Floquet engineering and Topological Nonlinear Optics

Takashi Oka (Institute for Solid State Physics, The University of Tokyo)

picture around 2015
CIREST "New developments in Topological Nonlinear Optics" with R. Shimano (optics), M. Hayashi (spintronics), T. Morimoto (non-linear theory)

Quantum Materials

3D Dirac electron
circularly polarized laser (CPL)

CPL-induced phenomena
breaks time reversal sym.

- Hall effect (Kerr rot.)
- bulk photo current
- surface current
bulk current

3D Dirac electrons

Hsieh, et al. Nature 2008
$\mathrm{Cd}_{2} \mathrm{As}_{3}$

Neupane, et al. Nat. Com. 2014 *Kane-Bodnar model

3D Dirac electrons

3D Dirac Hamiltonian (chiral basis)

$$
\left.\begin{array}{cc}
\mathrm{E}_{\mathrm{F}} & H(\boldsymbol{k})=\left(\begin{array}{cc}
-v \boldsymbol{\sigma} \cdot\left(\boldsymbol{k}-\boldsymbol{A}_{5}\right) & m I \\
\mathrm{E}_{\mathrm{G}} & m I
\end{array} v \boldsymbol{v} \cdot\left(\boldsymbol{k}+\boldsymbol{A}_{5}\right)\right.
\end{array}\right)
$$

3D Dirac electrons

3D Dirac Hamiltonian (chiral basis)

$$
H(\boldsymbol{k})=\left(\begin{array}{cc}
\begin{array}{c}
\text { Weyl electron }(\xi=-) \\
\boxed{-v \boldsymbol{\sigma} \cdot\left(\boldsymbol{k}-\boldsymbol{A}_{5}\right)} \\
m I
\end{array} & m I \\
& \begin{array}{|c|c|}
v \boldsymbol{\sigma} \cdot\left(\boldsymbol{k}+\boldsymbol{A}_{5}\right)
\end{array}
\end{array}\right)
$$

3D Dirac electrons

3D Dirac Hamiltonian (chiral basis)

$$
H(\boldsymbol{k})=\left(\begin{array}{cc}
-v \boldsymbol{\sigma} \cdot\left(\boldsymbol{k}-\boldsymbol{A}_{5}\right) & \boxed{m I} \\
m I & v \boldsymbol{\sigma} \cdot\left(\boldsymbol{k}+\boldsymbol{A}_{5}\right)
\end{array}\right)
$$

Dirac mass $E_{\mathrm{G}}=2 m$

3D Dirac electrons

Introduction:

Quantum Materials $+\quad$ Laser
3D Dirac electron
circularly polarized laser

Laser and several limits

Perturbative Non-linear optics

Photo-current

$$
\begin{aligned}
\bar{J}_{i}(\omega)= & \left.4 \int d^{3}\left(\frac{v_{F} q}{\omega}\right) \frac{\partial[\Delta E(\vec{q}) / \hbar]}{\partial\left(v_{F} q_{i}\right)}\left|\left\langle q_{+}\right| \frac{V_{+}}{\hbar v_{F} A}\right| q_{-}\right\rangle\left.\right|^{2} \\
& \times \delta\left(\frac{\Delta E(\vec{q})}{\hbar \omega}-1\right)\left[n_{-}^{0}(\vec{q})-n_{+}^{0}(\vec{q})\right],
\end{aligned}
$$

Optical selection rule = transition dipole matrix = Berry connection

$$
\mathcal{A}_{m n}(\boldsymbol{k})=\left\langle\psi_{m}(\boldsymbol{k})\right| i \partial_{\boldsymbol{k}}\left|\psi_{n}(\boldsymbol{k})\right\rangle
$$

Chan, Lindner, Rafael, Lee, PRB ‘17
Exp. Ma, Gedik et al. Nat. Phys. ‘17

Perturbative Non-linear optics

$$
\begin{aligned}
& \text { Hall effect } \sim \sigma_{\mathrm{inj}}^{d ; a b c}= \frac{\pi e^{4}}{6 \Gamma \hbar^{3}} \sum_{m, n} \int_{\mathbf{k}} \delta\left(\omega-\omega_{m n}\right) f_{n m} \sqrt{K_{c b a d}^{m n}}-\ldots, \times\left|\mathrm{E}_{\mathrm{pump}}\right|^{2} \\
& K_{b a d c}^{m n} \equiv\left(\hat{e}_{b}^{m n},\left(\nabla_{d} \nabla_{c}-\nabla_{c} \nabla_{d}\right) \hat{e}_{a}^{m n}\right)
\end{aligned}
$$

Hermitian curvature (gauge inv.)

