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Fracton Order
Quasiparticles with restricted mobility

of a tetrahedron. Repeated application of spin operators in a specific pattern can separate

these particles to the four corners of a fractal operator, as indicated schematically in Figure

5. However, there is no string operator which can move these particles individually around

the system, so these are immobile fractons. It can further be proved that there are no string

logical operators in the theory whatsoever [2], indicating that all nontrivial bound states of

the fractons are also immobile, making this a type-II fracton model.

FIG. 5. In Haah’s code, fractons are created at the corners of fractal operators.

Like the X-cube model, Haah’s code also exhibits a subextensive ground state degeneracy,

albeit with a more complicated dependence on system size. For a 3-torus of size L⇥L⇥L, the

ground state degeneracy is upper-bounded by log2 GSD < 4L. However, at certain special

system sizes, the degeneracy can be far less [2]. In contrast, the entanglement entropy of

Haah’s code has a much simpler dependence on subsystem size. For a subsystem of linear

size R, the entanglement entropy obeys an area law with a linear subleading correction, just

as for the X-cube model [70].

B. Higgsing

The spin fracton models are very di↵erent from the U(1) tensor gauge theories. They are

gapped and formulated as lattice models rather than field theories. On the other hand, they

share the crucial property of hosting fractional excitations with restricted motion. A natural

question to ask is whether they are related in some ways. For example, could the spin model

be a ‘Higgsed’ version of the U(1) tensor gauge theory such that only a discrete subgroup

of U(1) is preserved? It was found that, this is indeed the case sometimes, but whether or
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FIG. 2. (a) A cube operator of the X-cube model is a product of X operators of 12 spins on the

edges of a cube; (b) A cross operator is a product of Z operators of 4 coplanar spins touching a

vertex.

FIG. 3. Visualization of particle creation operators. a) The red links correspond to a membrane

geometry on the dual lattice. The product of Z operators over these edges excites four fractons (the

darkened cube operators at the corners); b) The product of X operators over the links comprising

the straight open blue string creates two lineon excitations at its endpoints (black dots).

dimension-2 particle and is mobile in the plane normal to the edges connecting the two

corners.

A product of X operators over links along a straight line anti-commutes with vertex

Hamiltonian terms at the endpoints (Fig. 3 b)). The vertex excitations are hence created

in pairs and can be separated using string operators. But their motion is restricted to one

direction only, because the X string operator in di↵erent directions anti-commute with a

di↵erent set of vertex terms, hence creating di↵erent excitations. They are called the ‘lineon’

or dimension-1 particles. A pair of lineons separated in the x, y or z direction is a dimension-2
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FIG. 1. The fundamental excitations of the X-cube model
are shown in (a) and (b). Acting on the ground- state of
the X-cube model with a product of �z operators along the
colored red links that lie within a flat, rectangular region M

generates four fracton cube excitations (e(0)a ) at the corners
of the region. A straight Wilson line of �x operators acting
on the blue links in (b) isolates a pair of quasiparticles (m(1)

a

or m
(1)

b ) at the ends, that are only free to move along the
line. Attempting to move these quasiparticles in any other
direction by introducing a corner in the Wilson line, creates
a topological excitation at the corner as shown in (b).

We introduce a generalized lattice gauge theory to con-
struct the quantum dual of the plaquette Ising model
in a transverse field. This generalizes Wegner’s dual-
ity [1] between the d-dimensional transverse-field Ising
model and Ising lattice gauge theory [2]. Wegner’s dual-
ity is motivated by the observation that a configuration
of Ising spins may be specified by the locations of the
domain walls between symmetry-breaking states of the
Ising model. As a result, a dual representation of the
Ising matter is given by Ising “domain wall” fields on
the links of the lattice. Furthermore, since domain walls
form closed, (d� 1)-dimensional surfaces, physical states
in the domain wall Hilbert space must satisfy a local
“zero-flux” condition, that the lattice curl of the domain
wall spins vanishes around each plaquette. In this way,
the d-dimensional transverse-field Ising model is dual to
Z2 lattice gauge theory.

Our duality between fracton topological order and sub-
system symmetry-breaking is obtained by a similar obser-
vation. A configuration of Ising spins may, equivalently,
be specified by the eigenvalue of each interaction term in
the Hamiltonian [33]. For example, to obtain the dual of
the plaquette Ising model, we are naturally led to intro-
duce the Ising fields {�} at the center of each plaquette.
Physically, the � field labels the presence or absence of a
domain wall between the subsystem symmetry-breaking
ground-states of the plaquette Ising Hamiltonian. While
domain walls in the ordinary Ising model form closed sur-
faces, the � fields in our model must satisfy more exotic
local constraints due to the geometry of the plaquette
interactions to ensure a one-to-one correspondence with
the physical space of domain walls in Hplaq.

As we demonstrate below, the quantum dual of the pla-

quette Ising Hamiltonian, in terms of the � fields, exhibits
fracton topological order. The resulting fracton Hamil-
tonian has a solvable limit, analogous to the deconfined
phase of a conventional gauge theory, which is given by
a Hamiltonian for the Ising fields (�), now placed at the
links of the dual cubic lattice. As shown in Table I, this
fracton Hamiltonian consists of two types of terms: (1)
a twelve-spin �x interaction for the spins surrounding a
dual cube and (2) four-spin �z-interactions at each vertex
of the dual cubic lattice that are aligned along the xy,
yz and xz-planes. The cubic and cross-like geometries
of the interactions motivate the name “X-cube” model.
The ground-state is topologically-ordered, as the ground-
states are locally indistinguishable, and one of the funda-
mental excitations – obtained by flipping the eigenvalue
of the cubic interaction term – is a fracton. This can
be seen by observing that there is no local operator that
can create a single pair of cube excitations. For example,
the operator �z

n creates four cube excitations when act-
ing on the ground-state. Repeated application of �z

n over
a membrane separates the four cube excitations to each
corner as shown in Figure 1a. Therefore, a single cube
excitation is fundamentally immobile, and cannot move
without creating additional cube excitations. Pairs of
cube excitations, however, can be moved by sequentially
applying a local, membrane-like operator.

The quasiparticle content of the X-cube model is sum-
marized in Table I, along with other fracton phases such
as Haah’s code, the CBLT model, and a new spin model
which we introduce and term the “checkerboard model”.
All of these phases are obtained by applying our general-
ized lattice gauge theory prescription to spin models with
subsystem symmetries. As we will demonstrate, a simple
property of the classical spin model, that no product of
interaction terms acts exclusively on a pair of isolated
spins, guarantees that its quantum dual exhibits fracton
topological order.

