Twisted Bilayer Magnet Crl₃

Moon Jip Park PCS-IBS

IBS-APCTP Conference 09. 22.

Acknowledgements

research center theoretical physics of complex systems

Twisted Magnets Crl₃ Grigory Bednik Kyoung-Min Kim Do Hun Kim (PCS-IBS) (PCS-IBS) (KAIST) (KAIST)

Myung Joon Han

3D Twisted Superconductivity & Quasicrystal

SungBin Lee (KAIST)

Yong Baek Kim (Toronto)

Ref: K.-M. Kim, D. H. Kiem, G. Bednik, M. J. Han, MJP, arXiv:2206.05264 (2022)

Twisted Bilayer Graphene

ChangHwan Yi

Moire Photonics

(PCS-IBS)

Hee Chul Park (PCS-IBS)

Hofstadter **Moire Replica HOTI**

Sun-Woo Kim (KAIST/SKKU BRL→Cambridge)

Physics of Length Scale

<u>Solid state</u> <u>lattice</u>

Magnetic Domains

Complex Network

Length Scale in solid state

In this talk, we generalize moire materials to spin systems, "twisted bilayer magnetism"

Experimental progress

theoretical physics of complex systems

oLocal (AFM) measurement

Letter Published: 29 November 2021

Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer Crl_3

Yang Xu, Ariana Ray, Yu-Tsun Shao, Shengwei Jiang, Kihong Lee, Daniel Weber, Joshua E. Goldberger, Kenji Watanabe, Takashi Taniguchi, David A. Muller, Kin Fai Mak 🖂 & Jie Shan 🖂

Nature Nanotechnology 17, 143–147 (2022) Cite this article

6584 Accesses | 1 Citations | 12 Altmetric | Metrics

REPORT MAGNETISM

f Y in 🍲 🗞 🛛

Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets

TIANCHENG SONG (D), QI-CHAO SUN (D), ERIC ANDERSON (D), CHONG WANG, JIMIN QIAN, TAKASHI TANIGUCHI (D), KENJI WATANABE (D), MICHAEL A. MCGUIRE (D), RAINER STÖHR (D), [...] XIAODONG XU (D) +4 authors Authors Info & Affiliations

SCIENCE · 25 Nov 2021 · Vol 374, Issue 6571 · pp. 1140-1144 · DOI: 10.1126/science.abj7478

Twisted bilayer magnet

Transition metal trihalides

Honeycomb magnet
<u>Crl3</u>

 $H = \sum_{\langle i,j \rangle} J \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{z_j = z_i + d} J_{ij}^{\perp} \mathbf{S}_i \cdot \mathbf{S}_j + D_z \sum_i (S_i^z)^2$

Sivadas et al. Nano Letters (2018)

Symmetry of Twisted Crl₃

➤ Graphene

≻ Crl₃

- Monolayer preserves $\mathbf{C}_{\mathbf{2z}}$ and \mathbf{P} symmetry
- C_{2z} is preserved in twisted bilayer
- Point group D₆

- Non-magnetic I atoms break C_{2z}
- Twisted bilayer breaks both $\mathbf{C}_{\mathbf{2z}}$ and \mathbf{P} symmetry
- Point group D₃

Ab-initio model construction

theoretical physics of complex systems

Local stacking structure

Local stacking structure

- Local FM and AFM interlayer coupling coexists.
- <u>AB sublattice symmetry breaking.</u>

Monte Carlo Simulations

Skyrmion without DMI

theoretical physics of complex systems

 π

Skyrmions in moire superlattice

Standard recipe for skyrmion :

Exchange + DMI + Magnetic field

In twisted bilayer magnets :

Exchange + Modulating interlayer coupling(sublattice breaking)

$$N = \int \vec{n} \cdot \left(\frac{\partial \vec{n}}{\partial x} \times \frac{\partial \vec{n}}{\partial y}\right) dA$$

Small-angle limit

<u>Central observation of moire pattern</u> "as $\theta \rightarrow 0$, moire size diverges"

(Interlayer coupling) X (Area) VS (Intralayer coupling) X (Length) ~Collinear order