Ahn, Guo, Nagaosa, Vishwanath, Nat. Phys.' 22

2. Floquet theory

$$
H(t+T)=H(t)
$$

"weird helicopter" (youtube)

Stroboscopic motion

$$
t=0, T, 2 T, \ldots
$$

Effective Floquet Hamiltonian

Micromotion

$$
t: 0 \rightarrow T
$$

Floquet state

2. Floquet theory

$$
H(t+T)=H(t)
$$

Aim of Floquet "engineering"

(1) Start from a trivial system
(2) Apply a time periodic external field

$$
H(t)=H_{0}+\delta H(t)
$$

(3) Realize a state with an interesting $H_{F}, U(T), V(t)$

Example: Floquet topological insulator

graphene +
circularly polarized laser

Quantum Hall state (Haldane model)
TO, Aoki, PRB’09
Kitagawa TO, et al. '11

- How do we obtain the Floquet states?

Floquet space-time picture (Sambe picture)

- How can we construct H_{F} ?

Floquet Space-Time picture 1

Treat "time" as an extra space coordinate
time dependent problem

$$
\begin{aligned}
i \partial_{t} \psi & =H(t) \psi \\
H(t) & =H(t+T) \\
\Omega & =2 \pi / T
\end{aligned}
$$

eigenvalue problem

$$
\mathcal{H} \phi_{\alpha}=\varepsilon_{\alpha} \phi_{\alpha}
$$

$$
\mathcal{H}=H(t)-i \partial_{t}
$$

ع: Floquet quasi-energy

Fourier transformation

Floquet Hamiltonian

$$
\begin{aligned}
& \sum_{m=-\infty}^{\infty} \mathcal{H}^{m n} \phi_{\alpha}^{m}=\varepsilon_{\alpha} \phi_{\alpha}^{n} \quad \phi(t)=\sum_{m} \phi^{m} e^{-i m \Omega t} \\
&(\mathcal{H})^{m n}=\frac{1}{T} \int_{0}^{T} d t H(t) e^{i(m-n) \Omega t}+m \delta_{m n} \Omega I \\
& H_{m}=\mathcal{H}^{m 0} \quad \sim \text { absorption of } m \text { "photons" }
\end{aligned}
$$

Floquet Space-Time picture 2

$$
\sum_{m=-\infty}^{\infty} \mathcal{H}^{m n} \phi_{\alpha}^{m}=\varepsilon_{\alpha} \phi_{\alpha}^{n}
$$

$$
\begin{array}{ccccc}
H_{0}-2 \Omega & H_{+1} & 0 & 0 & 0 \\
H_{-1} & H_{0}-\Omega & H_{+1} & 0 & 0 \\
0 & H_{-1} & H_{0} & H_{+1} & 0 \\
0 & 0 & H_{-1} & H_{0}+\Omega & H_{+1} \\
0 & 0 & 0 & H_{-1} & H_{0}+2 \Omega
\end{array}
$$

$$
H_{m}=\frac{1}{T} \int_{0}^{T} H(t) e^{i m \Omega t} d t
$$

$H_{ \pm 2}, H_{ \pm 3}$ not displayed

Floquet Space-Time picture 3

Floquet Space-Time picture 3

High frequency expansion

Floquet-Magnus expansion (captures stroboscopic dynamics)

$$
\begin{gathered}
H_{F}=\frac{i}{T} \ln \hat{T} e^{-i \int_{0}^{T} H(s) d s} \\
H_{F}=H_{0}+\sum_{m>0} \frac{\left[H_{-m}, H_{m}\right]}{m \Omega} \\
+\frac{1}{3} \sum_{m, n \neq 0} \frac{\left[H_{-m},\left[H_{m-n}, H_{n}\right]\right]}{n m \Omega^{2}}+\frac{1}{2} \sum_{m, n \neq 0} \frac{\left[H_{m},\left[H_{0}, H_{-m}\right]\right]}{m^{2} \Omega^{2}}+\ldots
\end{gathered}
$$