More generally, consider a classical Hamiltonian for
Ising spins (⌧i) at the sites of a three-dimensional Bravais
lattice. We assume, for simplicity of presentation, that
there is a single spin at each lattice site; the case where
the unit cell is larger is explained in the Appendix. The
Hamiltonian consists of ` types of interactions at each
lattice site i, and may be written in the form:

H0 = �t
X

i

⇣
O

(1)

i [⌧ ] + · · · + O
(`)
i [⌧ ]

⌘
. (1)

with the constant t > 0. We demonstrate that a classical
spin Hamiltonian (1) satisfying certain simple properties
may be used to build a topologically-ordered, quantum
system with fracton excitations. First, we require that
the spin Hamiltonian (1) has a subsystem symmetry un-
der which the spin-flip transformation ⌧ ! �⌧ along non-
local subsystems of the lattice – i.e. subsystems that scale
with the system size – leaves H0 invariant. We further
require that H0 has no local symmetries. In this sense,
a subsystem symmetry is “intermediate” between local
and global symmetries [22, 23]. For the remainder of this
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Fracton Order
Quasiparticles with restricted mobility
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We review the basic features of each of these models in turn. Some of the basic properties

of the X-cube model and Haah’s code are summarized in Table I for comparison.

X-cube Model Haah’s Code

log(GSD) 2Lx + 2Ly + 2Lz � 3 fluctuating, upper bounded by 4L

Fractional excitations fractons, lineons, planons fractons only

Logical operators string and membrane no string, all fractal shaped

Sub-region entanglement entropy Area law + linear correction Area law + linear correction

TABLE I. Basic properties of the X-cube model and Haah’s code. ‘GSD’ stands for ground state

degeneracy. The system size for the X-cube model is taken to be Lx⇥Ly ⇥Lz and for Haah’s code

L ⇥ L ⇥ L.

1. Type-I Fracton Model: X-cube

The X-cube model, as first discussed in Ref. [4], is defined on a cubic lattice with qubit

degrees of freedom on the edges. The Hamiltonian

H = �
X

v

(Ax

v
+ Ay

v
+ Az

v
)�

X

c

Bc (22)

contains two types of terms (Fig. 2): cube terms Bc which are products of the twelve Pauli

X operators around a cube c, and cross terms Aµ

v
which are products of the four Pauli Z

operators at a vertex v in the plane normal to the µ-direction where µ = x, y, or z. These

terms mutually commute and their energies can be minimized simultaneously.

On a Lx⇥Ly ⇥Lz cubic lattice with periodic boundary conditions, the log of the ground

state degeneracy (GSD) scales linearly with the size of the system in all three directions:

log2 GSD = 2Lx + 2Ly + 2Lz � 3. (23)

Fractional excitations can be made by applying string and membrane operators. A prod-

uct of Z operators over links on a rectangular membrane geometry on the dual lattice

anti-commutes with the cube Hamiltonian terms at its corners. See Fig. 3 a). Applying such

a membrane operator hence generates four cube excitations at a time and individually the

cube excitations cannot move, forming a ‘fracton’ excitation. A pair of such fracton exci-

tations at adjacent corners may be viewed as a single dipole-like object which is itself a

18
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FIG. 2. (a) A cube operator of the X-cube model is a product of X operators of 12 spins on the

edges of a cube; (b) A cross operator is a product of Z operators of 4 coplanar spins touching a

vertex.

FIG. 3. Visualization of particle creation operators. a) The red links correspond to a membrane

geometry on the dual lattice. The product of Z operators over these edges excites four fractons (the

darkened cube operators at the corners); b) The product of X operators over the links comprising

the straight open blue string creates two lineon excitations at its endpoints (black dots).

dimension-2 particle and is mobile in the plane normal to the edges connecting the two

corners.

A product of X operators over links along a straight line anti-commutes with vertex

Hamiltonian terms at the endpoints (Fig. 3 b)). The vertex excitations are hence created

in pairs and can be separated using string operators. But their motion is restricted to one

direction only, because the X string operator in di↵erent directions anti-commute with a

di↵erent set of vertex terms, hence creating di↵erent excitations. They are called the ‘lineon’

or dimension-1 particles. A pair of lineons separated in the x, y or z direction is a dimension-2
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that a classical spin liquid on the breathing pyrochlore
lattice [41], where interactions amongst classical spins
residing on the vertices of two unequal corner-sharing
tetrahedra, possesses a low energy manifold described
by an underlying classical rank-2 vector gauge theory.
Specifically, the rank-2 electric field tensor is populated
by linear combinations of spins on the four sublattices
of a tetrahedron (i.e. the “light” normal modes of the
Td point group tetrahedron, whose fluctuations are ener-
getically inexpensive), with a corresponding Gauss’s law
constraint due to the suppression of energetically costly
“heavy modes” [41]. The subsequent classical ground
state has been shown to exhibit fourfold pinch point sin-
gularities in certain correlation functions that may be
resolved under neutron scattering experiments [41, 42].

In this work, motivated by this classical study, we
demonstrate that a quantum model on the breathing py-
rochlore lattice can support a fractonic phase of mat-
ter. In the limit of particular energy penalties associated
with normal mode fluctuations, we show that the corre-
sponding quantum theory leads to spinor charges with
mobility restrictions. We also discuss lack of local op-
erators, except for a membrane operator where only the
corners of the membrane occupied by the spinor charges
are permitted to move. We numerically discover that the
ground state degeneracy is not extensive in volume, and
is strongly dependent on the lattice geometry. We fur-
ther argue that a local magnetic field, which would allow
the quantum system to tunnel in between the degenerate
ground states, is prohibited in this geometry in the ther-
modynamic limit. Indeed, magnetic field terms are only
permitted under perturbations that extend to the bound-
ary of the system, and is thus suppressed in the ther-
modynamic limit. The lack of mobile excitations and a
non-extensive (yet geometry dependent) ground state de-
generacy strongly suggests that the breathing pyrochlore
lattice supports a quantum fractonic phase of matter.

The remainder of the paper is organized as follows.
In Sec. II we provide an overview of the important as-
pects of higher-rank U(1) gauge theories, and recap the
classical breathing pyrochlore model within the frame-
work of rank-2 vector gauge theory in Sec. III. We then
present the quantum breathing pyrochlore lattice model
in Sec. IV and elucidate the degenerate quantum ground
state degeneracy, the variety of perturbative terms, and
the excitations in terms of spinor charge degrees of free-
dom. We also emphasize the occurrence of a thermody-
namically large membrane operator that permits these
spinor excitations to be moved to the boundary of the
system, and argue the prohibition of local magnetic field
terms (or perturbative terms that connect the various
degenerate ground states) due to the complicated geo-
metrical configuration of our setting. Finally, in Sec. V
we discuss the broad implications of our work and pro-
pose future directions of exploration.

