles imply zero amplitudes).

Aa(kyJ) = dy/Jd = cos(2k) £ JEDSE(EM + 2J2[1 + cos(2k)].

Band structure for increasing coupling ratio J=J /J:

Lower band becomes flat for specific ratio J=+/2

Note: flat band gapped from dispersive band.

3-site compact modes with amplitude ratio o = -1/J (J=v2)



Nonlinearity shifts the coupling ratio where compactons appear!
General DNLS: ”’{n + Z thm”m + yf{lufilg}”n — 0-.

m=n

General existence condition for stationary compactons:
Simplifies for cubic nonlinearity:
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(saturable nonlinearity gives more intricate scenario, see paper) 1



Stable nonlinear compactons exist also in more general sawtooth-like chains:
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FIG. 9. (Color online) Sketch of the anisotropic geometry with

pairwise alternating couplings and alternating on-site energies. 02 04

Exists for cubic nonlinearity when
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Examples of stability diagrams:
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(Stable compactons in black areas) J =J:

Particularly: For A < - 2, a focusing

nonlinearity may stabilize compactons

also with J < 1, with main localization
0.5
on tip sites (since a = -1/J).

(Linear compacton exists only for A > - 2.)
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Binary (dimerized) kagome chains/ladders

Two types of 1D chains with flat band for arbitrary coupling strengths: P.p. Beligev et al, PRE 92, 052916 (2015)
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Note: flat band gapped from dispersive bands when vV >V

Compact staggered ring-modes on rings coupled by V only.



Stable compactons exist for focusing and defocusing nonlinearities when V. >V,
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Briefly about Lieb lattice dimerizations
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(a) 3-site unit cell and general coupling coefflc:lents dispersion relation:

Bo=0, Bra=H\/VA+VE+VA+VE+20WaVipcosk, + 2V, Vg cosk,

Vo
yl':

Compact linear 4-peak ring modes: a,, = ~y
r2

(b) “Type In SpeCIal case Of (a) LII = Lyl = 1‘1 (lﬂter—CE].] CDllp].ng)

Via = Vo = Vi (intra-
e.g. Julku et al., PRL 117, 045303 (2016) £

Compact modes antisymmetric w.r.t diagonal but 10k

asymmetric w.r.t. antidiagonal

a = Lylc C = Etlc
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(c) “Type II”: 12-site unit cell; alternation of vertical coupling ., +F o

also in horizontal direction £
Fully (anti-)symmetric compact modes on every 2™ ring -




Nonlinear localized gap modes for both signs of nonlinearity
(d)

P.P. BeliCev et al, in preparation (2017)

Gap width for both types of dimerization: A = Vv2|Vs — V; , |
B o
Type I: No compact stationary modes; site-dependent nonlinear .
frequency shift »
Exponentially decaying gap modes; stability diagram: 0.0
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Type IlI: Nonlinear compact 4-site ring modes exist, with P = 43/~.

Generally unstable in gap due to various resonances (details in progress)!
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Conclusions:

e The Kagome lattice gives a 2D example where nonlinear localized modes
bifurcate from a flat linear band without excitation threshold for “standard”
cubic nonlinearities.

e Flat-band discrete solitons exchange stability, resulting in a regime with
mobility and symmetry-broken ground state.

e Exchange regime appears for weak Kerr nonlinearity and involves strongly
localized states = potentially interesting for optics applications.

e In sawtooth lattice, nonlinearity can be used for tuning compactness for a
broad range of coupling coefficients.

e Dimerizations of Kagome chains and Lieb lattices gap out the flat band, and
allow for stable compact and/or strongly localized nonlinear modes also for
focusing nonlinearities.

e Are experiments ready to reach into these nonlinear regimes yet...?

Thanks to Swedish Research Council for funding through the Swedish 13
Research Links Programme!
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