Steady Floquet–Andreev states in graphene Josephson junctions

Sein Park, Wonjun Lee, Seong Jang, Yong-Bin Choi, Jinho Park,

Woochan Jung, Gil Young Cho, Gil-Ho Lee

Department of Physics, POSTECH, Korea

Kenji Watanabe, Takashi Taniguchi

NIMS, Japan

Band Engineering

Floquet-Bloch State

Floquet "Engineering"

Previous Studies - ARPES

 $\beta = ev_F |E|/\hbar\omega^2$: dimensionless parameter for Floquet interaction strength

Superconducting Tunneling Spectroscopy in Device

Tunneling Spectroscopy via hBN layer

[Nat. Nano. 9, 808-813 (2014)]

Areal averaged tunneling conductance

Making 'Bad' Contact

[Carbon 113, 237-242 (2017)]

Superconducting Tunneling Spectroscopy

Superconducting tunnel probe gives better energy resolution.

Self-aligned mask for lift-off

Tunneling Spectroscopy

BTK Fitting for Tunneling Differential Conductance

0.5

0

Bias (mV)

-0.5

-1

- Dynes parameter: $\gamma = 2.1 \times 10^{-4}$
- SC gap: $\Delta_{Al} = 0.2 \text{ meV}$
- Electron Temperature: $T_{\rm e} = 140 \ {\rm mK}$

Andreev Bound State

Proximity Josephson Junction

In mesoscopic point of view,

Andreev Bound State (ABS)

In microscopic point of view,

ABS in Graphene Josephson Junction

Temperature Dependence

Floquet-Andreev State

Experimental Setup for Microwave Irradiation

(Steady) Floquet-Andreev State

Energy Resolution of Tunnel Probe

Magnetic Field Dependence

At higher *P*, device heating occurs.

POSTPEH

Sum Rule

Sum-rule for various phase

 $S = \int_0^\infty (dI/dV) \, dV = const.$ [PRL 122, 13060 (2019)]

Sum-rule could be checked thanks to steadiness of Floquet states.

Microwave Power Dependence

Theoretical Calculations

0

Frequency Dependence

Tien-Gordon Model v.s. Floquet Model

Tien-Gordon model for photo-assisted tunneling

Floquet-Andreev states

Tien-Gorden effect

Improving Microwave Coupling

[Junho Suh, Jinwoong Cha (KRISS)]

Outlook

Summary

- Superconducting tunnelling spectroscopy with high energy resolution of ~ 20 μV
- Observed Andreev bound state (ABS) of graphene Josephson junction
- Observed steady Floquet-Andreev state by irradiating continuous microwave
- Quantitative analysis
 - Sum-rule
 - Fitting Power dependence (squared Bessel function)
 - Fitting dI/dV curves
- Side tunnel contact method may be applicable to other 2D materials.

Tunneling Spectroscopy on ABS

D=0.8

0.5

φ/ 2π

D=1.0

1.0