II. HIGHER-RANK U(1) GAUGE THEORIES

The interacting classical and quantum spin models
on the breathing pyrochlore lattice have an underlying
higher-rank gauge theory structure that emerges in the
low energy limit [41]. To specify our notation and ter-
minology, we present a succinct overview of rank-2 U(1)
gauge theories in this section.
The classical theory of electromagnetism is described

in terms of a rank-1 gauge theory, wherein the electric
field (Ei) and magnetic vector potential (Ai) transform
as vectors under spatial rotations. Associated with this
familiar Maxwell theory is a source-free Gauss’ law con-
straint for the electric field, @iEi = 0, and a U(1) gauge
transformation, Ai(x) ! Ai(x) + @i�(x), for a charge
density ⇢ and an arbitrary function �(x); we note that
repeated indices are summed over. This gauge transfor-
mation can be simply obtained by acting the source-free
Gauss’ law on a state vector/wavefunction. At higher-
energies, this source-free condition can be relaxed to
@iEi = ⇢ 6= 0, which allows the creation of charges of the
electric field; for a compact gauge theory (where Ai is de-
fined to modulo 2⇡) one necessarily admits the creation of
magnetic monopoles that violate the source-free Gauss’s
law constraint for the magnetic field, @iBi = 0. We will
henceforth focus on the electric charges and refer to the
electric Gauss’s law constraint as merely the Gauss’ law
for brevity. The Gauss’ law constraint imposes a conser-
vation law, where

R
⇢ =

R
@iEi = 0, as we integrate a

total derivative over the entire volume and the fields are
taken to vanish on the boundary. Physically, this ensures
that charges must be created from the vacuum so that the
total charge is zero i.e. an equal number of positive and
negative charges. The classical theory can be quantized
by imposing that the electric field and vector potential
are canonically conjugate, [Ai(x), Ej(y)] = i�ij�(x � y),
which leads to a low-energy description with an emergent
photon of dispersion ! / k.
A natural extension of the conventional rank-1 gauge

theory, is a rank-2 theory, wherein the electric field and
magnetic potential are now promoted to symmetric rank-
2 tensors Eij and Aij , respectively [20, 21, 43]. Unlike in
the rank-1 theory, the electric field has the possibility of
satisfying distinct source-free Gauss’s law constraints: (i)
@iEij = 0 and (ii) @i@jEij = 0 where the corresponding
theories are referred to as vector and scalar charge the-
ories, respectively. These theories may be further con-
strained by imposing that Eij is traceless. Just as in
the case of rank-1 gauge theory, these distinct Gauss’
law constraints lead to distinct gauge transformations
for Aij : (i) Aij ! Aij + @i�j(x) + @j�i(x) and (ii)
Aij ! Aij + @i@j�(x) for arbitrary functions �i(x),�(x).
The distinct Gauss’s laws impose a variety of possible
conservation laws. Focussing on the vector charge the-
ory, as will be pertinent for our work, the Gauss’s law
constraint can be relaxed to lead to permit the creation
of vector charges, @iEij = ⇢j 6= 0. Associated with this
are a conservation of total vector charge (“linear momen-
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Ai(x) + @i↵(x), for a function ↵(x) with arbitrary spa-
tial dependence. For our purposes, however, it is actu-
ally more convenient to work in terms of the canonically
conjugate variable Ei. For a state to be invariant un-
der Ai ! Ai + @i↵, it is easy to show that the state
must obey the constraint @iEi = 0, which is simply the
source-free Gauss’s law. It is also easy to show that
the low-energy theory consistent with this gauge con-
straint/transformation takes the form:

H =
1

2
g

X

links

E
2 �

X

plaquettes

cosB (1)

where Bi = ✏ijk@
j
A

k is the magnetic field (convention-
ally defined on plaquettes of the lattice), and g is a tun-
ing parameter. When g is small, the fluctuations of the
cosine around its minimum will be small, and we can
write:

H !
Z

d
3
x
1

2
(gE2 +B
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which should look familiar from electromagnetism. This
Hamiltonian leads to a gapless photon mode with linear
dispersion and two polarizations, as we expect. At large
g, however, the electric term dominates, e↵ectively dis-
ordering the magnetic cosine term, and the system picks
up a gap of order g. All of the properties of Maxwell
theory are destroyed, and the system will no longer be
in a spin liquid phase. This is the phenomenon of con-
finement.

At low energies, we have characterized the U(1) spin
liquid by a gapless photon mode whose field configura-
tions obey the constraint @iE

i = 0. However, there is
another important set of excitations to consider. While
the low-energy sector obeyed a constraint, there can be
states higher up in energy which violate this constraint,
@iE

i = ⇢ 6= 0. These violations of the low-energy con-
straint correspond precisely to the charges of the emer-
gent electric field, which must be present on very gen-
eral grounds. If we demand that our spin liquid exist
within a tensor product Hilbert space (as any real spin
liquid does), then the existence of emergent charges is
guaranteed25. Furthermore, this charge represents a con-
served quantity, as no local operator can create a net
charge in the system. If we work on a closed manifold,
then we are always guaranteed to have no net charge in
the system:

Z
⇢ =

Z
@iE

i = 0 (3)

since we are integrating a total derivative. In general,
these charges will exist as gapped excitations of the sys-
tem and will have a corresponding energy penalty in the
Hamiltonian. While Equation 1 was valid for the gapless
sector, we will more generally have:
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vert
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where the U term is defined on each vertex of the lattice.
The “· · ·” represents the terms which do not commute
with the gauge constraint, which are irrelevant to the
low-energy physics. These “· · ·” terms are important,
however, as they will dictate the dynamics of the charges.

There is also one last class of excitations to consider:
magnetic monopoles. The magnetic field Bi = ✏ijk@

j
A

k

seems to automatically obey @iB
i = 0. However, we

must remember that Ai is only defined modulo 2⇡, which
allows us to more generally have @iBi = 2⇡n, for integer
n. Such a defect corresponds to a magnetic charge of
strength n. The properties of these excitations closely
mirror those of the analogous electric particles. This is a
manifestation of electromagnetic duality. By making use
of the constraint @iEi = 0, we can write E

i = ✏
ijk

@jÃk

within the low-energy sector, for a dual gauge potential
Ã. In terms of this variable, the electric and magnetic
fields have simply switched places, giving us a useful dual
formulation of the theory.

The most important fact about the magnetic
monopoles in this three-dimensional system is that they
are excitations with a well-defined energy. We can there-
fore imagine a phase in which the monopoles are gapped
and do not e↵ect the low-energy physics. This allows
the U(1) spin liquid to exist as a stable phase of matter.
This is in sharp contrast to the two-dimensional case, in
which magnetic monopoles are “instantons” (spacetime
defects) corresponding to phase slip events, not excita-
tions. There is no meaningful sense in which instantons
can be gapped, so there is no guarantee that they will not
e↵ect the low-energy physics. Indeed, it was shown by
Polyakov23 that the two-dimensional U(1) gauge theory
is totally destroyed by these instantons. There do ex-
ist schemes for stabilizing a two-dimensional U(1) spin
liquid against instantons, such as by coupling to a large
number of gapless charges26, but this is a more com-
plicated problem. In this work, we will only consider
theories which are instanton-free and are therefore sta-
ble.

