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FIG. 9. The valence bands in Cd3As2 visualized by low-
temperature ARPES technique by Liu et al. [23]. The data were
collected on the (112)-terminated surface. The widely extending 3D
conical band, characterized by a velocity parameter of 1.3×106 m/s
and interpreted in terms of 3D massless Dirac electrons, coexists with
another holelike weakly dispersing parabolic band, also observed in
Ref. [26]. Reprinted by permission from Springer Nature: Nature
Materials [23], copyright (2014).

electrons rarely exceeds ED ∼ 100 meV (Table I), the exper-
imentally observed cones extend over a significantly broader
interval of energies.

In the following sections, we employ, for the sake of
brevity, a simplified notation and refer to the Kane and Dirac
models, which both may, at least from the theoretical view-
point, explain the presence of massless electrons in Cd3As2. In
the case of the Dirac model, we always consider 3D massless
electrons, which are described by the Dirac equation with the
zero rest mass and the presence of which is protected by the
discrete (C4) rotational symmetry [17]. In the case of Kane
model, zero or vanishing band gap is implicitly assumed.

V. ANGULAR-RESOLVED PHOTOEMISSION
SPECTROSCOPY

The ARPES technique provided us with a solid piece of
evidence for conical features in the electronic band structure
of Cd3As2, soon after predictions of Dirac-type states by
Wang et al. [17]. This largely contributed to the renewed in-
terest in the electronic properties of this material. Such initial
observations were made by several groups [23,25,26,79], and
elaborated further later on [80].

Characteristic data collected in ARPES experiments on
Cd3As2 [23,26] are plotted in Figs. 9 and 10, and respec-
tively show well-defined conical features for both valence
and conduction bands. The conical features in Figs. 9 and
10 were interpreted in terms of bulk states. Liu et al. [23]
and Neupane et al. [26] concluded the presence of a pair

FIG. 10. The conduction band of Cd3As2 visualized by ARPES
by Neupane et al. [26]. The data were collected on the (001)-
terminated surface of Cd3As2 at 14 K and show the dispersion
in the direction perpendicular to the !-Z line. The observed 3D
conical band was interpreted in terms of 3D massless Dirac electrons,
implying a velocity parameter of 1.5×106 m/s. Reprinted by permis-
sion from Springer Nature: Nature Communications [26], copyright
(2014).

of 3D Dirac nodes at the [112] and [001] axes, respectively.
However, it is worth noting that the orientation along the
[112] axis or, alternatively, along the [111] axis when an
approximately cubic unit cell is considered like it is the case
in Ref. [23], is not consistent with expectations based on
symmetry arguments [22], which only allow the Dirac nodes
to be present at the tetragonal axis (the [001] direction). The
velocity parameter was found to be close to 106 m/s in the
plane perpendicular to the axis connecting the Dirac nodes,
and reduced down to 3×105 m/s [23] along this axis. The
ARPES data in Refs. [23,26] do not directly show any signa-
tures of Dirac cones merging via the corresponding Lifshitz
points. Nevertheless, the indicated velocity parameters, and
the position of the cones (kD), allow us to estimate the scale
of massless Dirac electrons ED to be several hundred meV
or more.

ARPES data similar to Refs. [23,26], obtained on the
[112]-terminated surface of Cd3As2, were also presented by
Borisenko et al. [25], who primarily focused on the conical
feature in the conduction band. The presence of a pair of
symmetry-protected 3D Dirac cones, with the corresponding
nodes at the [001] axis, has been concluded, and the electron
velocity parameter v ≈ 0.8×106 m/s deduced. The Fermi en-
ergy in the studied n-doped sample exceeded EF ≈ 200 meV,
and may serve as a lower bound for the ED parameter. Since
the shape of the observed conical band does not provide any
signature of the approaching upper Lifshitz point, one may
conclude that ED $ EF .

The basic parameters of Dirac-type conical bands deduced
from the above-cited ARPES experiments have been com-
pared in Table I with results of other experimental techniques,
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The generation of photocurrent in an ideal two-dimensional Dirac spectrum is symmetry forbidden. In sharp
contrast, we show that three-dimensional Weyl semimetals can generically support significant photocurrents due
to the combination of inversion symmetry breaking and finite tilts of the Weyl spectra. Symmetry properties,
chirality relations, and various dependencies of this photovoltaic effect on the system and the light source are
explored in detail. Our results suggest that noncentrosymmetric Weyl materials can be advantageously applied
to room temperature detections of mid- and far-infrared radiations.

DOI: 10.1103/PhysRevB.95.041104

Introduction. Electronic materials with band crossing ex-
citations have recently attracted much interest in condensed
matter physics. A two-dimensional (2D) Dirac spectrum
describes the surface states of three-dimensional (3D) topo-
logical insulators [1,2] and bulk excitations of graphene [3].
Their gapless and topological characters have stimulated
many electronic applications, one of which is the photo-
voltaic effect. The linearly crossing dispersions of Dirac
systems can absorb photons with, ideally, arbitrarily long
wavelength, making them possibly advantageous for infrared
(IR) detections. Nevertheless, the generation of photocurrent,
defined as the spontaneous production of current without any
applied voltage by the exposure to light, has to vanish for
an ideal Dirac spectrum in 2D because of the symmetric
excitations about the Dirac point [Fig. 1(a)]. In fact, it has
been shown that the resultant photocurrent is negligible even
if realistic perturbations including band curvatures, warpings,
and Zeeman couplings are taken into account [4,5]. So far, the
generation of a substantial photocurrent in Dirac systems has
to involve external assistances such as couplings to magnetic
superlattices [6]. (Similarly, quantum wires require external
magnetic fields to create sizable photocurrents [7].) Producing
photocurrents in Dirac materials remains challenging and has
been an active research subject [6,8–13].

In this paper we propose that Weyl semimetals can
generically develop photocurrents without the need of exter-
nal couplings. Weyl spectrum is the 3D generalizations of
the Dirac cone and thereby shares the same advantage of
long-wavelength photon absorptions. Unlike Dirac systems,
Weyl semimetals necessarily break either time-reversal (TR)
symmetry or spatial inversion (I) symmetry, or both. The
photocurrent response of a Weyl system differs from the
Dirac counterpart in two crucial ways. First, Weyl cones have
definite chiralities and always come in a pairs. They can
be regarded as topological monopoles or antimonopoles of
the Berry curvature. For an upright Weyl cone [Fig. 1(b)],
the absorption of a circularly polarized photon flips the spin,
resulting in asymmetric excitations along the drive direction.
Yet, the direction of the photocurrent is governed by the
chirality and hence, the sum of photocurrents from a Weyl
node pair has to vanish identically. On the other hand, a Weyl
cone can be tilted [14,15] because of reduced symmetries.

The corresponding photoexcitation is highly asymmetric about
the nodal point [Fig. 1(c)]. The consequential photocurrent is
controlled by the tilt and the chirality and there is generally no
offset between photocurrents unless additional symmetries are
imposed. Note that other interesting effects such as gyrotropic
magnetic effect [16,17], photovoltaic chiral magnetic effect
[18], anomalous Hall effect [19], emergent electromagnetic
induction [20], and nonlinear optical responses [21] can occur
in Weyl semimetals, but have different physical origins.

Photocurrents in systems without I symmetry have been
observed in semiconductor quantum wells [22] and tellurium
[23]. A variety of mechanisms have been discussed [23],
including real and virtual absorptions and spin-dependent
scatterings [22], but the effect is small and the discussion
has been limited to quadratic band structures. Here we show
that the linear dispersion in Weyl semimetals hold a special

FIG. 1. Schematics of photocurrent generations in Dirac and
Weyl systems. Circularly polarized photons propagating along the
z axis induce spin-flip vertical transitions denoted by the red arrows.
(a) In an ideal 2D Dirac system, the excitations are symmetric
about the node and thus the photocurrent vanishes. (b) In a 3D
Weyl system with an upright crossing spectrum, the extra dimension
allows an asymmetric particle-hole excitation along qz and creates a
chirality-dependent photocurrent from each Weyl cone. However, the
chiral currents from a monopole and an antimonopole negate each
other, yielding no net current. (c) In the presence of tilt along some
direction qt , asymmetric excitations can happen when the system is
doped away from the neutrality. The resultant photocurrent is not just
determined by the node chirality and the total current is generically
nonzero.

2469-9950/2017/95(4)/041104(5) 041104-1 ©2017 American Physical Society

Photo-current

Perturbative Non-linear optics

RAPID COMMUNICATIONS

CHAN, LINDNER, REFAEL, AND LEE PHYSICAL REVIEW B 95, 041104(R) (2017)

advantage and a large photocurrent proportional to the absorp-
tion can be produced which survives up to room temperature.
In addition to the broken I symmetry, we find that the presence
of finite tilts of the Weyl dispersions, being commonplace in
realistic materials, is the key for the photocurrent in Weyl
semimetals. The importance of the tilt has not been discussed
in the literature so far. The photocurrent response does not
require the chemical potential to be tuned to the Weyl point,
nor any imbalance of chemical potentials between opposite
Weyl nodes, which are otherwise important for chiral-anomaly
related responses [18,24–26]. We investigate the conditions
and magnitudes of photocurrents induced by a laser drive and
further discuss the potential application for room temperature
detections of blackbody IR radiations.

Photocurrent response. We start by discussing the pho-
tocurrents generated from a single Weyl spectrum without any
symmetry restriction. The low-energy effective Hamiltonian
can be generally written as

HW (!q) = !vtqtσ0 + !vF v̂i,j qiσj , (1)

where vF is the Fermi velocity without tilt and σj are Pauli
matrices. v̂i,j represents anisotropy and χ = Det(v̂i,j ) = ±1
determines the chirality. vt gives the tilt velocity and
qt = t̂ · !q with t̂ being the tilt direction. The linear Weyl
dispersion is given by E±(!q) = T (!q) ± U (!q) = !vtqt ±
!vF [

∑
j (

∑
i v̂i,j qi)2]1/2 and the ratio vt/vF measures the tilt.

When |T (!q)/U (!q)| is less than 1 for all q̂, the node is in the
type-I phase, whereas when it is greater than 1 for some q̂,
the system is in the type-II regime, in which electron and hole
pockets are formed [15].

