

Metamaterial – From Effective Material to Real-Time Information Processing System

Tie Jun Cui

State Key Laboratory of Millimeter Waves Southeast University, Nanjing 210096

Meta-Optics and Metamaterials, IBS, Daejeon, Korea

Background: META@SEU

The 3rd Generation

Information Metamaterials

The 1st Generation

Effective Medium Model

The 2nd Generation

Spoof Surface Plasmons

Metamaterials

From 2004

The 1st Generation: Effective-Medium Metamaterials

Science, 2009.

Nat. Comm., June 2010.

New J. Phys., June 2010.

New Physics and Experimental Verification

PRL 109, 2012 **PRL 111, 2013**

Black Ho

D

APL 50th Anniversary One of 50 among 20000+

The 1st Generation: Effective-Medium Metamaterials

Microwave Technology: TL (Passive) + Semiconductor (Active)

Traditional Microwave Transmission Line: Spatial Modes

Non-Conformal; Strong Cross Talks - Signal-Integrity Problems

Ultrathin SPP TL in Microwave

2014 (ESI Top 1%)

PNAS, 2013 (ESI Top 1%)

Smooth Conversion Between SPP and Traditional TLs

 A Series SPP Passive Devices (Filters, Resonators, Couplers)

Ultrathin, Conformal, Bendable: Wearable Devices

Take advantages in microwave: Active SPP Devices

Vol. 9 January 2015 www.lpr-journal.org	FET Chip	f	1st	2nd	3rd
& PHOTONICS	Active Chip	5 GHz	-15.0	11.1	-3.6
	A THE REAL PROPERTY OF THE REA	6 GHz	-17.0	10.0	-6.2
	(b)	8 GHz	-5.0	10.6	-30.0
	ACS Photonics	10 GHz	-8.6	10.2	-55.0
Breadhand amplification	2016		Vol. 8 J	anuary 2014	www.lpr-journal.org
Heodoral Stand Share Len Hu Chen Kaopers Shen, Len Hu Chen, Lamming LL, and Ter Jun Cur	SPP wave is amplified	Ultrath	in L/	ASER PHOTONIC	CS
Amplifier Chip	by 20dB in broadband	LSPs			
Laser Phot. Rev., 201	5 (ESI Top 1%)	SWIIII THE			00
Laser Phot. Rev., 201Realize the first	5 (ESI Top 1%) st microwave SPP				

Target: Systems and SPP ICs

Traditional Metamaterials

Problems & Challenges:

- Static; Fixed Features
- At most Tunable

- New Physics (Exciting)
- New Devices
- New Applications

Information Metamaterials

Coding Metamaterials

1-Bit Coding Metamaterial

1 Unit: 180 Phase

Cui et al., Light: Science & Applications 3, e218; 2014 Cited by 210 times; Light High Citation Award

Coding Metamaterials

Terahertz Coding Metasurface

Gao et al., Light: Science & Applications 4, e324 (2015)

- A novel coding particle: Minkowski fractal structure
- 1-bit, 2-bit, and 3-bit coding particles can be realized using the Minkowski loops with different scales

Shape &	0	-45	-90	-135	-180	-225	-270	-315
Multi-bit	83	23	23	23	認	꿃	詔	
1-bit	0				1			
					·		-	
2-bit	00		01		10		11	

Anisotropic Coding Metamaterial

Manipulation of EM waves depends on the polarization

Liu et al., Light Sci. Appl. 5, e16076 (2016)

Digital Metamaterials

Coding metamaterials are not our final target
We aim to realize digital control of coding sequence

nature ARTICLES materials ONLINE: 14 SEPTEMBER 2014 | DOI: 10.1038/NMAT4082

Digital metamaterials

Cristian Della Giovampaola and Nader Engheta*

 The "digital" here in still in the scope of effective medium; Difficult for realization.
Our concept is proposed independently, and has totally different meaning: digitally control

Digitally-Controlled Metamaterials

Programmable Metamaterials

- By using field-programmable gate array (FPGA) hardware, we realize digital control over the digital metamaterial.
- We can write a program consisting of many cases onto FPGA, which is used to control many functionalities in real-time: Programmable Metamaterial.