III. RANK 2 THEORIES

We now proceed to the higher rank theories. We will
first go through the rank 2 case to illustrate the princi-
ple, which is readily generalized. We take our degrees of
freedom to be those of a compact U(1)-valued symmet-
ric tensor Aij , with canonically conjugate variable Eij ,
representing a generalized electric field. Each compo-
nent Aij is essentially a quantum rotor, and the momen-
tum variable Eij is quantized to have integer values. In
the simplest lattice models27, o↵-diagonal elements (e.g.
Exy) naturally live on faces of a lattice, while diagonal
elements (e.g. Exx) naturally live on vertices, but the
precise choice of lattice system will not be important for
the discussion here. As discussed in Reference 10, there
are three di↵erent sorts of gauge transformations of Aij

which can be considered at rank 2, leading to three di↵er-
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that a classical spin liquid on the breathing pyrochlore
lattice [41], where interactions amongst classical spins
residing on the vertices of two unequal corner-sharing
tetrahedra, possesses a low energy manifold described
by an underlying classical rank-2 vector gauge theory.
Specifically, the rank-2 electric field tensor is populated
by linear combinations of spins on the four sublattices
of a tetrahedron (i.e. the “light” normal modes of the
Td point group tetrahedron, whose fluctuations are ener-
getically inexpensive), with a corresponding Gauss’s law
constraint due to the suppression of energetically costly
“heavy modes” [41]. The subsequent classical ground
state has been shown to exhibit fourfold pinch point sin-
gularities in certain correlation functions that may be
resolved under neutron scattering experiments [41, 42].

In this work, motivated by this classical study, we
demonstrate that a quantum model on the breathing py-
rochlore lattice can support a fractonic phase of mat-
ter. In the limit of particular energy penalties associated
with normal mode fluctuations, we show that the corre-
sponding quantum theory leads to spinor charges with
mobility restrictions. We also discuss lack of local op-
erators, except for a membrane operator where only the
corners of the membrane occupied by the spinor charges
are permitted to move. We numerically discover that the
ground state degeneracy is not extensive in volume, and
is strongly dependent on the lattice geometry. We fur-
ther argue that a local magnetic field, which would allow
the quantum system to tunnel in between the degenerate
ground states, is prohibited in this geometry in the ther-
modynamic limit. Indeed, magnetic field terms are only
permitted under perturbations that extend to the bound-
ary of the system, and is thus suppressed in the ther-
modynamic limit. The lack of mobile excitations and a
non-extensive (yet geometry dependent) ground state de-
generacy strongly suggests that the breathing pyrochlore
lattice supports a quantum fractonic phase of matter.

The remainder of the paper is organized as follows.
In Sec. II we provide an overview of the important as-
pects of higher-rank U(1) gauge theories, and recap the
classical breathing pyrochlore model within the frame-
work of rank-2 vector gauge theory in Sec. III. We then
present the quantum breathing pyrochlore lattice model
in Sec. IV and elucidate the degenerate quantum ground
state degeneracy, the variety of perturbative terms, and
the excitations in terms of spinor charge degrees of free-
dom. We also emphasize the occurrence of a thermody-
namically large membrane operator that permits these
spinor excitations to be moved to the boundary of the
system, and argue the prohibition of local magnetic field
terms (or perturbative terms that connect the various
degenerate ground states) due to the complicated geo-
metrical configuration of our setting. Finally, in Sec. V
we discuss the broad implications of our work and pro-
pose future directions of exploration.

II. HIGHER-RANK U(1) GAUGE THEORIES

The interacting classical and quantum spin models
on the breathing pyrochlore lattice have an underlying
higher-rank gauge theory structure that emerges in the
low energy limit [41]. To specify our notation and ter-
minology, we present a succinct overview of rank-2 U(1)
gauge theories in this section.
The classical theory of electromagnetism is described

in terms of a rank-1 gauge theory, wherein the electric
field (Ei) and magnetic vector potential (Ai) transform
as vectors under spatial rotations. Associated with this
familiar Maxwell theory is a source-free Gauss’ law con-
straint for the electric field, @iEi = 0, and a U(1) gauge
transformation, Ai(x) ! Ai(x) + @i�(x), for a charge
density ⇢ and an arbitrary function �(x); we note that
repeated indices are summed over. This gauge transfor-
mation can be simply obtained by acting the source-free
Gauss’ law on a state vector/wavefunction. At higher-
energies, this source-free condition can be relaxed to
@iEi = ⇢ 6= 0, which allows the creation of charges of the
electric field; for a compact gauge theory (where Ai is de-
fined to modulo 2⇡) one necessarily admits the creation of
magnetic monopoles that violate the source-free Gauss’s
law constraint for the magnetic field, @iBi = 0. We will
henceforth focus on the electric charges and refer to the
electric Gauss’s law constraint as merely the Gauss’ law
for brevity. The Gauss’ law constraint imposes a conser-
vation law, where

R
⇢ =

R
@iEi = 0, as we integrate a

total derivative over the entire volume and the fields are
taken to vanish on the boundary. Physically, this ensures
that charges must be created from the vacuum so that the
total charge is zero i.e. an equal number of positive and
negative charges. The classical theory can be quantized
by imposing that the electric field and vector potential
are canonically conjugate, [Ai(x), Ej(y)] = i�ij�(x � y),
which leads to a low-energy description with an emergent
photon of dispersion ! / k.
A natural extension of the conventional rank-1 gauge

theory, is a rank-2 theory, wherein the electric field and
magnetic potential are now promoted to symmetric rank-
2 tensors Eij and Aij , respectively [20, 21, 43]. Unlike in
the rank-1 theory, the electric field has the possibility of
satisfying distinct source-free Gauss’s law constraints: (i)
@iEij = 0 and (ii) @i@jEij = 0 where the corresponding
theories are referred to as vector and scalar charge the-
ories, respectively. These theories may be further con-
strained by imposing that Eij is traceless. Just as in
the case of rank-1 gauge theory, these distinct Gauss’
law constraints lead to distinct gauge transformations
for Aij : (i) Aij ! Aij + @i�j(x) + @j�i(x) and (ii)
Aij ! Aij + @i@j�(x) for arbitrary functions �i(x),�(x).
The distinct Gauss’s laws impose a variety of possible
conservation laws. Focussing on the vector charge the-
ory, as will be pertinent for our work, the Gauss’s law
constraint can be relaxed to lead to permit the creation
of vector charges, @iEij = ⇢j 6= 0. Associated with this
are a conservation of total vector charge (“linear momen-
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tetrahedra, possesses a low energy manifold described
by an underlying classical rank-2 vector gauge theory.
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by linear combinations of spins on the four sublattices
of a tetrahedron (i.e. the “light” normal modes of the
Td point group tetrahedron, whose fluctuations are ener-
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“heavy modes” [41]. The subsequent classical ground
state has been shown to exhibit fourfold pinch point sin-
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mobility restrictions. We also discuss lack of local op-
erators, except for a membrane operator where only the
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are permitted to move. We numerically discover that the
ground state degeneracy is not extensive in volume, and
is strongly dependent on the lattice geometry. We fur-
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permitted under perturbations that extend to the bound-
ary of the system, and is thus suppressed in the ther-
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which leads to a low-energy description with an emergent
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theory, is a rank-2 theory, wherein the electric field and
magnetic potential are now promoted to symmetric rank-
2 tensors Eij and Aij , respectively [20, 21, 43]. Unlike in
the rank-1 theory, the electric field has the possibility of
satisfying distinct source-free Gauss’s law constraints: (i)
@iEij = 0 and (ii) @i@jEij = 0 where the corresponding
theories are referred to as vector and scalar charge the-
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which should look familiar from electromagnetism. This
Hamiltonian leads to a gapless photon mode with linear
dispersion and two polarizations, as we expect. At large
g, however, the electric term dominates, e↵ectively dis-
ordering the magnetic cosine term, and the system picks
up a gap of order g. All of the properties of Maxwell
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in a spin liquid phase. This is the phenomenon of con-
finement.
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i = 0. However, there is
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i = ⇢ 6= 0. These violations of the low-energy con-
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gent electric field, which must be present on very gen-
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since we are integrating a total derivative. In general,
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where the U term is defined on each vertex of the lattice.
The “· · ·” represents the terms which do not commute
with the gauge constraint, which are irrelevant to the
low-energy physics. These “· · ·” terms are important,
however, as they will dictate the dynamics of the charges.
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i = 0. However, we