The interaction with a monochromatic light charac-
terized by !A(t) = !A+e−iωt + !A−eiωt enters through the
Peierls substitution, leading to the interaction Hamiltonian
V (t) = V+e−iωt + V−eiωt with

V± = !vF v̂i,jA±,iσj . (2)

V+(−) describes the spin-dependent photon absorption (emis-
sion) process. In the isotropic limit v̂i,j = δi,j , a cir-
cularly polarized light propagating along qz corresponds
to V± = !vFAσ±/2. We have ignored Zeeman coupling
here because the ratio of Zeeman to orbital couplings is
∼gs!ω/(2mvF c) ∼ 10−3 [5] based on reported g factors
[27,28].

We now compute the photovoltaic current
!J = (−e)

∑
q,l=± [∂El(!q)/∂ !q] × [nl(!q) − n0

l (!q)], where
n±(!q) and n0

±(!q) are the perturbed and equilibrium
distribution functions, respectively. Within Fermi’s golden
rule and the relaxation time approximation, each Weyl node
contributes a photocurrent density:

Ji =
(−eτω2A2

16π2

)
J̄i , (3)

with a dimensionless response function

J̄i(ω) = 4
∫

d3
(

vF q

ω

)
∂[(E(!q)/!]

∂(vF qi)

∣∣∣∣〈q+| V+

!vF A
|q−〉

∣∣∣∣
2

× δ

(
(E(!q)

!ω
− 1

)
[n0

−(!q) − n0
+(!q)], (4)

FIG. 2. Relations between photocurrents in centrosymmetric and
noncentrosymmetric Weyl semimetals. Each Weyl node produces a
photocurrent with chiral-independent ( !J0) and chirality-dependent
( !Jχ ) components. (a) In the presence of an inversion center, a pair of
I-related Weyl nodes have opposite tilt and opposite chirality, leading
to the cancellation of photocurrents. (b) In noncentrosymmetric Weyl
systems, TR symmetry relates two Weyl nodes of the same chirality
instead. Monopoles and antimonopoles are not symmetry related and
can have different tilts. Two pairs of Weyl nodes give rise to an overall
photocurrent of 2( !Jχ − !J ′

χ ). (c) The angle θA between the tilt qt and
Poynting vector PA.

where (E = E+ − E−. We have introduced a relaxation time
τ to account for disorder and phonon scattering [29,30]. This
response function describes the vertical transition from state
|q−〉 to |q+〉 by absorbing a photon with frequency ω. Each
particle-hole excitation produces a current −e∂[(E(!q)/!]/∂ !q
being independent of the tilt. We note that Eq. (4) is a
dimensionless number which depends on the tilt vt/vF but is
independent of vF for a given tilt. Recently it was shown that
for a single node with negligible tilt, the trace of the response
(i.e.,

∑
PA={x,y,z} J̄i=PA

, where PA is the Poyting vector) is
universal and proportional to the chirality [31]. It is easy to
see that this result survives for finite tilt over a limited range
of chemical potential.

For Weyl semimetals, it is possible to break both TR
and I symmetries. In these cases, each Weyl node can have
different parameter values and chemical potentials. J̄ coming
from different nodes are not symmetry related and there is no
current cancellation. Only when there is I symmetry, as we
show below, will the photocurrents lead to cancellation.

Symmetry consideration. In centrosymmetric Weyl
semimetals, a Weyl node at !k is related to another one
at −!k about the inversion center (IC) [Fig. 2(a)]. Their
Hamiltonians take the same form as Eq. (1) with the relations
qi ↔ −qi and σj ↔ σ ′

j = PσjP
−1. The inversion P just

changes the basis of σj . Hence, I-related nodes have opposite
tilt and opposite chirality. Similarly, with TR symmetry,
two Weyl nodes are related about the time-reversal invariant
momentum (TRIM) with the relations qi ↔ −qi and σj ↔
−σ ′′

j = T σj T
−1, where T is the TR transformation. Thus,

two TR-related nodes have opposite tilt but the same chirality
[Fig. 2(b)]. Even though each monopole has to be accompanied
by an antimonopole, there is no symmetry restriction between
them.

Importantly, the photocurrent depends on the sign of the tilt
and the chirality. According to the response function [Eq. (4)],
when we change vt → −vt and v̂i,j → −v̂i,j , it is equivalent to
!q → −!q and the integral yields J̄i → −J̄i . With this relation,
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Amn(k) = 〈ψm(k)|i∂k|ψn(k)〉

(= dmn(k))

= 〈ψc(0)|”x”|ψv(0)〉

dcv(k) # dcv(0)

PL ∝ |dcv(k)|2|E(0,Ω)|2δ(Ec − Ev − Ω)

Ĥ(k) =
∑

k

(
Ec(k)c

†
ckcck + Ev(k)c

†
vkcvk

)
(1)

−
∑

k,q

(
dcv(k)E(q, t)c†ckcvk+q + d∗

cv(k)E(q, t)c†vkcck+q

)
(2)

U(k, t)

H =

(
0 U(k, T )

U(k, T )† 0

)

HF (k) = i lnU(k, T )

∂z∆E

σn
xy = e2

∫
dk2

(2π)2
∂ky 〈ψn(k)|i∂kx |ψn(k)〉 − (x ↔ y)

R12 = A11 −A22 − ∂kargA12

P± # exp

[
−π

(m± κ‖vF/4)
2

|vF |

]

A±
cv(k) = 〈ψc(k)|i∂±|ψv(k)〉

γ(k) =
PL+(k)

PL−(k)
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Let us consider the model of a two-dimensional Dirac fermion 
(Fig. 2a).

H(k) = h̄v(k
x

σ

x

+ k

y

σ

y

) +mσ

z

. (14)

As the non-zero mass term breaks time-reversal T = iσyK and space–
time-inversion PT = σxK symmetries, both linear and circular pho-
tovoltaic Hall effects can occur.

We first consider circularly polarized light. Figure 2b shows the 
third-order photovoltaic Hall conductivity tensors calculated with 
ħΓ = 1 meV, v = 8 × 105 m s−1 and 2∣m∣ = 17 meV, which are relevant 
to graphene on a hexagonal boron nitride substrate37. The Hermitian 
curvature dominates the response near the band edge, whereas the 
other contributions having the opposite sign grow as the photon 
energy goes higher. This leads to the sign change of the third-order 
conductivity at 2

√
2|m| = 24 meV. As the circular photovoltaic 

Hall conductivity is T- and PT-symmetric, it is independent of the 
sign of the mass m. Note that the response at high photon energies 
follows Oka and Aoki’s result35 for massless graphene. Therefore, the 
opposite sign of the response at the band edge is an experimentally 
observable signature that the response is due to the Hermitian cur-
vature and is not by the Oka–Aoki mechanism.

On the other hand, the linear photovoltaic Hall conductivity ten-
sor changes sign as the mass sign changes, reflecting the fact that 
the linear photovoltaic Hall effect is a time-reversal-breaking effect 
(Fig. 2c). Another feature of the linear photovoltaic Hall conductiv-
ity in Fig. 2c is that no sign change occurs as the photon energy 
increases above the band gap. This is because the response is purely 
from the Hermitian curvature in our model.

Three-dimensional massive Dirac fermions show responses 
similar to two-dimensional Dirac fermions (Fig. 2d). However, 
their linear photovoltaic Hall conductivity is zero because of space–
time-inversion symmetry. See Methods for analytic expressions of 
conductivity tensors.

We test our model-based predictions by performing 
first-principles calculations for monolayer germanene, bulk 
Bi2Se3 and (LaOsO3)2 bilayer (Fig. 3). These materials are Z

2

 
topological insulators in two and three dimensions38,39 and a 
Chern insulator40, respectively, described by a massive Dirac 
Hamiltonian close to the band edge. As expected from model cal-
culations, the Hermitian curvature dominates the response near 
the band edge, and the third-order circular photovoltaic Hall con-
ductivity changes sign as the photon energy increases (Fig. 3c). 
Ferromagnetic (LaOsO3)2 bilayer can also show the linear pho-
tovoltaic Hall effect because time-reversal symmetry is broken  
(Fig. 3d). Our calculations demonstrate that the Hermitian cur-
vature is a useful measure of the photovoltaic Hall response in 
topological materials.

Topological optical response. Given an understanding of geom-
etry, one interesting question is about its topology. Topological 
invariants can be defined using standard methods in Riemannian 
geometry. Recall that the target geometry probed by the transition 
between a specific pair of states is complex and one-dimensional. 
The Euler number is then a natural topological invariant to consider 
because it classifies all one-dimensional closed complex manifolds 
(but note that we probe a one-dimensional complex subtangent 
space, which may not be the tangent space of a one-dimensional 
complex manifold; see Supplementary Note 1 for more discussion). 
According to the Gauss–Bonnet theorem, the Euler number for the 
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transition between n and m states. This property implies that the 
topological optical responses are not perturbative responses in gen-
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As c1 is proportional to the Hall conductivity, equation (16) shows 
that the photovoltaic Hall effect by the complete population inver-
sion between n and m bands is an example of quantized optical 
responses due to χmn. Therefore, the complete population inversion 
by extreme optical pumping is a universal mechanism for topologi-
cal optical responses.

The above features of topological optical responses appear in 
PT-symmetric systems also, where the reality or symplecticity con-
dition is imposed on the geometry. The relevant topological invari-
ants are non-polynomial functions of geometric quantities and have 
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Notes 1–3 for details.
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Meaning of metric, connection and curvature in optical processes. 
The Q, C and K defined here are properties of a one-dimensional 
complex vector space. Their real parts define the Riemannian met-
ric tensor (also known as quantum metric tensor), the metric con-
nection and the Riemann curvature tensor of the corresponding 
two-dimensional real vector space spanned by Re[ê

a

]s and Im[ê
a

]s. 
On the other hand, the (minus) imaginary parts define the symplec-
tic form, almost symplectic connection and symplectic curvature 
tensor33. All are gauge-invariant.

As the geometric quantities defined above are given by the 
transition dipole moment and its gauge-invariant derivatives,  
they are basic building blocks of the optical conductivity tensors. 
The Hermitian metric appears in the linear optical conductivity 
tensor as
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where ∫k = ∫ddk/(2π)d, ħωmn is the energy difference between m and 
n bands, and fnm = fn − fm is the difference between the Fermi–Dirac 
distributions of the n and m states.
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where vc
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 and vc
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 are the group velocities of bands m and n, respec-
tively, which involve the band dispersion.
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eration of the direct current jc
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The above relations generalize the ones found in two-band 
systems19–21, but the optical manifestation of the Hermitian 
curvature has not been known even in two-band systems. 
However, we can also interpret the Hermitian curvature 
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) in the same vein 
as the optical transition of the Berry curvature (Fig. 1c). As the Berry 
curvature is the source of the Hall effect, the Hermitian curvature 
is expected to be responsible for the light-induced direct-current  
Hall effect, also called the photovoltaic Hall effect35, which grows lin-
early in time with constant light intensity. At finite relaxation rate Γ of 
electronic quasiparticles, the saturated photovoltaic Hall conductivity 
is proportional to Γ−1; we call this the injection photovoltaic Hall con-
ductivity following ref. 36. We elaborate more on this response below.

