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Designable meta-atoms and macro-order offer 

MTMs great controllability on EM waves 
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Metamaterials  Metasurfaces 

•  Bulk MTM goes to single-layer metasurface 

•  Avoid propagation losses 

•  Inhomogeonity provides more freedom to control EM waves  



1) Gradient meta-surfaces to bridge PW and SW 

S. Sun et al., Nat. Mater. 11, 426 (2012) 

|| 0 sinr

ik k  Generalized Snell’s law PW  SW conversion 

S. Sun et al., Nano Lett. 12 6223 (2012) 



2) SPP meta-coupler with high efficiency 

 73% efficiency (Expt.) 

 

Match well with FDTD  

(75%). 

W. Sun et al., Light: Science & Applications 5, 16003 (2016). 

Jingwen Duan, et al., 7 1354 (2017). 



3) Physics of MIM metasurfaces 

Eigen resonant modes in MIM (PRB 2016) 

Complete functionality phase diagram for 

MIM  (PRL 2015) 

Graphene MIM for wide-range phase 

modulation (PRX 2015)  



  4) SPP manipulation with meta-walls 

S. Ma, et. al., Phys. Rev. Appl.  

9 014032 (2018) 



5) Deterministic approach to design polarization-
independent diffusive-scattering metasurfaces 

12 

Coding-metasurface: 

  

requires complicated optimization 

to determine the “coding 

sequence” 

Our approach:  

1) PB meta-atom independent of polarization 

2) Subarray exhibits parabolic phase profile 

3) Coding sequences with moderate randomness 

Tiejun Cui, LSA (2016) Xu, ACS Photonics 10.1021/acsphotonics.7b01036, 2017 
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Circularly polarized light: Spin momentum  

• Circularly polarized light 

carries spin angular moment  

 

 

 

 

• Spin-polarized light has 

important applications in 

manipulating chiral objects 

(e.g., chiral molecules) 
 

 

Can we use metasurfaces to control spin-polarized lights at will?  



PSEH: Controlling spin-polarized light 
1. Intrinsic photonic spin-Hall effect (PSHE) 

  A direct analogy of 
electron SHE 
 

  SOC term is crucial 
 

  Effect very weak 

Nagaosa PRL (04); Bliokh PRL (06); O. Hosten, Science (08): Xiang Zhang, Science (13) 



2. Extrinsic PSHE 
Spin-dependent scatterings at meta-surfaces 

  Effect very significant, 
can even lead to PW-SPP 
conversion 
 
 Efficiency is low (3-5 %) ! 
   --- multi-mode generation;  
   --- normal modes exist  

Hasman (2011); Shuang Zhang (2012), Capasso (2013) …  



Low Efficiency 

Spin Dependent 

Our motivation 

Can we realize a giant photonic SHE 

with almost 100% efficiency? 



To realize PSHE with 100% efficiency 

 the Jones’ matrix of a “meta-atom”?  

How to realize PSHE with 100% efficiency ? 

Generic structure of a Berry Slab 



Consider R-matrix (in CP basis) only 

Criterion to realized 100% efficiency PSHE 

Normal modes 

0uu vv uv vur r r r   

Anomalous modes 

Luo et. al., Adv. Opt. Mater., 

3, 1102 (2015) Half-wavelength wave-plate 



Broad-band and high-efficiency SHE of Light 
(experiments) 

Single anomalous mode 

Almost NO normal mode 

 Symmetrical  Asymmetrical 

Luo et. al., Adv. Opt. Mater. 

3,1102 (2015) 



Question 

Can we realize 100%-efficiency PSHE 

in transmission mode? 

21 



Challenges in transmissive PB metasurface 

22 

• Extension to transmission case is highly nontrivial 
• 4 modes exist generally  
• New physics and new design  



Criterion in transmission geometry 

0 0uu vv uu vvr r t t   ，

Ideal half wave-plate in transmission geometry  

Symmetrical case, Interchange r and t 

- 0uu vv uv vur r r r  



25% efficiency limit in ultrathin metasurfaces 

Theory, arXiv:1411.2537 Experiment 



Why 25% limit in transmissive PB 
metasurface? 

je 

Only electric response  both R and T 

Je 

25 



Solution: Electric + magnetic responses 

Cut off R   T=1 

je 

jm 

+ 

Out-phase In-phase 

26 
choosing appropriate e/m responses, we can  

realize the desired 100-efficiency meta-atom   



Design of the 100%-efficiency PB meta-atom 

27 

• Still deeply subwavelength in thickness (           ) 

• Magnetic responses introduced through couplings between adjacent layers  

ABA structure  -- PRL (2005) 

/ 8



Experimental characterization on PSHE 

  Three  undesired modes Ra, Rn, Tn are suppressed  

  Measured PSHE efficiency: 91% 

28 

Luo et. al., Phys. Rev. Appl. 7, 044033 (2017) 



Applications I: vortex generation  

 At the working band, vortex beam is of high efficiency and pure.  