Magnetic phase transition

Landau theoretical description

Free energy functional:

$$\begin{split} F[\mathbf{n}_t, \mathbf{n}_b] &= \sum_{l=t, b} \int d^2 \mathbf{x} \left\{ \frac{3a_0^2}{2} J[\nabla_{\mathbf{x}} \mathbf{n}_l(\mathbf{x})]^2 - D_z [n_l^z(\mathbf{n}_l)]^2 \right\} \\ &+ \int d^2 \mathbf{x} \ \bar{J}_{\perp} \ \mathbf{n}_t(\mathbf{x}) \cdot \mathbf{n}_b(\mathbf{x}), \end{split}$$

Continuum Ansatz:

$$\mathbf{n}_t = (\sin \Phi_t, 0, \cos \Phi_t), \\ \mathbf{n}_b = (-\sin \Phi_t, 0, \cos \Phi_t),$$

Expansion:

$$F[\Phi_0] = N_{\text{ncd}}(\theta)(\bar{J}_\perp - 2D_z) + \frac{a}{2}[J - J_c(\theta)]\Phi_0^2 + \frac{b}{4}J_c(\theta)\Phi_0^4 + \mathcal{O}(\Phi_0^6) \Phi_0 = \pm \sqrt{(a/b)[1 - J/J_c(\theta)]}$$

Conventional second order phase transitions as a function of tilt angle

Magnetic phase transition II

Landau theoretical description

Continuum Ansatz:

$$\mathbf{n}_t = (\sin \Phi_t, 0, \cos \Phi_t), \qquad \mathbf{n}_t = (\sin \Phi_t, 0, \cos \Phi_t), \mathbf{n}_b = (-\sin \Phi_t, 0, \cos \Phi_t), \qquad \mathbf{n}_b = (0, 0, 0),$$

Expansion:

$$F[\Phi_{0}] = N_{\text{ncd}}(\theta)(\bar{J}_{\perp} - 2D_{z}) + \frac{a}{2}[J - J_{c}(\theta)]\Phi_{0}^{2} + \frac{b}{4}J_{c}(\theta)\Phi_{0}^{4} + \mathcal{O}(\Phi_{0}^{6}) F[l] = \frac{aJ\pi^{2}}{4}\left(\frac{2R}{l} - 1\right) - D_{z}N_{md}(\theta)\left[1 + \frac{1}{2}\left(1 - \frac{l}{R}\right)^{2}\right] - \bar{J}_{\perp}N_{md}(\theta)\left[\left(1 - \frac{l}{R}\right)^{2} - \frac{4}{\pi^{2}}\left(\frac{l}{R}\right)^{2}\right], \quad (4.6)$$

Competing scales of moire magnet

Magnetic phases

Phase transitions

• Excitations

Holestein-Primakoff Boson

Global magnetic ground state

Local harmonic oscillator

Dirac magnons

research center theoretical physics of complex systems

Dirac magnons are protected by coexistence of the following three symmetries.

- <u>U(1)c symmetry</u>
 (Collinearity)
- <u>U(1)v symmetry</u>
 (Valley decoupling)

<u>C2z symmetry</u>
 (Lateral shift)

Park et al. PRB (2021)

Topological magnons

research center theoretical physics of complex systems

MJP, Youngkuk Kim, Gil Young Cho, SungBin Lee, PRL (2019)

Magnon phase diagram

Research center theoretical physics of complex systems

Different magnon gaps are realized as a function of twist angles.

Chalker-Coddington network

Overall Structure of moire magnets

Magnetic phases

Future Research Directions

research center theoretical physics of complex systems

We extend theory of moire magnetism to various magnetic materials

 \succ

<u>Development of</u> <u>Extensive Monte-Carlo methods</u>

Various magnetic materials : Spin liquid α -RuCl₃ Magnetic TMDCs

arXiv:2206.05264 (2022)

Twisted trilayer Magnet

theoretical physics of complex systems

Stacking dependent couplings

(In preparation)

Twisted triple layer

Controlling geometry:

(In preparation)

Twisted triple layer

C3 symmetry breaking order:

Analogy with Josephson junction network:

Summary