Hermitian curvature in the photovoltaic Hall effect. The 
expression of the third-order injection conductivity tensor in 
time-reversal-symmetric systems was derived in ref. 36. When gen-
eralized to include time-reversal-breaking systems, the third-order 
injection conductivity tensor contains the Hermitian curvature:
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where the index a is for the static electric field, indices b and c are 
for the oscillating electric field of light, and the ellipsis includes the 
second-order connection, connection, metric and virtual transi-
tions among three states (Methods). The real (imaginary) part of 
the tensor is responsible for the response independent of (depen-
dent on) the light helicity, which we call linear (circular) photocon-
ductivity. The photovoltaic Hall response is characterized by the 
antisymmetric part σ

[d;a]bc
inj

= (σd;abc

inj

− σ

a;dbc

inj

)/2. In the clean limit 
where ħΓ is much smaller than the photon energy and band gaps, 
injection response is the largest contribution to the photovoltaic 
Hall response.

In time-reversal-symmetric systems, the injection response 
depends on the helicity of the circularly polarized light (Table 1). 
Similarly, space–time-inversion symmetry also allows only circular 
photoconductivity because the third-order optical conductivity ten-
sor is invariant under spatial inversion. On the other hand, when 
time-reversal symmetry and space–time-inversion symmetry are 
both broken, linearly polarized light can also induce injection pho-
tovoltaic Hall conductivity.

Equation (13) in general has a complicated form that includes 
various geometric quantities. However, as we show now, the 
Hermitian curvature dominates the photovoltaic Hall response 
near the band edge of topological materials such as topological 
insulators and massive Dirac semimetals, characterized by massive 
Dirac Hamiltonians.

Table 1 | Properties of the third-order photoconductivity tensors

Response Jerk 
linear

Injection 
linear

Injection 
circular

Shift 
linear

Shift 
circular

Photovoltaic 
Hall effect

No Yes Yes Yes Yes

T or PT 
symmetry

Yes No Yes Yes No

Following ref. 36, the third-order photoconductivity is classified as jerk, injection and shift according 
to their dependence on the relaxation rate; they are proportional to Γ−2, Γ−1 and Γ0, respectively. 
Linear (circular) means a response independent of (dependent on) light helicity. T and P indicate 
time reversal and spatial inversion. As third-order optical conductivity tensors are invariant under 
spatial inversion, time-reversal-symmetric responses are space–time-inversion-symmetric also.
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insulators and massive Dirac semimetals, characterized by massive 
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Following ref. 36, the third-order photoconductivity is classified as jerk, injection and shift according 
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Quantum Hall state
(Haldane model)

graphene +
circularly polarized laser

Example: Floquet topological insulator

HF =H(t)=

Aim of Floquet “engineering”
(1) Start from a trivial system
(2) Apply a time periodic external field

1

H(t) = H0 + �H(t)

| (t)i = (U1U2)
t
| (0)i

e
�iHFT

= U1U2

e
�iHFT

= U(T + t0, t0)

U(t, t0) = T̂ e
�i

R t
t0

H(s)ds
= V (t)e

�HF (t�t
0)
V

†
(t0)

HF = J0(A)(�2J) cos(k)

H(t) =

X

k

(�2J) cos(k �A cos⌦t)c
†
k
ck

V (t+ T ) = V (t)

h(t+ T ) = h(t)

i@t k(t) = h(t) k(t)

 k(t) = e
�i

R t
0 h(s)ds

 k(0)

= e
�i

R t
0 h(s)ds+i"kte

�i"kt k(0)

= V (t)e
�iHF t

 k(0)

HF = "k =
1

T

Z
T

0
h(s)ds

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives

an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by

A(k, ") = �⇡
�1

Tr{(" + i�)I � Hk}
�1

, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original

Dirac bands even for A/⌦ 6= 0; in particular, the annihilation process at A/⌦ = 0.5 has enough spectral weight to be

experimentally observable.

he↵S
z

Jije
�i�ij

(3) Realize a state with an interesting HF, U(T), V(t)

• How do we obtain the Floquet states?

• How can we construct HF? 1/W expansions

Floquet space-time picture 
(Sambe picture)

TO, Aoki, PRB’09
Kitagawa TO, et al. ‘11



Floquet Space-Time picture 1 Sambe 1973

time dependent problem eigenvalue problem 1

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Kφα = εαφα

K = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

〈ij〉

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

〈ij〉

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

jy

En

εn(py) = En +
p2y
2m∗

e

|Φα(x, t)|2

[H − i∂t] |Φα〉 = εα|Φα〉

1

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Kφα = εαφα

K = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

〈ij〉

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

〈ij〉

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

jy

En

εn(py) = En +
p2y
2m∗

e

|Φα(x, t)|2

[H − i∂t] |Φα〉 = εα|Φα〉

Floquet state

1

Hm =
1

T

∫ T

0
H(t)eimΩtdt

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Hφα = εαφα

H = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

〈ij〉

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

〈ij〉

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

jy

En

εn(py) = En +
p2y
2m∗

e

|Φα(x, t)|2

1

Hm =
1

T

∫ T

0
H(t)eimΩtdt

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Hφα = εαφα

H = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

〈ij〉

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

〈ij〉

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

jy

En

εn(py) = En +
p2y
2m∗

e

|Φα(x, t)|2

~ absorption of m “photons”

e: Floquet quasi-energy

Floquet Hamiltonian

Fourier transformation
1

φ(t) =
∑

m

φme−imΩt

δHFaraday = βICPLS
z

δHeff = αICPLχ+ . . .

χ = Si · (Sj × Sk)

Hm =
1

T

∫ T

0
H(t)eimΩtdt

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Hφα = εαφα

H = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

〈ij〉

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

〈ij〉

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

Treat “time” as an extra space coordinate



Floquet Space-Time picture 2

1

H±2, H±3

| (nT )i = (U1U2)
n
| (0)i

e
�iHFT

= U(t, 0)

U(t, 0) = T̂ e
�i

R t
0 H(s)ds

= V (t)e
�iHF t

P (F ) 6= P (�F )

P (F ) = 1

F = �2�E/R+�

e
i�Berry = exp

✓
i

Z

C
Ann(k) · dk

◆

| n(k)i

e
i�n(k)| n(k)i

HF =

HFM =
i

T
lnU(t0 + T, t0)

H(t) = H0 + �H(t)

| (t)i = (U1U2)
t
| (0)i

e
�iHFT

= U1U2

e
�iHFT

= U(t0 + T, t0)

U(t, t0) = T̂ e
�i

R t
t0

H(s)ds
= V (t)e

�iHF (t�t
0)
V

†
(t0)

not displayed

1

Hm =
1

T

∫ T

0
H(t)eimΩtdt

Heff = b · σ

b+ = − A

A2 + Ω2
k2

bz = −kz −
Ω

A2 + Ω2
|k|2

k = kx + iky

ε/Ω = ±0.5

H(k) =

(
−vσ · (k −A5) mI

mI vσ · (k +A5)

)

∆k = 2
√
|A5|2 −m2

H(t) =
∑

ij

Jij(t)c
†
i cj =

∑

m

Hme−imΩt

H±2, H±3

|ψ(nT )〉 = (U1U2)
n|ψ(0)〉

e−iHFT = U(T, 0)

U(t, 0) = T̂ e−i
∫ t
0 H(s)ds = V (t)e−iHF t

P (F ) #= P (−F )

P (F ) = 1

F = −2∆E/R+−

eiγBerry = exp

(
i

∫

C
Ann(k) · dk

)
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Figure 2

Floquet picture for one body physics: A mapping (a) to a static higher dimensional model gives
an intuitive understanding of (b) Thouless pumping (Section 2.1) and (c) Floquet Chern
insulators (Section 3). The e↵ective Hamiltonian describes physics projected on to the original
Hilbert space (Section 2.4).

for the Hamiltonian and the Floquet state. With this representation, the time dependent

Schödinger equation is mapped to an eigenvalue problem (23, 25)

X

m

(Hn�m �m⌦�mn) |�m

↵ i = "↵|�n

↵i 4.

in an extended Hilbert space. The index ↵ labels eigenstates and m, n are the Fourier mode

indices. Now, the Hilbert space has been infinitely expanded, but this is compensated by

the indefiniteness of ".

One can view the index m as a position in the Floquet direction: The system described

by Equation 4 is equivalent to a time independent layered one body system where m labels

the layers (Figure 2). The intra layer hopping is described by H0, while Hm (m 6= 0) give

inter layer couplings. In addition, there is a static electric field in the Floquet direction

coming from the m⌦-term in Equation 4. This fictitious electric field ⌦ plays an important

role in understanding the physics of driven systems. For small ⌦, we have a lattice problem

in higher dimensions in a weak electric field. If this model is a two dimensional Chern

insulator with a Hall coe�cient �xm, a dissipationless current jx = �xm⌦ is generated,

which is nothing but the Thouless pumping (57). For larger ⌦, the layers become isolated

energetically and the state exhibits Wannier-Stark localization (along the Floquet direction).

In such a situation, the high-frequency expansion is a powerful tool in understanding the

physics systematically.

2.1. Thouless pumping in the Floquet picture

Thouless pumping (57) is probably one of the most well known phenomenon in time-periodic

systems. The Rice-Mele model (58) defined by

H(t) = �
X

j

(J + �1 cos⌦t(�1)j)(c†
j+1cj + h.c.) + �2 sin⌦t

X

j

(�1)jc†
j
cj 5.

4 Oka and Kitamura

HF

TO, Kitamura, Annual Review of CMP ’19
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an intuitive understanding of (b) Thouless pumping (Section 2.1) and (c) Floquet Chern
insulators (Section 3). The e↵ective Hamiltonian describes physics projected on to the original
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for the Hamiltonian and the Floquet state. With this representation, the time dependent

Schödinger equation is mapped to an eigenvalue problem (23, 25)

X

m

(Hn�m �m⌦�mn) |�m

↵ i = "↵|�n

↵i 4.

in an extended Hilbert space. The index ↵ labels eigenstates and m, n are the Fourier mode

indices. Now, the Hilbert space has been infinitely expanded, but this is compensated by

the indefiniteness of ".