must remember that Ai is only defined modulo 2⇡, which
allows us to more generally have @iBi = 2⇡n, for integer
n. Such a defect corresponds to a magnetic charge of
strength n. The properties of these excitations closely
mirror those of the analogous electric particles. This is a
manifestation of electromagnetic duality. By making use
of the constraint @iEi = 0, we can write E
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within the low-energy sector, for a dual gauge potential
Ã. In terms of this variable, the electric and magnetic
fields have simply switched places, giving us a useful dual
formulation of the theory.

The most important fact about the magnetic
monopoles in this three-dimensional system is that they
are excitations with a well-defined energy. We can there-
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plicated problem. In this work, we will only consider
theories which are instanton-free and are therefore sta-
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III. RANK 2 THEORIES
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first go through the rank 2 case to illustrate the princi-
ple, which is readily generalized. We take our degrees of
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tum variable Eij is quantized to have integer values. In
the simplest lattice models27, o↵-diagonal elements (e.g.
Exy) naturally live on faces of a lattice, while diagonal
elements (e.g. Exx) naturally live on vertices, but the
precise choice of lattice system will not be important for
the discussion here. As discussed in Reference 10, there
are three di↵erent sorts of gauge transformations of Aij

which can be considered at rank 2, leading to three di↵er-
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that a classical spin liquid on the breathing pyrochlore
lattice [41], where interactions amongst classical spins
residing on the vertices of two unequal corner-sharing
tetrahedra, possesses a low energy manifold described
by an underlying classical rank-2 vector gauge theory.
Specifically, the rank-2 electric field tensor is populated
by linear combinations of spins on the four sublattices
of a tetrahedron (i.e. the “light” normal modes of the
Td point group tetrahedron, whose fluctuations are ener-
getically inexpensive), with a corresponding Gauss’s law
constraint due to the suppression of energetically costly
“heavy modes” [41]. The subsequent classical ground
state has been shown to exhibit fourfold pinch point sin-
gularities in certain correlation functions that may be
resolved under neutron scattering experiments [41, 42].

In this work, motivated by this classical study, we
demonstrate that a quantum model on the breathing py-
rochlore lattice can support a fractonic phase of mat-
ter. In the limit of particular energy penalties associated
with normal mode fluctuations, we show that the corre-
sponding quantum theory leads to spinor charges with
mobility restrictions. We also discuss lack of local op-
erators, except for a membrane operator where only the
corners of the membrane occupied by the spinor charges
are permitted to move. We numerically discover that the
ground state degeneracy is not extensive in volume, and
is strongly dependent on the lattice geometry. We fur-
ther argue that a local magnetic field, which would allow
the quantum system to tunnel in between the degenerate
ground states, is prohibited in this geometry in the ther-
modynamic limit. Indeed, magnetic field terms are only
permitted under perturbations that extend to the bound-
ary of the system, and is thus suppressed in the ther-
modynamic limit. The lack of mobile excitations and a
non-extensive (yet geometry dependent) ground state de-
generacy strongly suggests that the breathing pyrochlore
lattice supports a quantum fractonic phase of matter.

The remainder of the paper is organized as follows.
In Sec. II we provide an overview of the important as-
pects of higher-rank U(1) gauge theories, and recap the
classical breathing pyrochlore model within the frame-
work of rank-2 vector gauge theory in Sec. III. We then
present the quantum breathing pyrochlore lattice model
in Sec. IV and elucidate the degenerate quantum ground
state degeneracy, the variety of perturbative terms, and
the excitations in terms of spinor charge degrees of free-
dom. We also emphasize the occurrence of a thermody-
namically large membrane operator that permits these
spinor excitations to be moved to the boundary of the
system, and argue the prohibition of local magnetic field
terms (or perturbative terms that connect the various
degenerate ground states) due to the complicated geo-
metrical configuration of our setting. Finally, in Sec. V
we discuss the broad implications of our work and pro-
pose future directions of exploration.

II. HIGHER-RANK U(1) GAUGE THEORIES

The interacting classical and quantum spin models
on the breathing pyrochlore lattice have an underlying
higher-rank gauge theory structure that emerges in the
low energy limit [41]. To specify our notation and ter-
minology, we present a succinct overview of rank-2 U(1)
gauge theories in this section.
The classical theory of electromagnetism is described

in terms of a rank-1 gauge theory, wherein the electric
field (Ei) and magnetic vector potential (Ai) transform
as vectors under spatial rotations. Associated with this
familiar Maxwell theory is a source-free Gauss’ law con-
straint for the electric field, @iEi = 0, and a U(1) gauge
transformation, Ai(x) ! Ai(x) + @i�(x), for a charge
density ⇢ and an arbitrary function �(x); we note that
repeated indices are summed over. This gauge transfor-
mation can be simply obtained by acting the source-free
Gauss’ law on a state vector/wavefunction. At higher-
energies, this source-free condition can be relaxed to
@iEi = ⇢ 6= 0, which allows the creation of charges of the
electric field; for a compact gauge theory (where Ai is de-
fined to modulo 2⇡) one necessarily admits the creation of
magnetic monopoles that violate the source-free Gauss’s
law constraint for the magnetic field, @iBi = 0. We will
henceforth focus on the electric charges and refer to the
electric Gauss’s law constraint as merely the Gauss’ law
for brevity. The Gauss’ law constraint imposes a conser-
vation law, where

R
⇢ =

R
@iEi = 0, as we integrate a

total derivative over the entire volume and the fields are
taken to vanish on the boundary. Physically, this ensures
that charges must be created from the vacuum so that the
total charge is zero i.e. an equal number of positive and
negative charges. The classical theory can be quantized
by imposing that the electric field and vector potential
are canonically conjugate, [Ai(x), Ej(y)] = i�ij�(x � y),
which leads to a low-energy description with an emergent
photon of dispersion ! / k.
A natural extension of the conventional rank-1 gauge

theory, is a rank-2 theory, wherein the electric field and
magnetic potential are now promoted to symmetric rank-
2 tensors Eij and Aij , respectively [20, 21, 43]. Unlike in
the rank-1 theory, the electric field has the possibility of
satisfying distinct source-free Gauss’s law constraints: (i)
@iEij = 0 and (ii) @i@jEij = 0 where the corresponding
theories are referred to as vector and scalar charge the-
ories, respectively. These theories may be further con-
strained by imposing that Eij is traceless. Just as in
the case of rank-1 gauge theory, these distinct Gauss’
law constraints lead to distinct gauge transformations
for Aij : (i) Aij ! Aij + @i�j(x) + @j�i(x) and (ii)
Aij ! Aij + @i@j�(x) for arbitrary functions �i(x),�(x).
The distinct Gauss’s laws impose a variety of possible
conservation laws. Focussing on the vector charge the-
ory, as will be pertinent for our work, the Gauss’s law
constraint can be relaxed to lead to permit the creation
of vector charges, @iEij = ⇢j 6= 0. Associated with this
are a conservation of total vector charge (“linear momen-
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permitted under perturbations that extend to the bound-
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lattice supports a quantum fractonic phase of matter.

