Electronic topology and correlations in kagome metals

IBS-APCTP Conference on

Advances in the Physics of
Topological and Correlated Matter
19 September 2022

Intro. Quantum matter phenomena and the kagome lattice

Part 1 - Topological Dirac fermions and flat bands in kagome metals

Part 2 - van Hove singularity and electronic symmetry breaking in kagome superconductor $\mathrm{AV}_{3} \mathrm{Sb}_{5}$

LBNL-ALS
C. Jozwiak
A. Bostwick
E. Rotenberg
J. Denlinger

Theory
Junwei Liu
Shiang Fang
Tim Kaxiras
Liang Fu

Introduction

Quantum matter phenomena and the kagome lattice

Electronic correlations

Mott insulator
Superconductivity
Charge-density-waves
Pair-density-waves
\qquad
Quantum matter

Chern \& axion insulator Magnetic Weyl physics Fractional quantum Hall effect Topological order Majorana fermions

Electronic topology

Quantum spin Hall
3DTI
Weyl SM
Nodal line SM

Intro. The 2D kagome network: lattice structure

Japanese basket weaving pattern

Kagome

Honeycomb

Dirac fermions + vHS + flat band

Electronic symmetry breaking

$$
\mathrm{AV}_{3} \mathrm{Sb}_{5}(\mathrm{~A}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs})
$$

B. R. Ortiz et al., Phys. Rev. Lett. 125, 247002 (2020)

Charge order
Superconductivity
Stripe ordering
Nematicity

Orbital order
Pair density wave
Anomalous Hall effect

Intro. The 2D kagome net as a new platform for quantum matter

Intro. Materials hosts for the 2D kagome network

Transition metal stannides

Bulk stacking of kagome layers

$$
m: n=1: 1(3: 3)
$$

Weak
interlayer coupling

Intro. Materials hosts for the 2D kagome network

Transition metal stannides

$$
m: n=3: 1
$$

$\mathrm{Mn}_{3} \mathrm{Sn}$ noncollinear AFM

$m: n=3: 2$

Transition metal stannides

Tm : Fe, Mn, Co
$\mathrm{X}: \mathrm{Ge}, \mathrm{Sn}$

- Various form of intrinsic magnetism
- Spin-orbit coupling from 3d-orbitals
- Intermediate Coulomb interactions
$\mathrm{Mn}_{3} \mathrm{Sn}$
noncollinear AFM
FeSn
collinear AFM

Part 1

Topological Dirac fermions and flat bands in kagome metals

Transport signatures of topology in kagome metal $\mathbf{F e}_{3} \mathbf{S n}_{\mathbf{2}}$

It all started with some interesting magnetotransport data..
(Checkelsky lab)

A possible manifestation of band topology?

L. Ye ${ }^{*}$, M. Kang ${ }^{*}$, et al., Nature 555, 638 (2018)

Observation of Massive Dirac fermions in $\mathbf{F e}_{\mathbf{3}} \mathbf{S n}_{\mathbf{2}}$

L. Ye ${ }^{*}$, M. Kang ${ }^{*}$, et al., Nature 555, 638 (2018)

Observation of Massive Dirac fermions in $\mathbf{F e}_{\mathbf{3}} \mathbf{S n}_{\mathbf{2}}$

IIIT

Calculating AHC from experimental band structures

$k \cdot p$ Hamiltonian : $H_{D}=\left[\hbar v_{F}\left(k_{x} \sigma_{y}-k_{y} \sigma_{x}\right)\right] \otimes I+E_{0} \tau_{x}+m \sigma_{z}$
Calculated AHC : $\quad \sigma_{x y}=\frac{e^{2}}{2 h} \frac{\Delta / 2}{\sqrt{((\Delta / 2))^{2}+\left(\hbar v_{F} k_{F}\right)^{2}}}$

With input from exp. band structure:
Close agreement to transport value:

$$
\begin{aligned}
& \sigma_{x y}^{c a l}=0.31 e^{2} / h \\
& \sigma_{x y}^{i n t}=0.27 e^{2} / h
\end{aligned}
$$

Chemical potential tuning via electron filling

1. Simplest structure with isolated 2D kagome layers

CoSn
2. Fermi level tuning (electron filling)

- We could directly observe the flat band near the Fermi level at the -0.27 eV binding energy
- Flat band acquires small dispersion only near the K point (likely due to NNN hopping).

No dependence on out-ofplane momentum $\left(k_{z}\right)$

M. Kang, S. Fang, L. Ye, et al., Nature Comm. 11, 4004 (2020)

Momentum

Momentum

Topo index $Z_{2}=1$

SOC opens an $\mathbf{8 0} \mathbf{~ m e V}$ gap at the quadratic band touching point

Flat band is topologically nontrivial

Part 2

van Hove singularity and electronic symmetry breaking

Quantum matter in $\mathbf{A V}_{\mathbf{3}} \mathbf{S b}_{\mathbf{5}}$ - CDW \& superconductivity

IIIT

Quantum matter in $\mathbf{A V}_{\mathbf{3}} \mathbf{S b}_{\mathbf{5}}$

What's the role of the electronic band structure in the formation of the CDW state?

FS at vHs filling

At the van Hove singularity fillings $(5 / 12,3 / 12)$ one finds:

1) Diverging density of states
2) Perfectly nested Fermi surface

Nesting wave vector $\mathbf{Q}=(\mathbf{1 / 2} \mathbf{0})$, consistent with 2×2 charge order

Electronic band structure of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}$ - DFT (undistorted)

Expectation

Three main kagome-derived bands from V-3d orbitals:

- K1 band - has $d_{x y} / d_{x 2-y 2}$ (in-plane) character and a p-type vHs near E_{F} at the M point
- K2 band - has $d_{x z} / d_{y z}$ (out-ofplane) character and a \boldsymbol{p}-type vHs near E_{F} at the M point
- K2' band has $d_{x z} / d_{y z}$ (out-of-plane) character and a m-type vHs near E_{F} at the M point

Electronic band structure of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}$ - van Hove singularities

Electronic band structure of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}$ - van Hove singularities

Electronic band structure of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}-\mathrm{CDW}$ gap

Fermi surface @ $k_{z}=0$ (DFT)

The K2' band is almost perfectly nested

Electronic band structure of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}-\mathrm{CDW}$ gap

a

Electronic band structure of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}-\mathrm{CDW}$ gap

The K1 band has its vHs almost precisely at the M point, and is strongly renormalized

Electronic band structure of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}-\mathrm{CDW}$ gap

So...what's making the system unstable toward translational symmetry breaking? What is the relative role of the high DOS near E_{F} (van Hove singularity) or the high joint DOS (nesting effects)?

Electronic band structure of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}-\boldsymbol{k}_{\mathbf{z}}$ dependence

A key element is the dimensionality of the band structure.

Lindhard function

No clear divergence of the electronic susceptibility at the M point

The lattice distortion pushes bands apart by $\sim 100 \mathrm{meV}$ and removes the vHs from E_{F}

The lattice distortion pushes bands apart by $\sim 100 \mathrm{meV}$ and removes the vHs from E_{F}

Hallmark of large electron-lattice coupling

Twisted bilayer graphene

Hosts topology, magnetism, and strong correlation phenomena

Up to temperatures $\sim 0.1-1 \mathrm{~K}$

2D kagome network

Hosts topology, magnetism, and strong
correlation phenomena
Up to temperature ~ 10-100 K

Questions..? Thats all dolks!