One can view the index m as a position in the Floquet direction: The system described

by Equation 4 is equivalent to a time independent layered one body system where m labels

the layers (Figure 2). The intra layer hopping is described by H0, while Hm (m 6= 0) give

inter layer couplings. In addition, there is a static electric field in the Floquet direction

coming from the m⌦-term in Equation 4. This fictitious electric field ⌦ plays an important

role in understanding the physics of driven systems. For small ⌦, we have a lattice problem

in higher dimensions in a weak electric field. If this model is a two dimensional Chern

insulator with a Hall coe�cient �xm, a dissipationless current jx = �xm⌦ is generated,

which is nothing but the Thouless pumping (57). For larger ⌦, the layers become isolated

energetically and the state exhibits Wannier-Stark localization (along the Floquet direction).

In such a situation, the high-frequency expansion is a powerful tool in understanding the

physics systematically.

2.1. Thouless pumping in the Floquet picture

Thouless pumping (57) is probably one of the most well known phenomenon in time-periodic

systems. The Rice-Mele model (58) defined by

H(t) = �
X

j

(J + �1 cos⌦t(�1)j)(c†
j+1cj + h.c.) + �2 sin⌦t
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(�1)jc†
j
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TO, Kitamura, Annual Review of CMP ’19



Floquet-Magnus expansion  (captures stroboscopic dynamics)

1

σxy ∼ |A5|

Heff =
i

T
ln T̂ e−i

∫ T
0 H(s)ds (1)

Heff = H0 +
∑

m>0

[H−m, Hm]

mΩ
(2)

+
1

3

∑

m,n "=0

[H−m, [Hm−n, Hn]]

nmΩ2
+

1

2

∑

m,n"=0

[Hm, [H0, H−m]]

m2Ω2
+ . . . (3)

LDirac = ψ̄(γµ(i∂µ −Aµ)−m)ψ (4)

Leff = ψ̄(γµi∂µ −m−A5
µγ

µγ5)ψ

A3
5 =

A2

Ω

[γ0γ1, γ0γ2] = γ0γ5γ3

A = (A cosΩt, A sinΩt, 0)

LDirac = ψ̄(γµ(i∂
µ −Aµ)−m)ψ (5)

Htot = H0 +HA with

H0 = γ0γ · p+ γ0m, Hint = −eγ0γ ·A, (6)

H± = −(eE/Ω)γ0γ± with γ± = 1
2 (γ

x ± iγy)

H(t) = σ · (p− eA(t)) (7)

Heff = σ · (p−B) (8)

H(t) = γ0γ · (p− eA(t)) + γ0m (9)

Heff = γ0γ · p+ γ0γ5γ3Az
5 + γ0m (10)

Heff = γ0(γ · p+ γ5γ ·A5) + γ0m (11)

Htot = H0 +HA (12)

H0 = γ0γ · p+ γ0m, Hint = −eγ0γ ·A, (13)

1

σxy ∼ |A5|

Heff =
i

T
ln T̂ e−i

∫ T
0 H(s)ds (1)

Heff = H0 +
∑

m>0

[H−m, Hm]

mΩ
(2)

+
1

3

∑

m,n "=0

[H−m, [Hm−n, Hn]]

nmΩ2
+

1

2

∑

m,n"=0

[Hm, [H0, H−m]]

m2Ω2
+ . . . (3)

LDirac = ψ̄(γµ(i∂µ −Aµ)−m)ψ (4)

Leff = ψ̄(γµi∂µ −m−A5
µγ

µγ5)ψ

A3
5 =

A2

Ω

[γ0γ1, γ0γ2] = γ0γ5γ3

A = (A cosΩt, A sinΩt, 0)

LDirac = ψ̄(γµ(i∂
µ −Aµ)−m)ψ (5)

Htot = H0 +HA with

H0 = γ0γ · p+ γ0m, Hint = −eγ0γ ·A, (6)

H± = −(eE/Ω)γ0γ± with γ± = 1
2 (γ

x ± iγy)

H(t) = σ · (p− eA(t)) (7)

Heff = σ · (p−B) (8)

H(t) = γ0γ · (p− eA(t)) + γ0m (9)

Heff = γ0γ · p+ γ0γ5γ3Az
5 + γ0m (10)

Heff = γ0(γ · p+ γ5γ ·A5) + γ0m (11)

Htot = H0 +HA (12)

H0 = γ0γ · p+ γ0m, Hint = −eγ0γ ·A, (13)

Note: 
1. Log(exp(i θ)) is not well-defined (monodromy) 
2. This expansion is divergent in many-body systems
3. Initial time dependence is dropped

High frequency expansion
1

HF =

HFM =
i

T
lnU(t0 + T, t0)

H(t) = H0 + �H(t)

| (t)i = (U1U2)
t
| (0)i

e
�iHFT

= U1U2

e
�iHFT

= U(T + t0, t0)

U(t, t0) = T̂ e
�i

R t
t0

H(s)ds
= V (t)e

�HF (t�t
0)
V

†
(t0)

HF = J0(A)(�2J) cos(k)

H(t) =

X

k

(�2J) cos(k �A cos⌦t)c
†
k
ck

V (t+ T ) = V (t)

h(t+ T ) = h(t)

i@t k(t) = h(t) k(t)

 k(t) = e
�i

R t
0 h(s)ds

 k(0)

= e
�i

R t
0 h(s)ds+i"kte

�i"kt k(0)

= V (t)e
�iHF t

 k(0)

HF = "k =
1

T

Z
T

0
h(s)ds

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives

an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by

A(k, ") = �⇡
�1

Tr{(" + i�)I � Hk}
�1

, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original

1

HF =

HFM =
i

T
lnU(t0 + T, t0)

H(t) = H0 + �H(t)

| (t)i = (U1U2)
t
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e
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k
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i@t k(t) = h(t) k(t)

 k(t) = e
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R t
0 h(s)ds
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= V (t)e
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Z
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0
h(s)ds

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives

an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by

A(k, ") = �⇡
�1

Tr{(" + i�)I � Hk}
�1

, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original



1

H(k) =

(
−vσ · (k −A5) mI

mI vσ · (k +A5)

)

H(t) =
∑

ij

Jij(t)c
†
i cj =

∑

m

Hme−imΩt

H±2, H±3

|ψ(nT )〉 = (U1U2)
n|ψ(0)〉

e−iHFT = U(T, 0)

U(t, 0) = T̂ e−i
∫ t
0 H(s)ds = V (t)e−iHF t

P (F ) #= P (−F )

P (F ) = 1

F = −2∆E/R+−

eiγBerry = exp

(
i

∫

C
Ann(k) · dk

)

|ψn(k)〉

eiλn(k)|ψn(k)〉

HF =

HFM =
i

T
lnU(t0 + T, t0)

H(t) = H0 + δH(t)

|ψ(t)〉 = (U1U2)
t|ψ(0)〉

e−iHFT = U1U2

EF

EG

3D Dirac electrons

3D Dirac Hamiltonian (chiral basis)

W

A = A(cosWt, sinWt, 0)
A5 = 0

k → k ＋ A

Start from Dirac

minimum coupling

original band



3

Ideal

Floquet Gibbs T =0.1

Floquet Gibbs T =0.05

Adiabatic

Quench
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Laser induced Hall response

A

FIG. 2. Bulk Floquet spectrum: (a) Floquet spectrum. (b) Floquet spectrum near ε = Ω/2 for the two Weyl electrons with
chirality ξ = ±1 plotted separately . A momentum and chirality dependent gap opens around ε = Ω/2 leaving a degenerate
point at k = (0, 0,±Ω/2) for the two Weyl electrons. The degenerate point forms a Floquet double Weyl point with monopole
number 2.
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W W

Bucciantini, Roy, Kitamura, Oka, ‘16 (Floquet spectrum)
Wang, Wang, Sheng, Sheng, Xing, EPL’14 (1/W spectrum)
Ebihara, Fukushima, Oka, PRB ‘16,  (1/W, Chiral pumping effect)
Hübener, Sentef, de Giovannini, Kemper, Rubio, Nat.Com.’16

original band
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W
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The generation of photocurrent in an ideal two-dimensional Dirac spectrum is symmetry forbidden. In sharp
contrast, we show that three-dimensional Weyl semimetals can generically support significant photocurrents due
to the combination of inversion symmetry breaking and finite tilts of the Weyl spectra. Symmetry properties,
chirality relations, and various dependencies of this photovoltaic effect on the system and the light source are
explored in detail. Our results suggest that noncentrosymmetric Weyl materials can be advantageously applied
to room temperature detections of mid- and far-infrared radiations.
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Introduction. Electronic materials with band crossing ex-
citations have recently attracted much interest in condensed
matter physics. A two-dimensional (2D) Dirac spectrum
describes the surface states of three-dimensional (3D) topo-
logical insulators [1,2] and bulk excitations of graphene [3].
Their gapless and topological characters have stimulated
many electronic applications, one of which is the photo-
voltaic effect. The linearly crossing dispersions of Dirac
systems can absorb photons with, ideally, arbitrarily long
wavelength, making them possibly advantageous for infrared
(IR) detections. Nevertheless, the generation of photocurrent,
defined as the spontaneous production of current without any
applied voltage by the exposure to light, has to vanish for
an ideal Dirac spectrum in 2D because of the symmetric
excitations about the Dirac point [Fig. 1(a)]. In fact, it has
been shown that the resultant photocurrent is negligible even
if realistic perturbations including band curvatures, warpings,
and Zeeman couplings are taken into account [4,5]. So far, the
generation of a substantial photocurrent in Dirac systems has
to involve external assistances such as couplings to magnetic
superlattices [6]. (Similarly, quantum wires require external
magnetic fields to create sizable photocurrents [7].) Producing
photocurrents in Dirac materials remains challenging and has
been an active research subject [6,8–13].

In this paper we propose that Weyl semimetals can
generically develop photocurrents without the need of exter-
nal couplings. Weyl spectrum is the 3D generalizations of
the Dirac cone and thereby shares the same advantage of
long-wavelength photon absorptions. Unlike Dirac systems,
Weyl semimetals necessarily break either time-reversal (TR)
symmetry or spatial inversion (I) symmetry, or both. The
photocurrent response of a Weyl system differs from the
Dirac counterpart in two crucial ways. First, Weyl cones have
definite chiralities and always come in a pairs. They can
be regarded as topological monopoles or antimonopoles of
the Berry curvature. For an upright Weyl cone [Fig. 1(b)],
the absorption of a circularly polarized photon flips the spin,
resulting in asymmetric excitations along the drive direction.
Yet, the direction of the photocurrent is governed by the
chirality and hence, the sum of photocurrents from a Weyl
node pair has to vanish identically. On the other hand, a Weyl
cone can be tilted [14,15] because of reduced symmetries.

