

Large anomalous Hall conductivity in CoS₂

Symmetry protected nodal structures in ultrathin SrRuO₃ film

"Tunable Anomalous Hall conductivity"

Changyoung Kim

Department of Physics & Astronomy, SNU IBS Center for Correlated Electron Systems, SNU

Large anomalous Hall conductivity in CoS₂

In collaboration with

- Joonyoung Choi, Younjung Jo (Kyungbook Nat U)
- Se-Young Park (Soongsil U)
- Jinghong Park, Joonwon Rhim (Ajou U)

NiS_{2-x}Se_x - Ideal MIT system

- Ni and S-S or Se-Se dimers form rock-salt structure
- NiS₂ and NiSe₂ are isovalent and isostructural
- Metal-insulator transition occurs around x=0.45 at T=20K
- Chemical pressure enhanced from Se to S

P. G. Niklowitz *et al*, PRB **77**, 115135(2008)

(Ni,Co,Fe)(S,Se)₂ phase diagram

Center for Correlated Electron Systems

 CoS_2

CoS₂ Single Crystals

- Anomaly with thermal hysteresis at $T_{\rm FM} = 123$ K •
- $\rho_{2 \text{ K}} = 2.086 \times 10^{-6} \,\Omega \cdot \text{cm}, \,\rho_{300 \text{ K}} = 1.542 \times 10^{-4} \,\Omega \cdot \text{cm}$ •
- RRR = $\rho_{300 \text{ K}} / \rho_{2 \text{ K}} = 73.921$

250

300

CoS₂ – nearly half metal

ARPES data

- Complex surface states \rightarrow to be addressed (B J Yang group, in progress)
- Split bands with mostly majority electrons → Stoner type
- Can be hole doped to have only the majority band occupied → perfect half metal

Weyl fermions in CoS₂?

SCIENCE ADVANCES | RESEARCH ARTICLE

CONDENSED MATTER PHYSICS

Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS₂

Niels B. M. Schröter^{1*†}, Iñigo Robredo^{2,3}*, Sebastian Klemenz⁴, Robert J. Kirby⁴, Jonas A. Krieger^{1,5,6}, Ding Pei⁷, Tianlun Yu^{1,,8}, Samuel Stolz^{9,10}, Thorsten Schmitt¹, Pavel Dudin^{11‡}, Timur K. Kim¹¹, Cephise Cacho¹¹, Andreas Schnyder¹², Aitor Bergara^{2,3,13}, Vladimir N. Strocov¹, Fernando de Juan^{2,14}, Maia G. Vergniory^{2,14†}, Leslie M. Schoop^{4†}

Hall data

Anomalous Hall conductivity

Co_{1-x}Fe_xS₂

- Why is it large?
- Why does it peak at x=0.05?

* σ_{AHE} for Co₂MnGa ~ 800 Ω^{-1} cm⁻¹ (npj QM 6, 17(2021))

Calculation

- Strong BC sources near E_F
- All of them have the same sign (add up)
- Hole doping moves the source to E_F

Symmetry protected nodal structures in ultrathin SrRuO₃ film

In collaboration with

- Bohm-Jung Yang group (CCES & SNU)
- Taewon Noh group (CCES & SNU)
- Se-Young Park (Soongsil U)

Artificial systems

Ultrathin film platforms

• Tailor the electronic structures via **symmetry breaking**: wide range of **tunability** available in **ultrathin films and heterostructures**.

Dimensionality

Epitaxial strain

Proximity effect at the interface

Symmetry-breaking ferromagnetic, ferroelectric layers as substrates.

Cluster system for *in-situ* ARPES

Characterize the electronic structure of novel correlated phases via **multi-purpose cluster ARPES system**

- In-situ AREPS
- In-situ spin-resolved ARPES

Cluster system for *in-situ* ARPES

SrRuO₃ – oxide ferromagnetic metal

• Pnma, Orthorhombic

t_{2g} (3↑,1↓) U ~ 2 eV

- Ferromagnetic transition at 160 K
- Moderate U
- 4d transition-metal oxide (**spin-orbit coupling**)

- Q. Gan et al. J. Appl. Phys. 85, 5297 (1999).
- N. Kikugawa et al. Cryst. Growth Des. 15, 5573 (2015).

SrRuO₃ film growth

PLD growth

4 u.c.

RHEED

In-situ ARPES on SRO thin-film

@SNU

10 u.c. SRO @ 10 K

1.0-

0.5

 $k_{y} \stackrel{\circ}{(1/\AA)}$

-0.5

-1.0-

0.0

-0.2

-0.4

-0.6

0.0

0.4

ky(1/Å)

B. M. Sohn et al.

0.8

1.2

Sinding energy (eV)

-1.0

0.0

 $k_x (1/\text{Å})$

-0.5

0.5

1.0

D. E. Shai et al., PRL 110, 087004 (2013).

0.6 kv(1/Å)

0.8 1.0 1.2

0.0

-0.2

0.2 0.4

Topological features in SRO ultrathin film

Dual ferromagnetism (with 15 u.c. films)

References

1. S. Hahn et al., Phys. Rev. Lett. **127**, 256401 (2021)

Signature of itinerant magnetism

DOS of SrRuO₃

High DOS at E_F favorable for itinerant magnetism

Non-integer magnetic moment

S = 2 expected in the local picture

Measured magnetic moment of ~ 1.6 μ_B

S. A. Lee et al., Energy Environ. Sci. 10, 924 (2017).

Signature of local magnetism

Temperature independent band splitting

D. E. Shai et al., Phys. Rev. Lett. 110, 087004 (2013).

Itinerant FM feature near E_F

Itinerant electrons have momentum dependent spin-polarization.

