International Workshop Meta-Optics and Metamaterials, IBS

Plasmonic Engineering in Subwavelength Space

04/ 26/ 2018 Myung-Ki Kim

OPTICAL CAVITIES/RESONATORS

Various Applications with Optical Resonators

- Small-Footprint, High-Performance Optical Communication Devices - Lasers, Detectors, Modulators, Amplifiers etc.
- Highly-Sensitive Various Optical Sensors
- Efficient Single Photon Sources
- Metamaterials

TOWARDS SMALLEST CAVITIES

SUB-WAVELENGTH PLASMONIC CAVITIES

M. T. Hill et al, Nature Photon. (2007)

M. P. Zezhad et al, Nature Photon. (2010)

M. Khajavikhan et al., Nature (2012)

PLASMONIC CAVITY LASERS

Туре	Q (at RT)	V _{mode} (λ/2n) ³	Г	Pump.	$\eta_{coupling}$	Temp _. (K)
M. Hill	48 (gold)	0.38	43 %	Electrical	N.A.	10, 77K
NanoPatch (UCB)	65 (gold)	0.54	84 %	Optical	N.A.	77K
NanoPan (KAIST)	~110 (silver)	0.56	-	Optical	N.A.	8, 80K
UCSD	1004 (aluminum)	5.2	46 %	Optical	N.A.	300K
UCSD	300 (silver)	0.3	70 %	Optical	N.A.	4.5K

LARGE ABSORPTION LOSS BY METAL

As dimension decreases, the absorption loss and *k*-vector are highly increased.

We should find the best way to minimize the losses at this large-*k* regime

DIFFICULTY IN COUPLING W/ WAVEGUIDE

Ag

SiO

Because of the **extremely small output aperture** of such a cavity, the **radiation from the cavity diverges very rapidly**.

Coupling efficiency with Si waveguide < 10 %

CLADDING ENGINEERING FOR HIGH-Q AND LARGE COUPLING

METALLIC BOX CAVITY

REDUCING ABSORPTION LOSSES WITH LOW-INDEX CLADDINGS

1D wave-equation

$$\left[\frac{\partial^2}{\partial x^2} + \omega^2 \mu_0 \varepsilon\right] \psi(x) = 0 \qquad \left[\frac{\partial^2}{\partial x^2} + \omega^2 \mu_0 \varepsilon(x)\right] \psi(x) = \left[\frac{\partial^2}{\partial x^2} + V(x)\right] \psi(x) = 0$$

 $\longrightarrow X$

cladding cladding $\varepsilon(x)$

 $\longrightarrow X$

High Reflection (High Q_{rad}) Large Absorption (Low Q_{abs}) High Reflection (High Q_{rad}) Small Absorption ($Q_{abs} \uparrow$)

Q VS. CLADDING THICKNESS

M.-K Kim et al., Opt. Express **19**, 23504 (2011)

METAL-CLAD CAVITY LASER

10⁻³

Peak pump intensity (W mm⁻²)

6,000

4,000

 \cap

0

2.000

 10^{3}

8,000

10⁴

10,000

They demonstrated room-temperature pulsed laser emission from optically pumped metallo-dielectric cavities

M. P. Zezhad et al, Nature Photon. (2010)

FOR THE EFFICIENT COUPLING

M.-K Kim et al., Opt. Express 19, 23504 (2011)

BI-/UNI-DIRECTIONAL RADIATION

M.-K Kim et al., Opt. Express 21, 25796 (2013)

EFFICIENT COUPLING IN SI/III-V INTEGRATION

GEOMETRIC ENGINEERING FOR EXTREME PHOTON SQUEEZING

METAL-INSULATOR-METAL PLASMONIC MODE

Metal-insulator-metal (MIM) Plasmonic Mode

h = 200 nm	h = 100 nm	h = 50 nm	h = 10 nm	
		E ²		

No cut-off dimension (Limitless confinement) But, Significant Loss at Large-k Regime

OPTIMAL GEOMETRY FOR MINIMIZING LOSSES

At large-k approximation

 $k \cdot h = f(\omega)$: dispersion relation $\Delta x \sim \lambda$

$$\Delta P_{loss} = \Delta P_{scat} + \Delta P_{abs}$$

= $A \cdot \Delta \lambda / \lambda + P_0 \cdot \alpha \cdot \Delta x$
= $A \cdot \Delta \lambda / \lambda + B \cdot \text{Im}[k] \cdot \Delta x$
$$\Delta P_{loss} \approx A \cdot (\Delta h / \Delta x) + B \cdot \text{Im}[k] \cdot \lambda$$

= $A \cdot (\Delta h / \Delta x) + C$ = constant

So, "<u>linear-taper geometry</u>" minimizes the losses generated in MIM structure.