The corresponding photoexcitation is highly asymmetric about
the nodal point [Fig. 1(c)]. The consequential photocurrent is
controlled by the tilt and the chirality and there is generally no
offset between photocurrents unless additional symmetries are
imposed. Note that other interesting effects such as gyrotropic
magnetic effect [16,17], photovoltaic chiral magnetic effect
[18], anomalous Hall effect [19], emergent electromagnetic
induction [20], and nonlinear optical responses [21] can occur
in Weyl semimetals, but have different physical origins.

Photocurrents in systems without I symmetry have been
observed in semiconductor quantum wells [22] and tellurium
[23]. A variety of mechanisms have been discussed [23],
including real and virtual absorptions and spin-dependent
scatterings [22], but the effect is small and the discussion
has been limited to quadratic band structures. Here we show
that the linear dispersion in Weyl semimetals hold a special

FIG. 1. Schematics of photocurrent generations in Dirac and
Weyl systems. Circularly polarized photons propagating along the
z axis induce spin-flip vertical transitions denoted by the red arrows.
(a) In an ideal 2D Dirac system, the excitations are symmetric
about the node and thus the photocurrent vanishes. (b) In a 3D
Weyl system with an upright crossing spectrum, the extra dimension
allows an asymmetric particle-hole excitation along qz and creates a
chirality-dependent photocurrent from each Weyl cone. However, the
chiral currents from a monopole and an antimonopole negate each
other, yielding no net current. (c) In the presence of tilt along some
direction qt , asymmetric excitations can happen when the system is
doped away from the neutrality. The resultant photocurrent is not just
determined by the node chirality and the total current is generically
nonzero.
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citations have recently attracted much interest in condensed
matter physics. A two-dimensional (2D) Dirac spectrum
describes the surface states of three-dimensional (3D) topo-
logical insulators [1,2] and bulk excitations of graphene [3].
Their gapless and topological characters have stimulated
many electronic applications, one of which is the photo-
voltaic effect. The linearly crossing dispersions of Dirac
systems can absorb photons with, ideally, arbitrarily long
wavelength, making them possibly advantageous for infrared
(IR) detections. Nevertheless, the generation of photocurrent,
defined as the spontaneous production of current without any
applied voltage by the exposure to light, has to vanish for
an ideal Dirac spectrum in 2D because of the symmetric
excitations about the Dirac point [Fig. 1(a)]. In fact, it has
been shown that the resultant photocurrent is negligible even
if realistic perturbations including band curvatures, warpings,
and Zeeman couplings are taken into account [4,5]. So far, the
generation of a substantial photocurrent in Dirac systems has
to involve external assistances such as couplings to magnetic
superlattices [6]. (Similarly, quantum wires require external
magnetic fields to create sizable photocurrents [7].) Producing
photocurrents in Dirac materials remains challenging and has
been an active research subject [6,8–13].

In this paper we propose that Weyl semimetals can
generically develop photocurrents without the need of exter-
nal couplings. Weyl spectrum is the 3D generalizations of
the Dirac cone and thereby shares the same advantage of
long-wavelength photon absorptions. Unlike Dirac systems,
Weyl semimetals necessarily break either time-reversal (TR)
symmetry or spatial inversion (I) symmetry, or both. The
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Yet, the direction of the photocurrent is governed by the
chirality and hence, the sum of photocurrents from a Weyl
node pair has to vanish identically. On the other hand, a Weyl
cone can be tilted [14,15] because of reduced symmetries.

The corresponding photoexcitation is highly asymmetric about
the nodal point [Fig. 1(c)]. The consequential photocurrent is
controlled by the tilt and the chirality and there is generally no
offset between photocurrents unless additional symmetries are
imposed. Note that other interesting effects such as gyrotropic
magnetic effect [16,17], photovoltaic chiral magnetic effect
[18], anomalous Hall effect [19], emergent electromagnetic
induction [20], and nonlinear optical responses [21] can occur
in Weyl semimetals, but have different physical origins.

Photocurrents in systems without I symmetry have been
observed in semiconductor quantum wells [22] and tellurium
[23]. A variety of mechanisms have been discussed [23],
including real and virtual absorptions and spin-dependent
scatterings [22], but the effect is small and the discussion
has been limited to quadratic band structures. Here we show
that the linear dispersion in Weyl semimetals hold a special

FIG. 1. Schematics of photocurrent generations in Dirac and
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z axis induce spin-flip vertical transitions denoted by the red arrows.
(a) In an ideal 2D Dirac system, the excitations are symmetric
about the node and thus the photocurrent vanishes. (b) In a 3D
Weyl system with an upright crossing spectrum, the extra dimension
allows an asymmetric particle-hole excitation along qz and creates a
chirality-dependent photocurrent from each Weyl cone. However, the
chiral currents from a monopole and an antimonopole negate each
other, yielding no net current. (c) In the presence of tilt along some
direction qt , asymmetric excitations can happen when the system is
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√
|q̃|

for fixed k̃y = 0. (d) The total production rate and chiral current are plotted as blue and red solid curves while the dashed
lines represent their asymptotic power law behavior Eqs. (14) and (15).

with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =

− 2eτ |Ω|4
(2π)4v2

∫
dq̃ k̃z√

k̃
2
+k̃2

z

Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
tot = Γ3D

+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
+ + Jz

− (Jz
5 =

Jz
+ − Jz

−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors

Γ3D
tot

/( |Ω|4

v3

)
→

{
1

3(4π)3 Ã
1/2 (Ã/Ãc $ 1)

2
(2π)3 Ã

2 (Ã/Ãc % 1)
(14)

Jz
5

/(−eτ |Ω|4

v2

)
→

{
sgn(Ω)
2(4π)3 Ã

1/2 (Ã/Ãc $ 1)
sgn(Ω)
(2π)3 Ã1 (Ã/Ãc % 1),

(15)

These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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FIG. 2. Bulk Floquet spectrum: (a) Floquet spectrum. (b) Floquet spectrum near ε = Ω/2 for the two Weyl electrons with
chirality ξ = ±1 plotted separately . A momentum and chirality dependent gap opens around ε = Ω/2 leaving a degenerate
point at k = (0, 0,±Ω/2) for the two Weyl electrons. The degenerate point forms a Floquet double Weyl point with monopole
number 2.

tunneling
-excitation



SciPost Physics Submission

3 Twisted Schwinger e↵ect in 2D Dirac fermions

We study the e↵ect of rotating electric fields in 2D Dirac fermions. We introduce the
field as gauge potential A = A(� sin(⌦t), cos(⌦t)) [electric field E = E(cos(⌦t), sin(⌦t))
(E = A⌦ > 0)], and the e↵ective Hamiltonian for the fermions with chirality ⇠ = ± is
given as

Ĥ = v[⇠(kx + eAx)�̂
x + (ky + eAy)�̂

y] +m�̂
z
, (11)

where e (> 0) is the elementary charge, v is the Fermi velocity, and m (> 0) is the mass
parameter. This model has implication to valleytronics in 2D materials such as monolayer
transition metal dichalcogenide (TMD) and graphene [42, 43], where laser-induced valley
polarization is demonstrated [32,33,44–48]. In these materials, the chirality ⇠ corresponds
to the valley index specifying the two Dirac points K⇠ in the dispersion.

Figure 2: Mapping from the twisted Schwinger e↵ect to the twisted Landau

Zener problem: In rotating electric fields, the electron-hole pairs has a covariant mo-
mentum k + eA(t) which performs a rotating motion in the momentum space. During
this dynamics, the energy gap minimizes when k + eA(t) is closest to the K-point. We
focus to this gap minimum point as depicted in the right box. By performing a quadratic
expansion of the Hamiltonian Ĥ(t) in the time variable (q = ⌦t) around the gap minimum
time, we obtain the twisted Landau Zener problem defined by Eq. (4).

We assume that the Fermi energy is zero, and the time evolution starts from a zero
temperature ground state. After the field is switched on at t = 0, nonadiabatic processes
take place creating fermion-antifermion pairs. The tunneling process in momentum space
can be mapped to a twisted Landau Zener problem discussed in the previous section as
depicted in Fig. 2. In this system, the laser frequency ⌦ plays the role of the speed
parameter F in the twisted LZ model. We allow ⌦ to be positive or negative which

Table 1: Comparison of the pair creation by tunneling with nonadiabatic geometric e↵ects
and standard optical absorption process

Tunneling creation Optical absorption
Strong field Weak field

Non-perturbative Perturbative
Nonadiabatic geometric e↵ect Selection rule

Non-conserved Energy momentum conservation
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A12(k) = 〈ψ1(k)|i∂k|ψ2(k)〉

A12(k) = 〈ψm(k)|i∂k|ψn(k)〉

〈φα(k, 0)|φβ(k′, 0)〉

geodesic curvature = Geometric amplitude factor 

c.f. Berry curvature = solid angle

Dirac electron in circularly polarized laser
= twisted LZ problem (1-pulse)
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Geometric effects also in P
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Comparing this expression with the LZ formula, we notice that the e↵ective tunneling gap
becomes

�e↵ = 2m+ kvF/2, (3)

which is modified by the geodesic curvature.
The nonadiabatic geometric e↵ects in the tunneling probability Eq.(2) can be related

to the Berry connection and quantum geometry. Using the instantaneous eigenstates of
the Hamiltonian satisfying

Ĥ(q)| m(q)i = Em(q)| m(q)i, (4)

with m = ±, we define the Berry connection

Anm(q) = h n(t)|i@q| m(t)i. (5)

The Berry connection relates the basis sets | m(q)i spanned by the instantaneous eigen-
states at di↵erent parameter points q. We can define a gauge independent quantity

Rnm(q) = �Ann(q) +Amm(q) + @q argAnm(q) (6)

known as the geometric amplitude factor [5] or the quantum geometric potential [11, 12].
In the Berry phase theory of polarization [43], where q is regarded as the momentum in
solids, Rnm(q) is known as the shift vector that corresponds to the di↵erence of the electric
polarization between the n and m-th bands [39]. In particular,

Quantum tunneling in the presence of the geometric amplitude factor has been stud-
ied [5, 11, 12, 28] and it was pointed out that this factor strongly a↵ects the adiabaticity
condition [11, 12]. We can see this by rewriting the tunneling probability using the geo-
metric amplitude factor. The parameter k in our quadratic Hamiltonian (1) is related to
the geometric amplitude factor by

R+�(q = 0) = vk, (7)

and we can write the tunneling probability as (�E = E+ � E� at q = 0)

P (F ) = exp


� ⇡

4v|F |

✓
�E +

FR+�
2

◆2 �
. (8)

This expression shows how quantum geometry a↵ects the nonadiabatic tunneling process.
It give interesting and couterintuitive phenomena as we list below.

