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OPTICAL CAVITIES/RESONATORS 
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Various Applications with Optical Resonators 

• Small-Footprint, High-Performance Optical Communication Devices 
       - Lasers, Detectors, Modulators, Amplifiers etc. 
• Highly-Sensitive Various Optical Sensors 
• Efficient Single Photon Sources 
• Metamaterials 



TOWARDS SMALLEST CAVITIES 
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Nature 482, 204 (2012) 

Total Internal Reflection (TIR) 
Photonic Bandgap (PBG) 

Surface Plasmon Polaritons (SPPs) 



SUB-WAVELENGTH PLASMONIC CAVITIES 

M. T. Hill et al, Nature Photon. (2007) 

K.-S. Yu et al, Opt. Express (2010) 

M. P. Zezhad et al, Nature Photon. (2010) 

S.-H. Kwon et al., Nano Lett. (2010) 

M. Khajavikhan et al., Nature (2012) 



PLASMONIC CAVITY LASERS 

Type Q 
(at RT) 

Vmode  
(λ/2n)3 Γ Pump. ηcoupling 

Temp. 
(K) 

M. Hill 48 
(gold) 0.38 43 % Electrical N.A. 10, 77K 

NanoPatch 
(UCB) 

65 
(gold) 0.54 84 % Optical N.A. 77K 

NanoPan 
(KAIST) 

~110 
(silver) 0.56 - Optical N.A. 8, 80K 

UCSD 1004 
(aluminum) 5.2 46 % Optical N.A. 300K 

UCSD 300 
(silver) 0.3 70 % Optical N.A. 4.5K 



LARGE ABSORPTION LOSS BY METAL 

As dimension decreases, the absorption 
loss and k-vector are highly increased. 
 
We should find the best way to minimize 
the losses at this large-k regime  
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Au 

SiO2 

λ↑ 

@ λ = 850 nm 

S. Maier, “Plasmonics” (2007) 



DIFFICULTY IN COUPLING W/ WAVEGUIDE 

Because of the extremely small 
output aperture of such a cavity, 
the radiation from the cavity 
diverges very rapidly. 
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Si waveguide 

Metal-clad nanocavity 

Far-field pattern 

III-V 

Coupling efficiency with Si waveguide < 10 % 
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CLADDING ENGINEERING 
FOR HIGH-Q AND LARGE COUPLING 



METALLIC BOX CAVITY 

(500nm × 400nm × 200nm) 

Dielectric Semiconductor Cavity 

Q = 8 
Vm = 0.35 (λ/n)3  

Fundamental mode 

Metal-clad cavity 

Q = 75 
Vm = 0.29 (λ/n)3  

Q = 3100 
Vm = 0.25 (λ/n)3  

Radiation is 
suppressed 
by metal 



REDUCING ABSORPTION LOSSES 
WITH LOW-INDEX CLADDINGS 
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Q VS. CLADDING THICKNESS 

M.-K Kim et al., Opt. Express 19, 23504 (2011) 
a = b1 = b2 = cladding thickness 

Q~2000 



METAL-CLAD CAVITY LASER 

M. P. Zezhad et al, Nature Photon. (2010) 

They demonstrated room-temperature 
pulsed laser emission from optically 
pumped metallo-dielectric cavities 



FOR THE EFFICIENT COUPLING 

M.-K Kim et al., Opt. Express 19, 23504 (2011) 



BI-/UNI-DIRECTIONAL RADIATION 

M.-K Kim et al., Opt. Express  21, 25796 (2013) 

Far-field Pattern 

Near-field 



M.-K Kim et al., Opt. Express  21, 25796 (2013) 

EFFICIENT COUPLING 
IN SI/III-V INTEGRATION 



GEOMETRIC ENGINEERING 
FOR EXTREME PHOTON SQUEEZING 
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Metal-insulator-metal (MIM) Plasmonic Mode 

No cut-off dimension (Limitless confinement) 
 
But, Significant Loss at Large-k Regime 

METAL-INSULATOR-METAL 
PLASMONIC MODE 



OPTIMAL GEOMETRY 
FOR MINIMIZING LOSSES 
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Myung-Ki Kim et al., Nature Photon. 6(12), 838-844 (Nov. 2012) 