The remainder of the paper is organized as follows.
In Sec. II we provide an overview of the important as-
pects of higher-rank U(1) gauge theories, and recap the
classical breathing pyrochlore model within the frame-
work of rank-2 vector gauge theory in Sec. III. We then
present the quantum breathing pyrochlore lattice model
in Sec. IV and elucidate the degenerate quantum ground
state degeneracy, the variety of perturbative terms, and
the excitations in terms of spinor charge degrees of free-
dom. We also emphasize the occurrence of a thermody-
namically large membrane operator that permits these
spinor excitations to be moved to the boundary of the
system, and argue the prohibition of local magnetic field
terms (or perturbative terms that connect the various
degenerate ground states) due to the complicated geo-
metrical configuration of our setting. Finally, in Sec. V
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pose future directions of exploration.

II. HIGHER-RANK U(1) GAUGE THEORIES

The interacting classical and quantum spin models
on the breathing pyrochlore lattice have an underlying
higher-rank gauge theory structure that emerges in the
low energy limit [41]. To specify our notation and ter-
minology, we present a succinct overview of rank-2 U(1)
gauge theories in this section.
The classical theory of electromagnetism is described

in terms of a rank-1 gauge theory, wherein the electric
field (Ei) and magnetic vector potential (Ai) transform
as vectors under spatial rotations. Associated with this
familiar Maxwell theory is a source-free Gauss’ law con-
straint for the electric field, @iEi = 0, and a U(1) gauge
transformation, Ai(x) ! Ai(x) + @i�(x), for a charge
density ⇢ and an arbitrary function �(x); we note that
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Gauss’ law on a state vector/wavefunction. At higher-
energies, this source-free condition can be relaxed to
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electric field; for a compact gauge theory (where Ai is de-
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which leads to a low-energy description with an emergent
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theories are referred to as vector and scalar charge the-
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The distinct Gauss’s laws impose a variety of possible
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ory, as will be pertinent for our work, the Gauss’s law
constraint can be relaxed to lead to permit the creation
of vector charges, @iEij = ⇢j 6= 0. Associated with this
are a conservation of total vector charge (“linear momen-
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ther argue that a local magnetic field, which would allow
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permitted under perturbations that extend to the bound-
ary of the system, and is thus suppressed in the ther-
modynamic limit. The lack of mobile excitations and a
non-extensive (yet geometry dependent) ground state de-
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present the quantum breathing pyrochlore lattice model
in Sec. IV and elucidate the degenerate quantum ground
state degeneracy, the variety of perturbative terms, and
the excitations in terms of spinor charge degrees of free-
dom. We also emphasize the occurrence of a thermody-
namically large membrane operator that permits these
spinor excitations to be moved to the boundary of the
system, and argue the prohibition of local magnetic field
terms (or perturbative terms that connect the various
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fined to modulo 2⇡) one necessarily admits the creation of
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law constraint for the magnetic field, @iBi = 0. We will
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total derivative over the entire volume and the fields are
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which leads to a low-energy description with an emergent
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ent analogues of Gauss’s law which one can write down:
@iE

ij = 0, @i@jE
ij = 0, and E

i
i = 0, some of which

can be applied on top of each other. Furthermore, each
valid combination of Gauss’s laws will represent a stable
phase, as we will discuss.

To construct Hamiltonians for these theories, the au-
thors of Reference 10 considered the natural generaliza-
tion of the rank 1 compact U(1) Hamiltonian, Equation
4. The generalized E term and gauge constraint term
can be written down immediately, whereas the general-
ized B term requires a bit more cleverness. The struc-
ture of the B term depends on the gauge constraint, and
there can be di↵erent numbers of spatial derivatives in
B depending on the theory, leading to di↵erent disper-
sions for the gauge mode. We will delay discussion of the
magnetic tensor until a later section, since most of our
analysis will not need to make any use of the specifics
of these Hamiltonians, except for the U term enforcing
the generalized Gauss’s law. Almost all of the impor-
tant physics follows directly from the Gauss’s law. The
other terms in the Hamiltonian only serve to define the
dynamics of the gapless gauge mode and the structure of
the magnetic defects. We will, of course, need to check
later that these magnetic defects are not instantons, so
that the theory is stable. This will indeed be the case, so
that these phases will all have a stable deconfined phase
at small g (and obviously a trivial confined phase at large
g). As first shown in Reference 10, many of the models
considered in this paper will have an electric-magnetic
duality, so the behavior of the magnetic particles will of-
ten be the same as that of the electric particles, which
we focus on first. All we will need for the present discus-
sion is that the gauge field is not confining28 at small g,
so that particles exist as well-defined excitations in this
phase.

It is also worth noting that we expect such rank 2 sym-
metric tensor theories to have some relationship with the
theory of gravity, which is also described by a symmetric
tensor gauge field. There is actually a deep connection
between the models considered here and emergent grav-
ity, but this relationship will not be apparent at the level
of the analysis we will conduct here. The emergent grav-
itational behavior of these phases is a topic of its own
and is being treated in a separate work.?

A. Scalar Charge Theory

Let us first take the example of imposing only the con-
straint @i@jEij = 0, corresponding to the gauge transfor-
mation Aij ! Aij + @i@j� for arbitrary scalar function
�. Of course, the source-free gauge constraint applies
only to the low-energy subspace, achieved for example
via a term in the Hamiltonian of the form U(@i@jEij)2

for large U . States which violate the source-free Gauss’s
law must appear higher up in energy as particle states
of the theory in order to have a tensor product Hilbert
space, as is the situation in any condensed matter prob-

lem (see Reference 25 for further discussion of this issue).
For a general state, we can therefore write the general-
ized Gauss’s law as @i@jEij = ⇢, defining ⇢ as the scalar
charge density.