Rectification Although the instantaneous band structure is symmetric in q ! �q, the
tunneling probability depends on the sign of F and rectification happens [5]. The

ratio �(F ) ⌘ P (|F |)/P (�|F |) = exp
⇣
�⇡�ER+�

2v

⌘
deviates from unity for m 6= 0

[Fig. 1(c)].

Perfect tunneling In conventional LZ tunneling, the tunneling probability monotoni-
cally increase from 0 (adiabatic) to 1 (diabatic limit or perfect tunneling) as the
sweep speed increase. However, in the presence of nonadiabatic geometric e↵ects,
perfect tunneling is realized at finite sweep speed. For m 6= 0, P (F ) peaks out and
becomes unity at a perfect tunneling sweeping speed FPT = �2�/R+� indicated by
an arrow in Fig. 1(c), which is determined from the condition �e↵ = 0.

Counterdiabaticity at fast sweep For large |F |, P (F ) decreases as exp(�⇡R2
+�|F |/16v).

In the extreme case of m = 0, the tunneling probability is a monotonically decreasing
function of speed.
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Comparing this expression with the LZ formula, we notice that the e↵ective tunneling gap
becomes

�e↵ = 2m+ kvF/2, (3)

which is modified by the geodesic curvature.
The nonadiabatic geometric e↵ects in the tunneling probability Eq.(2) can be related

to the Berry connection and quantum geometry. Using the instantaneous eigenstates of
the Hamiltonian satisfying

Ĥ(q)| m(q)i = Em(q)| m(q)i, (4)

with m = ±, we define the Berry connection

Anm(q) = h n(t)|i@q| m(t)i. (5)

The Berry connection relates the basis sets | m(q)i spanned by the instantaneous eigen-
states at di↵erent parameter points q. We can define a gauge independent quantity

Rnm(q) = �Ann(q) +Amm(q) + @q argAnm(q) (6)

known as the geometric amplitude factor [5] or the quantum geometric potential [11, 12].
In the Berry phase theory of polarization [43], where q is regarded as the momentum in
solids, Rnm(q) is known as the shift vector that corresponds to the di↵erence of the electric
polarization between the n and m-th bands [39]. In particular,

Quantum tunneling in the presence of the geometric amplitude factor has been stud-
ied [5, 11, 12, 28] and it was pointed out that this factor strongly a↵ects the adiabaticity
condition [11, 12]. We can see this by rewriting the tunneling probability using the geo-
metric amplitude factor. The parameter k in our quadratic Hamiltonian (1) is related to
the geometric amplitude factor by

R+�(q = 0) = vk, (7)

and we can write the tunneling probability as (�E = E+ � E� at q = 0)

P (F ) = exp


� ⇡

4v|F |

✓
�E +

FR+�
2

◆2 �
. (8)

This expression shows how quantum geometry a↵ects the nonadiabatic tunneling process.
It give interesting and couterintuitive phenomena as we list below.

Rectification Although the instantaneous band structure is symmetric in q ! �q, the
tunneling probability depends on the sign of F and rectification happens [5]. The

ratio �(F ) ⌘ P (|F |)/P (�|F |) = exp
⇣
�⇡�ER+�

2v

⌘
deviates from unity for m 6= 0

[Fig. 1(c)].

Perfect tunneling In conventional LZ tunneling, the tunneling probability monotoni-
cally increase from 0 (adiabatic) to 1 (diabatic limit or perfect tunneling) as the
sweep speed increase. However, in the presence of nonadiabatic geometric e↵ects,
perfect tunneling is realized at finite sweep speed. For m 6= 0, P (F ) peaks out and
becomes unity at a perfect tunneling sweeping speed FPT = �2�/R+� indicated by
an arrow in Fig. 1(c), which is determined from the condition �e↵ = 0.

Counterdiabaticity at fast sweep For large |F |, P (F ) decreases as exp(�⇡R2
+�|F |/16v).

In the extreme case of m = 0, the tunneling probability is a monotonically decreasing
function of speed.
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Bulk current by twisted LZ tunneling
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FIG. 4. 3D massless Dirac fermion: (a)-(c) The production probability Pξ(q̃) for chirality ξ = + plotted for several field
strength parameters (a) Ã = veE/Ω2 = 0.001, (b) Ã = 1/8, and (c) Ã = 10. They are rotationally symmetric around the k̃z
axis and the probability for particles with chirality ξ = − is reflected as k̃z → −k̃z. The solid black curve denotes wavenumber
at which perfect tunneling occurs (Eq. (8)). The lower panels show the fermion-antifermion pairs on the Dirac cone E = ±

√
|q̃|

for fixed k̃y = 0. (d) The total production rate and chiral current are plotted as blue and red solid curves while the dashed
lines represent their asymptotic power law behavior Eqs. (14) and (15).

with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =

− 2eτ |Ω|4
(2π)4v2

∫
dq̃ k̃z√

k̃
2
+k̃2

z

Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
tot = Γ3D

+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
+ + Jz

− (Jz
5 =

Jz
+ − Jz

−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors

Γ3D
tot

/( |Ω|4

v3

)
→

{
1

3(4π)3 Ã
1/2 (Ã/Ãc $ 1)

2
(2π)3 Ã

2 (Ã/Ãc % 1)
(14)

Jz
5

/(−eτ |Ω|4

v2

)
→

{
sgn(Ω)
2(4π)3 Ã

1/2 (Ã/Ãc $ 1)
sgn(Ω)
(2π)3 Ã1 (Ã/Ãc % 1),

(15)

These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-

4

(a) (b) (c)

0

0.3

0.2

0.1

0 0.1 0.2 0.3

0

0.2

0.4

0 0.2 0.4 0.6

0

5

-5
0 5 10 0

0.5

1 (d)

laser

FIG. 4. 3D massless Dirac fermion: (a)-(c) The production probability Pξ(q̃) for chirality ξ = + plotted for several field
strength parameters (a) Ã = veE/Ω2 = 0.001, (b) Ã = 1/8, and (c) Ã = 10. They are rotationally symmetric around the k̃z
axis and the probability for particles with chirality ξ = − is reflected as k̃z → −k̃z. The solid black curve denotes wavenumber
at which perfect tunneling occurs (Eq. (8)). The lower panels show the fermion-antifermion pairs on the Dirac cone E = ±

√
|q̃|

for fixed k̃y = 0. (d) The total production rate and chiral current are plotted as blue and red solid curves while the dashed
lines represent their asymptotic power law behavior Eqs. (14) and (15).

with the 3D wavenumber q = (k, kz), A =
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gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j
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)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
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These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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gamma matrices γ̂0 =
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0 I
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, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
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ξ =
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− ),
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−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors
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These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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The generation of photocurrent in an ideal two-dimensional Dirac spectrum is symmetry forbidden. In sharp
contrast, we show that three-dimensional Weyl semimetals can generically support significant photocurrents due
to the combination of inversion symmetry breaking and finite tilts of the Weyl spectra. Symmetry properties,
chirality relations, and various dependencies of this photovoltaic effect on the system and the light source are
explored in detail. Our results suggest that noncentrosymmetric Weyl materials can be advantageously applied
to room temperature detections of mid- and far-infrared radiations.
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Introduction. Electronic materials with band crossing ex-
citations have recently attracted much interest in condensed
matter physics. A two-dimensional (2D) Dirac spectrum
describes the surface states of three-dimensional (3D) topo-
logical insulators [1,2] and bulk excitations of graphene [3].
Their gapless and topological characters have stimulated
many electronic applications, one of which is the photo-
voltaic effect. The linearly crossing dispersions of Dirac
systems can absorb photons with, ideally, arbitrarily long
wavelength, making them possibly advantageous for infrared
(IR) detections. Nevertheless, the generation of photocurrent,
defined as the spontaneous production of current without any
applied voltage by the exposure to light, has to vanish for
an ideal Dirac spectrum in 2D because of the symmetric
excitations about the Dirac point [Fig. 1(a)]. In fact, it has
been shown that the resultant photocurrent is negligible even
if realistic perturbations including band curvatures, warpings,
and Zeeman couplings are taken into account [4,5]. So far, the
generation of a substantial photocurrent in Dirac systems has
to involve external assistances such as couplings to magnetic
superlattices [6]. (Similarly, quantum wires require external
magnetic fields to create sizable photocurrents [7].) Producing
photocurrents in Dirac materials remains challenging and has
been an active research subject [6,8–13].

In this paper we propose that Weyl semimetals can
generically develop photocurrents without the need of exter-
nal couplings. Weyl spectrum is the 3D generalizations of
the Dirac cone and thereby shares the same advantage of
long-wavelength photon absorptions. Unlike Dirac systems,
Weyl semimetals necessarily break either time-reversal (TR)
symmetry or spatial inversion (I) symmetry, or both. The
photocurrent response of a Weyl system differs from the
Dirac counterpart in two crucial ways. First, Weyl cones have
definite chiralities and always come in a pairs. They can
be regarded as topological monopoles or antimonopoles of
the Berry curvature. For an upright Weyl cone [Fig. 1(b)],
the absorption of a circularly polarized photon flips the spin,
resulting in asymmetric excitations along the drive direction.
Yet, the direction of the photocurrent is governed by the
chirality and hence, the sum of photocurrents from a Weyl
node pair has to vanish identically. On the other hand, a Weyl
cone can be tilted [14,15] because of reduced symmetries.

The corresponding photoexcitation is highly asymmetric about
the nodal point [Fig. 1(c)]. The consequential photocurrent is
controlled by the tilt and the chirality and there is generally no
offset between photocurrents unless additional symmetries are
imposed. Note that other interesting effects such as gyrotropic
magnetic effect [16,17], photovoltaic chiral magnetic effect
[18], anomalous Hall effect [19], emergent electromagnetic
induction [20], and nonlinear optical responses [21] can occur
in Weyl semimetals, but have different physical origins.