New-Concept Radar

New-Concept Radar:

- Single Beam
- Multiple Beams
- Beam Scanning
- RCS Reduction

20×20 Programmable Information System

Basic-1: Information Entropy

The information contained in the metasurface is different

Using Shannon Entropy to Describe the Information

Shannon Entropy Modified Shannon Entropy

$$H_1 = -\sum_{i=1}^2 P(x_i) \log_2 P(x_i) \qquad H_2 = -\frac{1}{2} \sum_{i=1}^2 \sum_{j=1}^2 P_{ij} \log_2 P_{ij}$$

Cui et al., Light: Science & Applications 5, e16172, 2016

Coding Metasurface and Entropy

0.50

10000

20000

30000

Iterations of diffusion process

40000

50000

leads to the increase of entropy

The Optimal RCS Reduction

Basic-2: Digital Convolutions

Digital coding representation makes it possible for digital signal processing

Perform Convolutions on Coding Metasurfaces

Liu et al., Adv. Sci. 2016, 1600156

Digital Convolutions

The convolution operation ensures 2-bit coding metasurfaces to reach the scattering beam to an arbitrary direction.

Ability to Radiate at Arbitrary Angle

Liu et al., Adv. Sci. 2016, 1600156

Could generate single-beam radiation with arbitrary angle

Fabrication and Experiments

Excellent agreement between simulations and experiments

Multiple Scattering Clouds

The addition of random coding pattern with periodic coding patterns

Chessboard + random

Two scattering clouds

0101 + random

Four scattering clouds

The number of scattering clouds can be arbitrarily designed

Cone-Shaped Scattering Pattern

The opening angle, number, and direction of the cone-shaped radiation pattern can be arbitrarily controlled

Liu, et al. Journal of Selected Topics in Quantum Electronics, 23, 1, 2016.

Spin-Controlled Vortex Beams

Zhang et al., ACS Applied Materials & Interfaces, 2017

Mixing process of coding pattern for four symmetrical vortex beams (OAM mode n=2)

Programmable Vortex Generation

2-Bit Digital Coding Patterns

 All Vortex Beams have been Generated by a Single Coding Metasurface in a Programmable Way

Multi-Vortex Beams

L. Li et al., unpublished, 2017

Under Oblique Incidence

Liu et al., Light Sci. Appl., accepted (2018)

Oblique incidence can avoid blockage effect for the normal radiation

Basic Design

Normal Incidence Metasurface

Tilt Angle Compensation Coding Pattern

Oblique Incidence with Arbitrary Angle

Spatial-Wave Mode

Positive Reflection

Negative Reflection

The reflected wave should be in the opposite side of the incident wave for the conventional reflection

With proper gradient coding sequences, both reflected and incident beams can be on the same side

Liu et al., Light Sci. Appl., accepted (2018)

Surface-Wave Mode

90° turn, out-of-plane direction

180° turn, negative direction

Surface wave propagates in the orthogonal plane to the incident plane, which is enabled by the compensation technique

Negative surface wave, which is quite different to the conventional spatial-tosurface-wave conversions

Liu et al., Light Sci. Appl., accepted (2018)

Basic-3: Addition Theorem

Complex Digital Codes

R. Y. Wu, et al. Adv. Opt. Mater., 1701236, 2018

Basic-3: Addition Theorem

New Imaging System

Single-Radar and Single-Frequency Imaging System

Y. B. Li et al., Sci. Rep. 6: 23731, 2016

New Imaging System

$$min_{,\boldsymbol{0}}\left[\frac{1}{2}\sum_{m=1}^{M} \left(E^{(m)} - \langle \widetilde{\boldsymbol{A}}^{(m)}, \widetilde{\boldsymbol{0}} \rangle\right)^{2} + \gamma ||\boldsymbol{\Psi}(\widetilde{\boldsymbol{0}})||_{1}\right]$$

CS Algorithm: Sparsity-Regularized Optimization Problem

40x40 Pixels Measurements: 200, 400, 600

Programmable Holographic Imaging

New Communication Systems

Space-Frequency Coding

Information Metamaterials

Digital Versions in Optics

Terahertz and Optical Digital Metamaterials

Reflection Phase Coverage is over 300 degrees

Collaborated with Prof. Jiafang Li @ Institute of Physics, CAS

Summary

Software Metamaterials, Cognitive Metamaterials