So what conservation laws do we have in this system?
Obviously we have charge neutrality, just as in the rank
1 case:

Z
⇢ =

Z
@i@jE

ij = 0 (5)

where the integrals are over three-dimensional space, and
we have integrated a total derivative term. (We choose
to work on a closed manifold for simplicity, so that the in-
tegral of the total derivative vanishes. Everything works
similarly on an open manifold.) This conservation law
leads to the usual constraint that the emergent charges
cannot be created or destroyed unless it is accompanied
by the creation/destruction of other charges in order to
preserve neutrality. Naively, one such allowed neutrality-
preserving operation is a local hop: a particle is de-
stroyed on one site and created on a neighboring site,
in accordance with our usual intuition of particle mobil-
ity.

However, interestingly, this rank 2 theory has an ad-
ditional dipolar conservation law:

Z
~x⇢ =

Z
x
k
@i@jE

ij = �
Z

@jE
kj = 0 (6)

where we have integrated by parts in the middle step.29

(The choice of origin for ~x is arbitrary, since the sys-
tem is neutral.) In this theory, therefore, any cre-
ation/annihilation operation must not only respect the
neutrality of the system, but also the vanishing of its
dipole moment. As a concrete example, take the lat-
tice model discussed in Reference 27, where the diagonal
components (Exx, Eyy, and Ezz) live on the vertices of
a cubic lattice, and the o↵-diagonal components (Exy,
Exz, and Eyz) live on the faces, with all components
taking integer values. The basic creation and annihila-
tion operators can be found by examining the e↵ect of
changing one component of E at a single location by 1
unit. Doing so leads to two distinct types of creation
and annihilation operators, as shown in Figures 1 and 2.

The uniting feature of all such operators is that
they correspond to quadrupolar configurations of charge,
obeying both charge neutrality and vanishing dipole mo-
ment. In fact, it would seem that this quadrupolar prin-
ciple is the fundamental feature of this model which
would allow it to be generalized to other types of lat-
tices besides cubic. Putting rotors on the vertices and
faces of a cubic lattice allowed for the simplest lattice
regularization, since there were e↵ectively six degrees
of freedom at each location, corresponding to the six
degrees of freedom of a 3⇥3 symmetric tensor. Simi-
larly, the simplest lattice regularization of a rank 1 U(1)
gauge theory would be on the links of a cubic lattice, giv-
ing us three degrees of freedom per site. Nevertheless,
the rank 1 theory can be defined on any lattice, with
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Ai(x) + @i↵(x), for a function ↵(x) with arbitrary spa-
tial dependence. For our purposes, however, it is actu-
ally more convenient to work in terms of the canonically
conjugate variable Ei. For a state to be invariant un-
der Ai ! Ai + @i↵, it is easy to show that the state
must obey the constraint @iEi = 0, which is simply the
source-free Gauss’s law. It is also easy to show that
the low-energy theory consistent with this gauge con-
straint/transformation takes the form:

H =
1

2
g

X

links

E
2 �

X

plaquettes

cosB (1)

where Bi = ✏ijk@
j
A

k is the magnetic field (convention-
ally defined on plaquettes of the lattice), and g is a tun-
ing parameter. When g is small, the fluctuations of the
cosine around its minimum will be small, and we can
write:

H !
Z

d
3
x
1

2
(gE2 +B

2) (2)

which should look familiar from electromagnetism. This
Hamiltonian leads to a gapless photon mode with linear
dispersion and two polarizations, as we expect. At large
g, however, the electric term dominates, e↵ectively dis-
ordering the magnetic cosine term, and the system picks
up a gap of order g. All of the properties of Maxwell
theory are destroyed, and the system will no longer be
in a spin liquid phase. This is the phenomenon of con-
finement.

At low energies, we have characterized the U(1) spin
liquid by a gapless photon mode whose field configura-
tions obey the constraint @iE

i = 0. However, there is
another important set of excitations to consider. While
the low-energy sector obeyed a constraint, there can be
states higher up in energy which violate this constraint,
@iE

i = ⇢ 6= 0. These violations of the low-energy con-
straint correspond precisely to the charges of the emer-
gent electric field, which must be present on very gen-
eral grounds. If we demand that our spin liquid exist
within a tensor product Hilbert space (as any real spin
liquid does), then the existence of emergent charges is
guaranteed25. Furthermore, this charge represents a con-
served quantity, as no local operator can create a net
charge in the system. If we work on a closed manifold,
then we are always guaranteed to have no net charge in
the system:

Z
⇢ =

Z
@iE

i = 0 (3)

since we are integrating a total derivative. In general,
these charges will exist as gapped excitations of the sys-
tem and will have a corresponding energy penalty in the
Hamiltonian. While Equation 1 was valid for the gapless
sector, we will more generally have:

H =
1

2
g

X

links

E
2 �

X

plaq

cosB + U

X

vert

(@iE
i)2 + · · · (4)

where the U term is defined on each vertex of the lattice.
The “· · ·” represents the terms which do not commute
with the gauge constraint, which are irrelevant to the
low-energy physics. These “· · ·” terms are important,
however, as they will dictate the dynamics of the charges.

There is also one last class of excitations to consider:
magnetic monopoles. The magnetic field Bi = ✏ijk@

j
A

k

seems to automatically obey @iB
i = 0. However, we

must remember that Ai is only defined modulo 2⇡, which
allows us to more generally have @iBi = 2⇡n, for integer
n. Such a defect corresponds to a magnetic charge of
strength n. The properties of these excitations closely
mirror those of the analogous electric particles. This is a
manifestation of electromagnetic duality. By making use
of the constraint @iEi = 0, we can write E

i = ✏
ijk

@jÃk

within the low-energy sector, for a dual gauge potential
Ã. In terms of this variable, the electric and magnetic
fields have simply switched places, giving us a useful dual
formulation of the theory.

The most important fact about the magnetic
monopoles in this three-dimensional system is that they
are excitations with a well-defined energy. We can there-
fore imagine a phase in which the monopoles are gapped
and do not e↵ect the low-energy physics. This allows
the U(1) spin liquid to exist as a stable phase of matter.
This is in sharp contrast to the two-dimensional case, in
which magnetic monopoles are “instantons” (spacetime
defects) corresponding to phase slip events, not excita-
tions. There is no meaningful sense in which instantons
can be gapped, so there is no guarantee that they will not
e↵ect the low-energy physics. Indeed, it was shown by
Polyakov23 that the two-dimensional U(1) gauge theory
is totally destroyed by these instantons. There do ex-
ist schemes for stabilizing a two-dimensional U(1) spin
liquid against instantons, such as by coupling to a large
number of gapless charges26, but this is a more com-
plicated problem. In this work, we will only consider
theories which are instanton-free and are therefore sta-
ble.