Photocurrents in systems without I symmetry have been
observed in semiconductor quantum wells [22] and tellurium
[23]. A variety of mechanisms have been discussed [23],
including real and virtual absorptions and spin-dependent
scatterings [22], but the effect is small and the discussion
has been limited to quadratic band structures. Here we show
that the linear dispersion in Weyl semimetals hold a special

FIG. 1. Schematics of photocurrent generations in Dirac and
Weyl systems. Circularly polarized photons propagating along the
z axis induce spin-flip vertical transitions denoted by the red arrows.
(a) In an ideal 2D Dirac system, the excitations are symmetric
about the node and thus the photocurrent vanishes. (b) In a 3D
Weyl system with an upright crossing spectrum, the extra dimension
allows an asymmetric particle-hole excitation along qz and creates a
chirality-dependent photocurrent from each Weyl cone. However, the
chiral currents from a monopole and an antimonopole negate each
other, yielding no net current. (c) In the presence of tilt along some
direction qt , asymmetric excitations can happen when the system is
doped away from the neutrality. The resultant photocurrent is not just
determined by the node chirality and the total current is generically
nonzero.
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for fixed k̃y = 0. (d) The total production rate and chiral current are plotted as blue and red solid curves while the dashed
lines represent their asymptotic power law behavior Eqs. (14) and (15).

with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
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tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
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These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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The generation of photocurrent in an ideal two-dimensional Dirac spectrum is symmetry forbidden. In sharp
contrast, we show that three-dimensional Weyl semimetals can generically support significant photocurrents due
to the combination of inversion symmetry breaking and finite tilts of the Weyl spectra. Symmetry properties,
chirality relations, and various dependencies of this photovoltaic effect on the system and the light source are
explored in detail. Our results suggest that noncentrosymmetric Weyl materials can be advantageously applied
to room temperature detections of mid- and far-infrared radiations.
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Introduction. Electronic materials with band crossing ex-
citations have recently attracted much interest in condensed
matter physics. A two-dimensional (2D) Dirac spectrum
describes the surface states of three-dimensional (3D) topo-
logical insulators [1,2] and bulk excitations of graphene [3].
Their gapless and topological characters have stimulated
many electronic applications, one of which is the photo-
voltaic effect. The linearly crossing dispersions of Dirac
systems can absorb photons with, ideally, arbitrarily long
wavelength, making them possibly advantageous for infrared
(IR) detections. Nevertheless, the generation of photocurrent,
defined as the spontaneous production of current without any
applied voltage by the exposure to light, has to vanish for
an ideal Dirac spectrum in 2D because of the symmetric
excitations about the Dirac point [Fig. 1(a)]. In fact, it has
been shown that the resultant photocurrent is negligible even
if realistic perturbations including band curvatures, warpings,
and Zeeman couplings are taken into account [4,5]. So far, the
generation of a substantial photocurrent in Dirac systems has
to involve external assistances such as couplings to magnetic
superlattices [6]. (Similarly, quantum wires require external
magnetic fields to create sizable photocurrents [7].) Producing
photocurrents in Dirac materials remains challenging and has
been an active research subject [6,8–13].

In this paper we propose that Weyl semimetals can
generically develop photocurrents without the need of exter-
nal couplings. Weyl spectrum is the 3D generalizations of
the Dirac cone and thereby shares the same advantage of
long-wavelength photon absorptions. Unlike Dirac systems,
Weyl semimetals necessarily break either time-reversal (TR)
symmetry or spatial inversion (I) symmetry, or both. The
photocurrent response of a Weyl system differs from the
Dirac counterpart in two crucial ways. First, Weyl cones have
definite chiralities and always come in a pairs. They can
be regarded as topological monopoles or antimonopoles of
the Berry curvature. For an upright Weyl cone [Fig. 1(b)],
the absorption of a circularly polarized photon flips the spin,
resulting in asymmetric excitations along the drive direction.
Yet, the direction of the photocurrent is governed by the
chirality and hence, the sum of photocurrents from a Weyl
node pair has to vanish identically. On the other hand, a Weyl
cone can be tilted [14,15] because of reduced symmetries.

The corresponding photoexcitation is highly asymmetric about
the nodal point [Fig. 1(c)]. The consequential photocurrent is
controlled by the tilt and the chirality and there is generally no
offset between photocurrents unless additional symmetries are
imposed. Note that other interesting effects such as gyrotropic
magnetic effect [16,17], photovoltaic chiral magnetic effect
[18], anomalous Hall effect [19], emergent electromagnetic
induction [20], and nonlinear optical responses [21] can occur
in Weyl semimetals, but have different physical origins.

Photocurrents in systems without I symmetry have been
observed in semiconductor quantum wells [22] and tellurium
[23]. A variety of mechanisms have been discussed [23],
including real and virtual absorptions and spin-dependent
scatterings [22], but the effect is small and the discussion
has been limited to quadratic band structures. Here we show
that the linear dispersion in Weyl semimetals hold a special

FIG. 1. Schematics of photocurrent generations in Dirac and
Weyl systems. Circularly polarized photons propagating along the
z axis induce spin-flip vertical transitions denoted by the red arrows.
(a) In an ideal 2D Dirac system, the excitations are symmetric
about the node and thus the photocurrent vanishes. (b) In a 3D
Weyl system with an upright crossing spectrum, the extra dimension
allows an asymmetric particle-hole excitation along qz and creates a
chirality-dependent photocurrent from each Weyl cone. However, the
chiral currents from a monopole and an antimonopole negate each
other, yielding no net current. (c) In the presence of tilt along some
direction qt , asymmetric excitations can happen when the system is
doped away from the neutrality. The resultant photocurrent is not just
determined by the node chirality and the total current is generically
nonzero.
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axis and the probability for particles with chirality ξ = − is reflected as k̃z → −k̃z. The solid black curve denotes wavenumber
at which perfect tunneling occurs (Eq. (8)). The lower panels show the fermion-antifermion pairs on the Dirac cone E = ±

√
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for fixed k̃y = 0. (d) The total production rate and chiral current are plotted as blue and red solid curves while the dashed
lines represent their asymptotic power law behavior Eqs. (14) and (15).

with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =

− 2eτ |Ω|4
(2π)4v2

∫
dq̃ k̃z√

k̃
2
+k̃2

z

Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
tot = Γ3D

+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
+ + Jz

− (Jz
5 =

Jz
+ − Jz

−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors

Γ3D
tot

/( |Ω|4

v3

)
→

{
1

3(4π)3 Ã
1/2 (Ã/Ãc $ 1)

2
(2π)3 Ã

2 (Ã/Ãc % 1)
(14)

Jz
5

/(−eτ |Ω|4

v2

)
→

{
sgn(Ω)
2(4π)3 Ã

1/2 (Ã/Ãc $ 1)
sgn(Ω)
(2π)3 Ã1 (Ã/Ãc % 1),

(15)

These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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generate Weyl fermions with Berry curvatures that have
opposite signs, and the anomalous Hall current becomes
a relative flow, e.g. spin current.

General Theory - Our analysis employs kinetic theory
within the relaxation time approximation. This approach
is reliable when quantum transitions are irrelevant, which
is the case when a system with a finite Fermi sphere is
driven by THz lasers [21]. In this framework, the Boltz-
mann kinetic equation

@tf + ṙ · rrf + ṗ · rpf = ⌧
�1(f0 � f), (1)

describes the evolution of the distribution function f in
phase space. f0 stands for the equilibrium Fermi-Dirac
distribution function and ⌧ for the relaxation time. The
e↵ective dynamics of the Weyl quasiparticles is deter-
mined by the modified equations of motion [6, 10, 11, 23]

ṙ = rp✏p � ~ṗ ⇥ ⌦p, ṗ = �eE � eṙ ⇥ B, (2)

where ⌦p = � Im[hrpup|⇥ |rpupi] represents the Berry
curvature, ✏p the energy dispersion relation, and E and
B the electric and magnetic field, respectively.

Hereafter, we focus on homogeneous responses and as-
sume no external magnetic field. Additionally, we neglect
the magnetic field induced by the dominant oscillatory
electric field driving the system. These considerations
lead to the simplified Boltzmann equation

(⌧@t + 1) f � ⌧eE · rpf = f0, (3)

and current density

j = �e

Z

p
rp✏p f � e

2~E ⇥
Z

p
⌦pf (4)

where
R
p ⌘

R d3p
(2⇡~)3 . The current density can be decom-

posed as j = jO + jAH, where jO corresponds to the
usual current generated by the group velocity (first term
in Eq. (4)), while jAH (second term) corresponds to the
anomalous Hall current. The anomalous Hall current is
topological as it is induced by the expectation value of
the Berry curvature.

The crucial step towards computing the response cur-
rent is to solve the Boltzmann equation [Eq. (3)] with
the boundary condition f(t = 0,p) = f0(p). The solu-
tion can be shown, either by the method of characteristics
or Fourier transform, to take the following form

f(t,p) = e
�t/⌧

f0(p � eA(t))

+
1

⌧

Z t

0
ds e

s�t
⌧ f0(p � e�(t, s)), (5)

where A(t) = �
R t
0 dsE(s) is the vector potential and

�(t, s) = A(t) � A(s). The first term of this equation
corresponds to the Fermi-Dirac distribution shifted by
the vector potential A(t). Since this term vanishes expo-
nentially fast with t/⌧ , it is only relevant for large values

FIG. 2. Illustration of the shifted distribution functions
f0(p� e�(0, u)) contributing to the anomalous Hall current,
jAH [Eq. (7)], induced by CPL in the (a) weak (E < E⇤) and
(b) strong (E > E⇤) field regimes. E⇤ is maximum field value
for which the monopole remains enclosed by the Fermi sur-
face during its fictitious motion [Eq. (9)]. Circles represent
the Fermi sphere shifted by �(0, u) = A(0) � A(u). In the
weak field regime, the overlap between shifted distribution
and Weyl monopole M enables perturbation theory to render
the exact result of the current. In the strong field regime,
perturbation theory is only able to describe a small set of
shifted distributions, denoted by RP (depicted by the blue
arrow). The remaining distributions contributing to the cur-
rent belong to RNP (red arrow) and are responsible for the
non-perturbative behaviour of jAH.

of the relaxation time ⌧ . In fact, f(t,p) = f0(p� eA(t))
is the solution of the collision-less (⌧ ! 1) Boltzmann
equation. The second term of Eq. (5) incorporates col-
lisions in our description. This term averages over the
Fermi-Dirac distributions shifted by �(t, s), and we can
portrayed it as resulting from a fictitious motion of the
Fermi sphere centered at �(t, s), where the contribution
is exponentially suppressed with (t � s)/⌧ . In this con-
struction, ⌧ e↵ectively defines how much the driving elec-
tric field can deform the equilibrium distribution.