Center for Correlated Electron Systems

Localized FM feature at high energy

Energy dependent spin-pol

High energy electrons are spin-polarized.

Local spin character of high energy electrons

Dual character observed!

Spin-dependent correlation

Broad majority and sharp minority bands

Wide interaction channel : strong correlation for majority

Narrow interaction channel : weak correlation for minority

Localized spin majority electrons & itinerant spin minority electrons

M.J. Kim et al, PRB 91, 205116 (2015)

Pictorial illustration

Nodal features (with 4 u.c. films)

Reference

1. Sohn et al, Nature Materials 20, 1643 (2021)

Magnetic monopoles in SrRuO₃

Science

The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space

Zhong Fang,^{1,2*} Naoto Nagaosa,^{1,3,4} Kei S. Takahashi,⁵ Atsushi Asamitsu,^{1,6} Roland Mathieu,¹ Takeshi Ogasawara,³ Hiroyuki Yamada,³ Masashi Kawasaki,^{3,7} Yoshinori Tokura,^{1,3,4} Kiyoyuki Terakura⁸

Z. Fang et al., Science 302, 5642 (2003)

Magnetic monopoles in the momentum space

Anomalous and Topological Hall effects

- 1. 'Topological Hall' effect in ultrathin films (controversial)
- 2. Sign changing AHE

Issues on magnetic monopole in SrRuO₃

2D

C O -10 -20 0 2π π π k1 k, 2π 0 Ω_2 20 10 2π k, π k, $2\pi^{0}$

PRB 88, 125110 (2013)

Phys. Rev. Res. 2, 023404 (2020)

- DFT does not work well
- No experimental dispersions (ARPES)
 - \circ $\,$ no high quality single crystals for ARPES $\,$

Spin polarization & tight binding fit

Fermi surface map and high symmetry cut

Electronic structure of single layer

Band structure of 2D ferromagnetic Ruddlesden-Popper phases

Berry curvature sources

(1) Nodal lines (β - γ band crossing)

 Quadratic band crossing (xz – yz band crossing)

Calculated Berry curvature at the Fermi level

- Different sign of BC near E_F
- BC mostly from QBC in 2D
 FM perovskite

(Also see PRR 2, 023404 (2020))

Quadratic band crossing (QBC) near the M point responsible for the sign-tunable AHE.

Berry curvature, OAM & Circular dichroism

Berry curvature & OAM

 $\vec{A}(\vec{k}) = \lambda_p^s \vec{k} \times \vec{L}$ $\vec{B}(\vec{k}) \propto \vec{L}$

PRL 121, 086602 (2018)

OAM & Circular dichroism

"Hidden Berry curvature in WSe2"

PRL 121, 186401 (2018)

*More direct evidence for existence of Berry curvature

Origin of sign-tunable AHE

QBC induced sign-changing AHE

QBC responsible for sign changing AHE

Magnetization-dependent AHE

M determines AHE

Sohn et al., Nature Materials (2021)

Thickness & ionic gating dependent AHE sign

Sign changing AHE in ultra-thin limit

Future studies – proximity (strain)

References

- 1. Nat Comm **12**, 6171 (2021) (Our 1st ARPES work on 1 uc film)
- 2. ArXiv: 2203.04244 (Kim et al, control of MIT through octahedron distortion)
- 3. In preparation (Ko et al, control of MIT through strain)

Structure control of 1 u.c. SRO

Metal-to-insulator transition in 1 u.c. SRO by octahedron distortion?

CaTiO₃ buffer layer with oxygen octahedral rotation (OOR)

Mott transition with increasing U/t

Monolayer SrRuO₃/SrTiO₃ (SRO/STO)

- Metal
- Cubic SrTiO₃ buffer layer

S. Y. Kim, et al., Adv. Mater. 30, 1704777 (2018).

Interface-driven MIT in 1 u.c. films

Metal-to-insulator transition in monolayer SRO!

Nat Comm 12, 6171 (2021)

Fermi surfaces

Control MIT in monolayer SRO!

J R Kim et al., ArXiv : 2203.04244

Strain engineering of monolayer SrRuO₃

Orbital tuning with strain engineering

Strain-dependent band structure

Strain dependent electronic structure

Large Mott-gap size unexpected from DFT

E K Ko, in progress

Summary

Large anomalous Hall conductivity in CoS₂

• Few, small gap, near E_F, same sign BC sources

Symmetry protected nodal structures in ultrathin SrRuO₃ film

• Nodal lines and QBCs generic to pervskite oxides

"Tunable Anomalous Hall conductivity"

ARPES

Byungmin Sohn, Sungsoo Hahn, Donghan Kim, Young-Do Kim

Wonshik Kyung, Yoonsik Kim, Hanyoung Ryu and Soonsang Huh

Jinwoong Hwang, J D Denlinger, Jiseop Oh, Eli Rotenberg

Crystal/Thin-film growth

Mikyung Kim Byungmin Sohn, Sungsoo Hahn, Donghan Kim, Eun-Kyo Ko, Jeong Rae Kim, Tae Won Noh

Transport and magnetic measurement Mikyung Kim Byungmin Sohn, Bongju Kim, Tae Won Noh Joonyoung Choi, Younjung Jo Ionic-liquid gating Minsoo Kim, Donghan Kim

Theory

Bohm-Jung Yang, Eunwoo Lee Se Young Park, Choong Hyun Kim Ji Hoon Shim, Minjae Kim Joon Won Rhim, Jinhong Park