Myung-Ki Kim et al., Nature Photon. 6(12), 838-844 (Nov. 2012)

Highly Efficient 3D On-Chip Nanofocusing Device

Design of 3D MIM Plasmonic Nanofocusing Device

M. Kim, H. Choo, E. Yablonovitch et al. Nature Photonics 6, 838 (2012)

Highly Efficient 3D On-Chip Nanofocusing Device

Highly Efficient 3D On-Chip Nanofocusing Device

Optimal coupling angle: $10^{\circ} < a < 30^{\circ}$

When focusing into $2 \times 5 \text{ nm}^2$ area, <u>Coupling loss = 2.5 dB</u> <u>E² enhancement ~ 3.0 x 10⁴</u>

Fabrications

Fabrication Steps

E-beam induced SiO₂ deposition on Au

Fabrications

Fabrication Steps

50-nm-Au deposition

Fabrications

3D MIM nanofocusing structure

Minimum SiO₂ area = $14 \times 80 \text{ nm}^2$ Tapering angle (*a*) = 29 °

TPPL measurement

: Laser-excitation location

0

Laser source: 120 fs Ti-sapphire laser at 830 nm Time-veraged power = 210 μ W Beam diameter ~ 400 nm (100 \times 0.90NA)

Estimation of E² Enhancement

E² enhancement

$$\alpha_{tip/body} = \alpha_{tip/inc} \alpha_{inc/body} \sim 400$$

(cf. Simulation value = 410)

Estimated Transmittance ~ 74%

$$\alpha_{tiplinc} = \left(\frac{A_{ref}}{A_{tip}} \times \frac{\langle TPPL_{tip} \rangle}{\langle TPPL_{ref} \rangle}\right)^{1/2} \cdot \frac{\langle P_{ref} \rangle}{\langle P_{inc} \rangle} \approx 125$$
$$\alpha_{inc/body} = \left(\frac{1}{\eta}\right) \cdot \left(\frac{A_m^{body}}{A_{ref}}\right) \cdot \left(\frac{\varepsilon_{SiO_2}}{n_{eff}^{body}}\right) \approx 3.2.$$

3-D POINT-LIKE CAVITY

Myung-Ki Kim et al., Nano Lett. 15(6), 4102-4107 (2015)

3-D FIELD ENGINEERING & FIELD ENHANCEMENT

 $V_m = 1.3 \times 10^{-7} \lambda^3 (\sim 4 \times 10 \times 10 \text{ nm}^3)$ |E|^a enhancement > 400,000 @ g= 4 nm

PROXIMAL FIB MILLING TECHNIQUE

Myung-Ki Kim et al., Nano Lett. 15(6), 4102–4107 (2015)

STRONG FIELD ENHANCEMENT

From a 4 nm-gap antenna, a nonlinear second-harmonic signal more than 27,000-times stronger than that from a 100 nm-gap antenna is observed.

Myung-Ki Kim et al., Nano Lett. 15(6), 4102–4107 (2015)

EXTREME FIELD CONFINEMENT

Scanning cathodoluminescence images confirm unambiguous photon confinement in a resolution-limited area 20×20 nm² on top of the nano gap.

Myung-Ki Kim et al., Nano Lett. 15(6), 4102–4107 (2015)

GEOMETRIC ENGINEERING FOR EFFICIENT COUPLING

Double-Nano-Gap Plasmon Antenna

Far-field Radiation Patterns

Y. Jin et al., Opt. Express 24, 25540 (2016)

Gap-Plasmon Antenna Coupled with Si waveguide

Y. Jin et al., Opt. Express 24, 25540 (2016)

Extreme Field Enhancement

Y. Jin et al., Opt. Express 24, 25540 (2016)

SUMMARY

Prof. Myung-Ki Kim

Young-Ho Jin

Byoung Jun Park

Prof. Yong-Hee Lee

Seung Ju Yoon

Jungmin Lee

SAMSUNG

Nu-Ri Park