So far, the derived formalism is not system specific.
Henceforth, we focus on the anomalous Hall current gen-
erated due to a single Weyl node (Fig. 1) with the Hamil-
tonian H = ⌘ vF� · p, where ⌘ = ±1 defines the chiral-
ity and vF is the Fermi velocity. The Pauli matrices
� = (�x, �y, �z) act on the pseudo-spin indices and mo-
mentum p is measured from the Weyl node. The en-
ergy dispersion relation and Berry curvature for the con-
duction band are given, respectively, by ✏p = vF p and
⌦p = �⌘p̂/2p

2. We denote the Fermi energy by µ.

Circularly Polarized Light - We investigate the anoma-
lous Hall response current induced by CPL propagating
in the ẑ-direction, i.e. E(t) = E cos(!t)x̂ + E sin(!t)ŷ.
Exploiting the fact that CPL respects Weyl’s spherical
symmetry, we first show that the resulting jAH is con-
stant in time. Later, we compute the analytical form
of jAH and explain its perturbative to non-perturbative
crossover in terms of the fictitious motion of the Weyl
monopole.
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tric field can deform the equilibrium distribution.
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lous Hall response current induced by CPL propagating
in the ẑ-direction, i.e. E(t) = E cos(!t)x̂ + E sin(!t)ŷ.
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Theory of Floquet states  (0-dim. case)
1

i@t k(t) = h(t) k(t)

 k(t) = e
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Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives

an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by

A(k, ") = �⇡
�1

Tr{(" + i�)I � Hk}
�1

, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original

Dirac bands even for A/⌦ 6= 0; in particular, the annihilation process at A/⌦ = 0.5 has enough spectral weight to be

experimentally observable.
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Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives

an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by

A(k, ") = �⇡
�1

Tr{(" + i�)I � Hk}
�1

, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original

Dirac bands even for A/⌦ 6= 0; in particular, the annihilation process at A/⌦ = 0.5 has enough spectral weight to be

experimentally observable.
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Effective Floquet Hamiltonian

“Dynamic localization”
Dunlap and Kenkre ‘86
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Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives

an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
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Tr{(" + i�)I � Hk}
�1

, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original

Dirac bands even for A/⌦ 6= 0; in particular, the annihilation process at A/⌦ = 0.5 has enough spectral weight to be

experimentally observable.
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an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
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, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original

Dirac bands even for A/⌦ 6= 0; in particular, the annihilation process at A/⌦ = 0.5 has enough spectral weight to be

experimentally observable.
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0-th Bessel func. 
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Theory of Floquet states (general) 

A. Eckardt, RMP ‘17
TO, Kitamura, Annual Review of CMP ’19
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Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives

an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by

A(k, ") = �⇡
�1

Tr{(" + i�)I � Hk}
�1

, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original

Dirac bands even for A/⌦ 6= 0; in particular, the annihilation process at A/⌦ = 0.5 has enough spectral weight to be

experimentally observable.
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“Bang-bang time evolution”

quantum walk, repeated quench,… 
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Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives

an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
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, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and

internal states and � is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an

initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original

Dirac bands even for A/⌦ 6= 0; in particular, the annihilation process at A/⌦ = 0.5 has enough spectral weight to be

experimentally observable.
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FIG. 4. 3D massless Dirac fermion: (a)-(c) The production probability Pξ(q̃) for chirality ξ = + plotted for several field
strength parameters (a) Ã = veE/Ω2 = 0.001, (b) Ã = 1/8, and (c) Ã = 10. They are rotationally symmetric around the k̃z
axis and the probability for particles with chirality ξ = − is reflected as k̃z → −k̃z. The solid black curve denotes wavenumber
at which perfect tunneling occurs (Eq. (8)). The lower panels show the fermion-antifermion pairs on the Dirac cone E = ±

√
|q̃|

for fixed k̃y = 0. (d) The total production rate and chiral current are plotted as blue and red solid curves while the dashed
lines represent their asymptotic power law behavior Eqs. (14) and (15).

with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =

− 2eτ |Ω|4
(2π)4v2

∫
dq̃ k̃z√

k̃
2
+k̃2

z

Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
tot = Γ3D

+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
+ + Jz

− (Jz
5 =

Jz
+ − Jz

−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors

Γ3D
tot

/( |Ω|4

v3

)
→

{
1

3(4π)3 Ã
1/2 (Ã/Ãc $ 1)

2
(2π)3 Ã

2 (Ã/Ãc % 1)
(14)

Jz
5

/(−eτ |Ω|4

v2

)
→

{
sgn(Ω)
2(4π)3 Ã

1/2 (Ã/Ãc $ 1)
sgn(Ω)
(2π)3 Ã1 (Ã/Ãc % 1),

(15)

These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =
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Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
tot = Γ3D

+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
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− (Jz
5 =
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−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors
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These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =
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Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
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+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
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− (Jz
5 =
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−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
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in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors
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These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =

− 2eτ |Ω|4
(2π)4v2

∫
dq̃ k̃z√

k̃
2
+k̃2

z

Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
tot = Γ3D

+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
+ + Jz

− (Jz
5 =

Jz
+ − Jz

−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors

Γ3D
tot

/( |Ω|4
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)
→
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1/2 (Ã/Ãc $ 1)

2
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)
→

{
sgn(Ω)
2(4π)3 Ã

1/2 (Ã/Ãc $ 1)
sgn(Ω)
(2π)3 Ã1 (Ã/Ãc % 1),

(15)

These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =

− 2eτ |Ω|4
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∫
dq̃ k̃z√
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Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)
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− (Γ3D
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− ),
and the total (chiral) currents as Jz
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− (Jz
5 =
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+ − Jz

−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors
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These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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for fixed k̃y = 0. (d) The total production rate and chiral current are plotted as blue and red solid curves while the dashed
lines represent their asymptotic power law behavior Eqs. (14) and (15).

with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =

− 2eτ |Ω|4
(2π)4v2

∫
dq̃ k̃z√
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Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
tot = Γ3D

+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
+ + Jz

− (Jz
5 =
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+ − Jz

−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors

Γ3D
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→

{
1

3(4π)3 Ã
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)
→

{
sgn(Ω)
2(4π)3 Ã

1/2 (Ã/Ãc $ 1)
sgn(Ω)
(2π)3 Ã1 (Ã/Ãc % 1),

(15)

These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-
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for fixed k̃y = 0. (d) The total production rate and chiral current are plotted as blue and red solid curves while the dashed
lines represent their asymptotic power law behavior Eqs. (14) and (15).

with the 3D wavenumber q = (k, kz), A =
A(− sin(Ωt), cos(Ωt), 0). γ̂µ (µ = 0, x, y, z) are the

gamma matrices γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j =

x, y, z). This Hamiltonian is divided into two sectors
designated by ξ = ±, each of which corresponds to
the Weyl Hamiltonian Eq. (3) with the identification
m = vkz. Below, we assume that the Fermi energy
is at the Dirac point and exploit the scaling symme-
try rewriting the model with variables t̃ = |Ω|t and
q̃ = vq/|Ω|. Then we can set the frequency |Ω| to unity
and Ã = veA/|Ω| = veE/Ω2 is the unique scaling param-
eter that characterizes the field strength. In Figs. 4(a)-
4(c), we plot the production probability Pξ(q̃) for ξ = +
and Ω > 0 evaluated by setting m = vkz in Eq. (4). It
is rotationally symmetric around the k̃z axis. The pro-
duction probability shows peaks around the wavenumber
satisfying the perfect tunneling condition Eq. (8) plotted
as black solid curves. For each cross section, Eq. (8) de-
fines a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8. A crossover occurs at

Ãc = 1/8, (13)

where for Ã < Ãc the circle is incomplete and approaches
a semicircle in the small Ã limit, while it is complete for
Ã ≥ Ãc. The width of the distribution around the peak
is a Gaussian with a width scaling as Ã1/2. We note
that the distribution for the ξ = − chirality particles is
a reflection of ξ = + around the k̃z = 0 plane.
We define the total production rate and the currents

along the z axis as Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃) and Jz

ξ =

− 2eτ |Ω|4
(2π)4v2

∫
dq̃ k̃z√

k̃
2
+k̃2

z

Pξ(q̃), respectively, where τ is the

lifetime of the pairs [35]. We define the total (chiral)

production rates as Γ3D
tot = Γ3D

+ +Γ3D
− (Γ3D

5 = Γ3D
+ −Γ3D

− ),
and the total (chiral) currents as Jz

tot = Jz
+ + Jz

− (Jz
5 =

Jz
+ − Jz

−). Due to the symmetry ξ → −ξ, kz → −kz,
of Pξ(q̃), Γ3D

5 = Jz
tot = 0 holds. We plot Γ3D

ξ and Jz
5

in Fig. 4(d). The quantities show a crossover around
Ã = Ãc between two different power law behaviors

Γ3D
tot

/( |Ω|4

v3

)
→

{
1

3(4π)3 Ã
1/2 (Ã/Ãc $ 1)

2
(2π)3 Ã

2 (Ã/Ãc % 1)
(14)

Jz
5

/(−eτ |Ω|4

v2

)
→

{
sgn(Ω)
2(4π)3 Ã

1/2 (Ã/Ãc $ 1)
sgn(Ω)
(2π)3 Ã1 (Ã/Ãc % 1),

(15)

These limiting behaviors can be understood from the
excitation distribution Figs. 4(a) and 4(c) [35]. In 3D
Dirac materials, the chiral fermions are spin polarized,
and the chiral current can be interpreted as spin current.
Thus, our calculation predicts a spin current generated
in the propagation direction of the circularly polarized
laser [42].

We comment on the possibility of having a total charge
current Jz

tot. This is possible if the chiral symmetry is
broken. For example, in magnetic Weyl semimetals, the
Weyl point of one component is near the Fermi energy
while the other is far away [43, 44]. In such situations,
excitations in the fully occupied or empty chirality will be
forbidden and the charge current, along with the chiral
current, become finite. This situation has been studied
theoretically within second order perturbation [31] and
experimentally [45, 46].

Summary and discussion– We studied the implication
of nonadiabatic geometric effects in the Schwinger effect
induced by rotating electric fields. The twisted LZ model
serves as a minimal model to understand the underly-
ing physics analytically. Two condensed matter applica-

= 1/8

Twisted Landau Zener transition(excitation)