Highly Efficient 3D On-Chip Nanofocusing Device 

Body 

Tip 

M. Kim, H. Choo, E. Yablonovitch et al. Nature Photonics 6, 838 (2012) 

Design of 3D MIM Plasmonic Nanofocusing Device 



Surface-charge density propagation 

Power flux distribution 

Anti-symmetric mode 

h = 15 nm  
w = 38 nm 

Highly Efficient 3D On-Chip Nanofocusing Device 



Highly Efficient 3D On-Chip Nanofocusing Device 

When focusing into 2 × 5 nm2 area, 
    Coupling loss = 2.5 dB 
    E2 enhancement ~ 3.0 x 104 

Optimal coupling angle: 10° < a < 30° 

Wavelength = 830 nm 

@ α = 20° 

Myung-Ki Kim et al. Nature Photonics 6, 838 (2012) 



Fabrications 

E-beam induced SiO2 deposition on Au Fabrication Steps 

Myung-Ki Kim et al. Nature Photonics 6, 838 (2012) 



Fabrications 

50-nm-Au deposition 
Fabrication Steps 

Myung-Ki Kim et al. Nature Photonics 6, 838 (2012) 



   Gold 
(50 nm) 

SiO2 
(500 nm x 200 nm) 

3D Taper 
(a ~ 29°) 

SiO2  (80 nm x 14 nm) 

1.5 mm 

200 nm 

200 nm 

3D MIM nanofocusing structure 

Minimum SiO2 area = 14 × 80 nm2   

Tapering angle (a) = 29 ° 

Fabrications 

Myung-Ki Kim et al. Nature Photonics 6, 838 (2012) 



TPPL measurement 

Laser source: 120 fs Ti-sapphire laser at 830 
nm  
Time-veraged power = 210 µW 
Beam diameter ~ 400 nm (100 × 0.90NA ) 

Unsaturated TPPL intensity map  



Estimation of E2 Enhancement 
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Estimated Transmittance ~ 74% 



3-D POINT-LIKE CAVITY 

Myung-Ki Kim et al., Nano Lett. 15(6), 4102−4107 (2015) 

Vm = 1.3 × 10-7 λ3  (~ 4 × 10 × 10 nm3)  

|E|2 enhancement > 400,000 

  (λ = 1560 nm, g = 4 nm, L = 320 nm, W = 100 nm) 



3-D FIELD ENGINEERING & FIELD 
ENHANCEMENT 

Vm = 1.3 × 10-7 λ3  (~ 4 × 10 × 10 nm3)  

|E|a enhancement > 400,000  @ g= 4 nm 



PROXIMAL FIB MILLING TECHNIQUE 

Myung-Ki Kim et al., Nano Lett. 15(6), 4102−4107 (2015) 



STRONG FIELD ENHANCEMENT 

From a 4 nm-gap antenna, a nonlinear second-harmonic signal more than 27,000-times stronger than that from a 
100 nm-gap antenna is observed. 

Myung-Ki Kim et al., Nano Lett. 15(6), 4102−4107 (2015) 



EXTREME FIELD CONFINEMENT 

Scanning cathodoluminescence images confirm unambiguous photon confinement in a resolution-limited area 
 20 × 20 nm2 on top of the nano gap. 

Myung-Ki Kim et al., Nano Lett. 15(6), 4102−4107 (2015) 



GEOMETRIC ENGINEERING 
FOR EFFICIENT COUPLING 



Double-Nano-Gap Plasmon Antenna 

Y. Jin et al., Opt. Express 24, 25540 (2016) 



Far-field Radiation Patterns 

Y. Jin et al., Opt. Express 24, 25540 (2016) 



Gap-Plasmon Antenna Coupled with Si waveguide 

Y. Jin et al., Opt. Express 24, 25540 (2016) 



Extreme Field Enhancement 

Y. Jin et al., Opt. Express 24, 25540 (2016) 



SUMMARY 

Sub-wavelength Plasmonic Cavities 

Plasmonic Engineering 

Cladding Engineering Geometric Engineering 
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