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Outline

1 Motivation
v Two-dimensional materials — efficient light guiding at
nanoscale;
v Applications: light concentrators,

photonic hanodevices.
1 Computational tools for metamaterials

1 Nonlinear optics in 2D materials
v' SHG in TMDC monolayers;

v' THG Iin graphene nanostructures;

v" Nanodevices based on 2D materials.

L Conclusions and future work

PCS, April 2018

=



Light-matter Interaction at the Nanoscale
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Near-field manipulation Nonlinear optics in 2D materials
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Modelling Nonlinear Optical Phenomena

1 Nonlinear optics key for many applications
wavelength conversion, signal processing, optical microscopy
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light source nonlinear crystal prism
 Challenges:

v' Practical: nonlinear optical response is generally weak
» need for local field enhancement
» gratings are devices for engineering of optical near and far-field

v Theoretical: complex dependency between excitation and
optical response
» efficient numerical tools for nonlinear gratings essential
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Diffraction Gratings with 2D Materials

v Multilayered periodic
structure e(x,y, z)

v' Periodically patterned 2D
material layers o.(x,y)

v" Nonlinear surface current
jNL = ¢B)(E - E)E or
jNt = oD EE

Incident plane Linear Total field E at Nonlinear Nonlinear field
wave at FF diffraction FF ot il at TH or SH

_ M. Weismann & N. C. Panoiu, Phys. Rev. B 94, 035435 (2016)
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RCWA with Inhomogeneous S-Matrix

In each layer:
Mode expansion of E and H with
coefficients a* and b*

Boundary conditions
nx (EA—EB)=0

nx (HA — HB) = n x [j(E) + jNt

J(E, x) = a(x)E(x) with a(x,) = 0 J(E) = (6(x) + nog)E(x) (n K1)
= Fast factorisation = Fourier factorisation possible

Khavasi, OL 38, 3009 (2013)

S-Matrix for modified interface



Graphene: Structure and Properties

v' One atomic layer thick
v' 2D honeycomb crystal lattice
v Zero-gap semiconductor

v Almost transparent with
absorption tunable via doping

v High electron mobility
v Low electron scattering

v Remarkable mechanical
properties
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Optical Properties of 2D Materials

Graphiens; 2 v" high electron mobility, low optical losses

© © :
oo v electrically tuneable conductance

Cheng, New J. Phys. 053014 (2014)
v Applications to modulators, efficient nonlinear optical devices

at the nanoscale
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— FF Reflection

— FF Transmission

— FF Absorption
TH Radiation
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2D Diffraction Gratings — Graphene Disks
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Mechanisms for Nonlinearity Enhancement
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v Dual resonance condition: optical modes exist at and
v' Enhanced nonlinear optical response.
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Mechanisms for Nonlinearity Enhancement

| TH 'inten'sity I

50 60
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Strong nonlinear optical response when the dual
resonance condition Is satisfied
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Mechanisms for THG Enhancement

Graphene [
Insulator Fundamental plasmon
Electrode . . .
| at FF: efficient light
In-coupling

Fundamental plasmon
at TH: efficient emitter

Wy, emitter
nano-antenna

_——— = Tune Er — switch
WFF . FF=0)( between TH and SH
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Bi-layer Grating — Linear Response

— GIG Ribbons
—— Bottom Ribbons
— Top Ribbons
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v' Strongly enhanced absorption
v' Fundamental plasmons exist at both FF and TH
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Bi-layer Grating — THG

/ single grating

single sheet

v’ 20x THG enhancement wrt single-layer grating
v ~10°% THG enhancement wrt graphene sheet
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Switching between THG and SHG

FF Absorption (%)
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Mechanisms for Nonlinearity Enhancement

Linear and nonlinear spectrum
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i) FF field

_ M. Weismann & N. C. Panoiu, Phys. Rev. B 94, 035435 (2016)
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Nonlinear graphene polarization converters

electrodes
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v Crossed-graphene gratings separated by a dielectric spacer;
v' Polarization-independent spectra.

_ J. W. You & N. C. Panoiu, Opt. Express 26, 1882 (2018)
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How does It work?

Graphene

¢ ¢

Photons Zh
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Nonlinear graphene polarization converters
a)

b)

Insulator Region
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v' Linearly polarized light can be converted to RCP or LCP light;
v Tunable operation wavelength.
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Optical Properties of 2D Materials

IMDC: 2 v’ transition metal (W, Mo) + two chalcogens

U
o % o % NN |
¢ O % \/dlrect band-gap semiconductors
KRl v high absorption (> graphene)

v non-centrosymmetric: SHG allowed

Second-order conductivity

10 X — WS,

— WS, —— WSey
—— MoS; —— MoSe,

 Potential applications: Janisch, Sci. Rep, 5530 (2014)

. . . Li, Nano Lett. 3329 (2013)
transistors, detectors, flexible electroniCSs seyier, Nat. Nanotech. 404 (2015)
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Diffraction in TMDC Gratings

—_— WSy = WSes
— V0S5 = MoSes
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A =100 nm; w = 90 nm

Asg (um)

TMDCs: semiconductors = no plasmon resonances
2D materials = no waveguide resonances

v Absorption is determined by exciton absorption peaks
v’ Radiated SH is determined by the magnitude of y(?

I

PCS, April 2018



TMDC-Slab Waveguide Systems

Textured slab
waveguide + TMDC
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U Linear & nonlinear optical response
v Sharp resonances in the reflectivity spectra
v Excitation of waveguide modes
v Translate to resonances in SH spectra
v’ Strongly dependent on the system parameters
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Fano Resonances in Plasmonic Systems
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U. Fano Phys. Rev. 124, 1866 (1961). N. Verellen et al. Nano Lett. 9, 1663 (2009).
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Fano Resonance — Energy Levels

U. Fano Phys. Rev. 124, 1866 (1961). Wu et al. Nature Materials 11, 69 (2012).
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TMDC-Slab Waveguide Systems (FF)

Textured slab
waveguide + TMDC
monolayer

Spectrum determined by three mechanisms

v Fabry-Perot resonances (largest spectral variations)

v Absorption due to material absorption (h-independent)
v (spectrally sharp)

Intricate resonance interplay
v' Waveguide resonance (discrete) and FP (broad):
v of WGR with absorption band

v Additional Fano-resonance: exciton-absorption (discrete) and FP (broad)
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TMDC-Slab Waveguide Systems (SH)

SH intensity

SH radiation-spectrum determined by
v Fabry-Perot resonances

v Dispersion of )(%2 (h-independent)
v' Waveguide resonances: +

_ M. Weismann & N. C. Panoiu, Phys. Rev. B 94, 035435 (2016)
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Cconclusions

1 Computational EM — key to modelling
nonlinear optical effects at nanoscale.

1 New approaches to engineering
optical properties of nanostructured Dr. M. Weismann
materials.

1 Nonlinear optics in 2D materials.

] Active devices based on 2D materials.