Note:

1. $\log (\exp (\mathrm{i} \theta))$ is not well-defined (monodromy)
2. This expansion is divergent in many-body systems
3. Initial time dependence is dropped

3D Dirac electrons

original band

$$
\begin{aligned}
& \text { 3D Dirac Hamiltonian (chiral basis) } \\
& \begin{aligned}
& H(\boldsymbol{k})=\left(\begin{array}{cc}
-v \boldsymbol{\sigma} \cdot\left(\boldsymbol{k}-\boldsymbol{A}_{5}\right) & m I \\
m I & v \boldsymbol{\sigma} \cdot\left(\boldsymbol{k}+\boldsymbol{A}_{5}\right)
\end{array}\right) \\
& \boldsymbol{k} \rightarrow \boldsymbol{k}+\boldsymbol{A} \text { minimum coupling } \\
& \boldsymbol{A}=A(\cos \Omega t, \sin \Omega t, 0) \\
& \boldsymbol{A}_{5}=0 \text { Start from Dirac }
\end{aligned}
\end{aligned}
$$

3D Dirac electrons (bulk Floquet bands)

original band

Ω

3D Dirac electrons ($1 / \Omega$ spectrum)

Roy, Kitamura, Oka, '16 (Floquet spectrum)
ng, Sheng, Sheng, Xing, EPL'14 (1/ Ω spectrum)
נkushima, Oka, PRB '16, (1/ת, Chiral pumping effect)

3D Dirac electrons (1-photon resonance)

Weyl component ($\xi=1$)
Weyl component $(\xi=-1)$

Floquet Double Weyl point

$$
\begin{aligned}
& H_{\mathrm{eff}}=\boldsymbol{b} \cdot \boldsymbol{\sigma} \\
& b_{+}=-\frac{A}{A^{2}+\Omega^{2}} k^{2} \\
& b_{z}=-k_{z}-\frac{\Omega}{A^{2}+\Omega^{2}}|k|^{2}
\end{aligned}
$$

3D Dirac electrons (Floquet spectrum with edges)

Surface current

TO, Hirai, Okumura, Yoshioka, Shimano, in progress

Laser and several limits

strength E

Dirac electron in circularly polarized laser

= twisted LZ problem (1-pulse)

Twisted Landau Zener tunneling

$$
|\psi(t)\rangle \sim \sqrt{1-P} e^{i \gamma_{A A}} e^{i \theta}|1\rangle+\sqrt{P} e^{i \beta}|2\rangle
$$

Geometric amplitude factors in adiabatic quantum transitions

By M. V. Berry

H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, U.

Proc. Roy. Soc. London 430, 405 (1990)

$$
H(\tau)=(\Delta \cos \phi(\tau), \Delta \sin \phi(\tau), A \tau)
$$

Twisted Landau Zener tunneling

Tunneling probability

$$
\begin{aligned}
& P(F)=\exp \left[-\frac{\pi}{4 v|F|}\left(\Delta E+\frac{F R_{+-}}{2}\right)^{2}\right] \\
& R_{n m}^{a}(k)=-\mathcal{A}_{n n}^{a}(k)+\mathcal{A}_{m m}^{a}(k)+\partial_{k_{a}} \arg \mathcal{A}_{n m}(k)
\end{aligned}
$$

Geometric amplitude factor
(= Quamtum geometric potential, shift vector)

Twisted Landau Zener tunneling

$$
P(F)=\exp \left[-\frac{\pi}{4 v|F|}\left(\Delta E+\frac{F R_{+-}}{2}\right)^{2}\right]
$$

Rectification (non-reciprocal):

$$
P(F) \neq P(-F)
$$

Perfect tunneling (PT):

$$
P(F)=1 \quad \text { at } \quad F=-2 \Delta E / R_{+-}
$$

Counter diabaticity:
$P(F)$ decrease at large $|F|$

Bulk current by twisted LZ tunneling

Conclusion

Conclusion

- Various processes in "Topological nonlinear optics"
- Important concepts:

Gauge invariance
Floquet theory
Twisted LZ tunneling

- Experiment on-going

Thank you very much

Laser and several limits

strength E

frequency $\Omega=2 \pi / T$

semiclassical carrier dynamics

3.1 Semiclassical approach

Chiral kinetic equation (Boltzmann eq. with Berry curvature)

$$
\begin{aligned}
& \partial_{t} f+\dot{\boldsymbol{r}} \cdot \nabla_{\boldsymbol{r}} f+\dot{\boldsymbol{p}} \cdot \nabla_{\boldsymbol{p}} f=\tau^{-1}\left(f_{0}-f\right) \\
& \dot{\boldsymbol{r}}=\nabla_{\boldsymbol{p}} \epsilon_{\boldsymbol{p}}-\hbar \dot{\boldsymbol{p}} \times \boldsymbol{\Omega}_{\boldsymbol{p}}, \quad \dot{\boldsymbol{p}}=-e \boldsymbol{E}-e \dot{\boldsymbol{r}} \times \boldsymbol{B}, \\
& \boldsymbol{j}=-e \int_{p} \nabla_{\boldsymbol{p}} \epsilon_{\boldsymbol{p}} f-e^{2} \hbar \boldsymbol{E}(t) \times \int_{p} \boldsymbol{\Omega}_{\boldsymbol{p}} f \\
& \text { total current normal current } \\
& \text { Anomalous current } \\
& \boldsymbol{\Omega}_{\boldsymbol{p}}=-\eta \frac{\hat{\boldsymbol{p}}}{2 p^{2}}
\end{aligned}
$$

Dantes, Wang, Surówka, TO, PRB 2021
HHG Experiment with linearly polarized field
Cheng, Kanda, (Matsunaga gr.), PRL 2020
Kovalev, Dantes, TO, (Wang gr.), Nat. Com. 2020

Theory of Floquet states (0-dim. case)

Let us solve the Schrödinger equation

$$
\begin{aligned}
i \partial_{t} \psi_{k}(t) & =h(t) \psi_{k}(t), \quad h(t+T)=h(t) \\
\Rightarrow \psi_{k}(t) & =e^{-i \int_{0}^{t} h(s) d s} \psi_{k}(0) \\
& =e^{-i \int_{0}^{t} h(s) d s+i \varepsilon_{k} t} e^{-i \varepsilon_{k} t} \psi_{k}(0) \\
& =V(t) e^{-i H_{F} t} \psi_{k}(0)
\end{aligned}
$$

Effective Floquet Hamiltonian

$$
H_{F}=\varepsilon_{k}=\frac{1}{T} \int_{0}^{T} h(s) d s
$$

"time average"

Micromotion
$V(t+T)=V(t) \quad$ is satisfied

"Dynamic localization"

$$
H(t)=-J \sum_{i}\left(e^{-i \theta(t) A \cos \Omega t} c_{i+1}^{\dagger} c_{i}+\text { h.c. }\right)
$$

momentum space

$$
H(t)=\sum_{k}(-2 J) \cos (k-A \cos \Omega t) c_{k}^{\dagger} c_{k}
$$

Theory of Floquet states (general)

Time periodic systems $H(t+T)=H(t)$

$$
U(t, 0)=\hat{T} e^{-i \int_{0}^{t} H(s) d s}=V(t) e^{-i H_{F} t}
$$

Effective Floquet Hamiltonian defined by
Micromotion

$$
\begin{equation*}
e^{-i H_{F} T}=U(T, 0) \tag{t}
\end{equation*}
$$

Stroboscopic motion

Other realizations
"Bang-bang time evolution"

$$
\begin{aligned}
& |\psi(n T)\rangle=\left(U_{1} U_{2}\right)^{n}|\psi(0)\rangle \quad e^{-i H_{F} T}=U_{1} U_{2} \\
& \text { quantum walk, repeated quench,... }
\end{aligned}
$$

3.4 Tunneling approach

- Strongly asymmetric
- Energy conservation ($\Delta E=\Omega$) violated
- Results in a (chiral) current

Twisted Landau Zener transition(excitation)