 Otherwise, vortex beam is of low efficiency and blurred  

q=1 q=2 q=3 

10.5G 

14.5G 

29 



Applications II: Bessel beam generation 

• Very high efficiencies, without normal-mode interference 

• Self-healing after being scattered 

Wang, Appl. Phys. Lett, (accepted) 



Ongoing project: High-efficiency PSHE in THz 

In collaboration with Yan Zhang 

Unit-cell  
Measurements on PB MS 



PSHE Efficiency & Generalized Snell’s law  

• Relative efficiency reaches 92% 

• Satisfying generalized  Snell’s law  
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THz part 



Physics of MIM metasurfaces 

Eigen resonant modes in MIM (PRB 2016) 

Complete functionality phase diagram for 

MIM  (PRL 2015) 

Graphene MIM for wide-range phase 

modulation (PRX 2015)  



Amplitude/phase modulation in 
graphene metasurface (Expt.) 

• As voltage increases, reflection amplitudes first decreases to 0, then increases to 1 

• Phase behaviors change from a magnetic (~360 variation) to electric (<180) resonance 

• Phase modulation covering +/- 180 degrees  



Role of graphene upon gating 

Effects of gating graphene: 
 

1) increasing 
2) has little effect on  
3) drives the system to transit 

from an under-damped to an 
over-damped resonator 

Gating graphene beaks the subtle balance between intrinsic and radiation losses! 



MEMS-
based active 
metasurface  

Gap thickness can be  

another key parameter  

to drive the phase transition 



GHz part 



Issues with passive metasurfaces 

• Functionality locked in passive metasurface  

• Dispersion issue limits the performance and bandwidth 

 Distorted phase gradient  

 Undesired reflection modes 

 Limited efficiency and 

bandwidth 



Passive metasurface has narrow bandwidth  

• Why performance always deteriorated even in “broad-band” sample? 

• Phase distribution cannot maintain at other frequencies   



Tunable meta-atoms can help  

• With varactor diode incorporated,  phase of our meta-atom can be 

controlled precisely by external biasing voltage 

• Can realize any phase distribution controlled by external voltages   



Single-mode reflection;   Very high efficiency;    Truly broad band 

Active metasurface with dispersion compensated  
Biasing line
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Xu, Sci. Rep. 6: 38255 (2016) 
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On-state: A SPP coupler 

 

 

Off-state: A specular reflector 

Active metasurface for functionality switching   

Xu, Sci. Rep. 6: 38255 (2016) 



Active meta-lenses  

• Precisely control the local  

phase of each “meta-atom” 

 

 

 

 

 

 

• Make the dispersion-induced  

aberrations corrected; make  

focal length the same for  

different frequencies. 

 

 

• Make the focal point actively  

tunable at a single frequency  

H.X. Xu et. al, Appl. Phys. Lett. 109 193506 (2016) 
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Why multifunctional metasurfaces ? 

Integration systems 

Multifunctional meta-devices 

Metasurfaces 

• Device miniaturization  

• Functionality diversified  



ACS Photonics 4, 1906 (2017) 

SR 6, 27628 (2016)  (X. Chen) 

Issues with existing approaches   

1) Functionality cross-talking 

2) Low efficiencies  

1. Merge two structures  

Exhibiting similar functionalities  

LSA 3, e197 (2014) 

(Bolzhevolni) 

SR 5,9605 (2015)  

(T. J. Cui) 

2. Single anisotropic meta-atom 



Our motivations 

  

Meta-devices with 
distinct functionalities 

with high efficiency and 
low cross-talking  

Meta-atoms with 
polarization-controlled 

responses 

Reflection-type 

Transmission-
type 

Full-space 



1)  Reflective multifunctional metasurfaces 

  Focusing lens for E || y 

  PW-SW convertor E || x 

Adv. Optical Mater. 5, 1600506 (2017) 0,    | | | | 1xx yyT r r  

( , )yy x y

( , )xx x y

Structural tuning  

High-efficiency 

reflective  

meta-atom 



2) Transmissive multifunctional metasurfaces 

4-layer meta-atom 

 Coupling between different layers forms a wide transparency band 

 Transmission-phase covers 360°range  

Adv. Optical Mater. 5, 1600506 (2017) 0,    | | | | 1xx yyR t t  

High-efficiency 

transmissive  

meta-atom 



 Working efficiency (72%) 

Transmissive bifunctional meta-device 

Adv. Optical Mater. 5, 1600506 (2017) 

  Focusing lens for E || y;    Beam deflector for  E || x 



3) Full-space multifunctional devices 

Phys. Rev. Applied 8, 034033  

(2017) (Editor’s suggestion) 

| | 1;            | | 1

( , );          ( , )

xx yy

r t

xx yy

r t

x y x y 

 
Special meta-atom 

• Continuous stripes on 

bottom block x-polarized 

wave 

 

 

• FP-resonance enhances  

transmission of   

y-polarized wave 



Meta-device 1: Deflector 

Phys. Rev. Applied 8, 034033  

(2017) (Editor’s suggestion) 
Anomalous reflector Anomalous refractor 



Meta-device 2: Lens 

Phys. Rev. Applied 8, 034033 (2017) 

(Editor’s suggestion) 
Transmissive lens Reflective lens 



Meta-device 3: A bifunctional device 

Phys. Rev. Applied 8, 034033 

 (2017) (Editor’s suggestion) Anomalous reflector Transmissive lens 

• Arbitrary full-space 

devices realizable via 

designing 

appropriate phases 



Conclusions  

• Derived a criterion to design 100%-
efficiency PB metasurfaces, and realized 
in both reflection and transmission 
geometries. 
 

• Making tunable metasurfaces in both 
THz and GHz regimes  
 

• High-efficiency multifunctional meta-
devices  
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