III. RANK 2 THEORIES

We now proceed to the higher rank theories. We will
first go through the rank 2 case to illustrate the princi-
ple, which is readily generalized. We take our degrees of
freedom to be those of a compact U(1)-valued symmet-
ric tensor Aij , with canonically conjugate variable Eij ,
representing a generalized electric field. Each compo-
nent Aij is essentially a quantum rotor, and the momen-
tum variable Eij is quantized to have integer values. In
the simplest lattice models27, o↵-diagonal elements (e.g.
Exy) naturally live on faces of a lattice, while diagonal
elements (e.g. Exx) naturally live on vertices, but the
precise choice of lattice system will not be important for
the discussion here. As discussed in Reference 10, there
are three di↵erent sorts of gauge transformations of Aij

which can be considered at rank 2, leading to three di↵er-
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that a classical spin liquid on the breathing pyrochlore
lattice [41], where interactions amongst classical spins
residing on the vertices of two unequal corner-sharing
tetrahedra, possesses a low energy manifold described
by an underlying classical rank-2 vector gauge theory.
Specifically, the rank-2 electric field tensor is populated
by linear combinations of spins on the four sublattices
of a tetrahedron (i.e. the “light” normal modes of the
Td point group tetrahedron, whose fluctuations are ener-
getically inexpensive), with a corresponding Gauss’s law
constraint due to the suppression of energetically costly
“heavy modes” [41]. The subsequent classical ground
state has been shown to exhibit fourfold pinch point sin-
gularities in certain correlation functions that may be
resolved under neutron scattering experiments [41, 42].

In this work, motivated by this classical study, we
demonstrate that a quantum model on the breathing py-
rochlore lattice can support a fractonic phase of mat-
ter. In the limit of particular energy penalties associated
with normal mode fluctuations, we show that the corre-
sponding quantum theory leads to spinor charges with
mobility restrictions. We also discuss lack of local op-
erators, except for a membrane operator where only the
corners of the membrane occupied by the spinor charges
are permitted to move. We numerically discover that the
ground state degeneracy is not extensive in volume, and
is strongly dependent on the lattice geometry. We fur-
ther argue that a local magnetic field, which would allow
the quantum system to tunnel in between the degenerate
ground states, is prohibited in this geometry in the ther-
modynamic limit. Indeed, magnetic field terms are only
permitted under perturbations that extend to the bound-
ary of the system, and is thus suppressed in the ther-
modynamic limit. The lack of mobile excitations and a
non-extensive (yet geometry dependent) ground state de-
generacy strongly suggests that the breathing pyrochlore
lattice supports a quantum fractonic phase of matter.

The remainder of the paper is organized as follows.
In Sec. II we provide an overview of the important as-
pects of higher-rank U(1) gauge theories, and recap the
classical breathing pyrochlore model within the frame-
work of rank-2 vector gauge theory in Sec. III. We then
present the quantum breathing pyrochlore lattice model
in Sec. IV and elucidate the degenerate quantum ground
state degeneracy, the variety of perturbative terms, and
the excitations in terms of spinor charge degrees of free-
dom. We also emphasize the occurrence of a thermody-
namically large membrane operator that permits these
spinor excitations to be moved to the boundary of the
system, and argue the prohibition of local magnetic field
terms (or perturbative terms that connect the various
degenerate ground states) due to the complicated geo-
metrical configuration of our setting. Finally, in Sec. V
we discuss the broad implications of our work and pro-
pose future directions of exploration.

II. HIGHER-RANK U(1) GAUGE THEORIES

The interacting classical and quantum spin models
on the breathing pyrochlore lattice have an underlying
higher-rank gauge theory structure that emerges in the
low energy limit [41]. To specify our notation and ter-
minology, we present a succinct overview of rank-2 U(1)
gauge theories in this section.
The classical theory of electromagnetism is described

in terms of a rank-1 gauge theory, wherein the electric
field (Ei) and magnetic vector potential (Ai) transform
as vectors under spatial rotations. Associated with this
familiar Maxwell theory is a source-free Gauss’ law con-
straint for the electric field, @iEi = 0, and a U(1) gauge
transformation, Ai(x) ! Ai(x) + @i�(x), for a charge
density ⇢ and an arbitrary function �(x); we note that
repeated indices are summed over. This gauge transfor-
mation can be simply obtained by acting the source-free
Gauss’ law on a state vector/wavefunction. At higher-
energies, this source-free condition can be relaxed to
@iEi = ⇢ 6= 0, which allows the creation of charges of the
electric field; for a compact gauge theory (where Ai is de-
fined to modulo 2⇡) one necessarily admits the creation of
magnetic monopoles that violate the source-free Gauss’s
law constraint for the magnetic field, @iBi = 0. We will
henceforth focus on the electric charges and refer to the
electric Gauss’s law constraint as merely the Gauss’ law
for brevity. The Gauss’ law constraint imposes a conser-
vation law, where

R
⇢ =

R
@iEi = 0, as we integrate a

total derivative over the entire volume and the fields are
taken to vanish on the boundary. Physically, this ensures
that charges must be created from the vacuum so that the
total charge is zero i.e. an equal number of positive and
negative charges. The classical theory can be quantized
by imposing that the electric field and vector potential
are canonically conjugate, [Ai(x), Ej(y)] = i�ij�(x � y),
which leads to a low-energy description with an emergent
photon of dispersion ! / k.
A natural extension of the conventional rank-1 gauge

theory, is a rank-2 theory, wherein the electric field and
magnetic potential are now promoted to symmetric rank-
2 tensors Eij and Aij , respectively [20, 21, 43]. Unlike in
the rank-1 theory, the electric field has the possibility of
satisfying distinct source-free Gauss’s law constraints: (i)
@iEij = 0 and (ii) @i@jEij = 0 where the corresponding
theories are referred to as vector and scalar charge the-
ories, respectively. These theories may be further con-
strained by imposing that Eij is traceless. Just as in
the case of rank-1 gauge theory, these distinct Gauss’
law constraints lead to distinct gauge transformations
for Aij : (i) Aij ! Aij + @i�j(x) + @j�i(x) and (ii)
Aij ! Aij + @i@j�(x) for arbitrary functions �i(x),�(x).
The distinct Gauss’s laws impose a variety of possible
conservation laws. Focussing on the vector charge the-
ory, as will be pertinent for our work, the Gauss’s law
constraint can be relaxed to lead to permit the creation
of vector charges, @iEij = ⇢j 6= 0. Associated with this
are a conservation of total vector charge (“linear momen-
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that a classical spin liquid on the breathing pyrochlore
lattice [41], where interactions amongst classical spins
residing on the vertices of two unequal corner-sharing
tetrahedra, possesses a low energy manifold described
by an underlying classical rank-2 vector gauge theory.
Specifically, the rank-2 electric field tensor is populated
by linear combinations of spins on the four sublattices
of a tetrahedron (i.e. the “light” normal modes of the
Td point group tetrahedron, whose fluctuations are ener-
getically inexpensive), with a corresponding Gauss’s law
constraint due to the suppression of energetically costly
“heavy modes” [41]. The subsequent classical ground
state has been shown to exhibit fourfold pinch point sin-
gularities in certain correlation functions that may be
resolved under neutron scattering experiments [41, 42].

In this work, motivated by this classical study, we
demonstrate that a quantum model on the breathing py-
rochlore lattice can support a fractonic phase of mat-
ter. In the limit of particular energy penalties associated
with normal mode fluctuations, we show that the corre-
sponding quantum theory leads to spinor charges with
mobility restrictions. We also discuss lack of local op-
erators, except for a membrane operator where only the
corners of the membrane occupied by the spinor charges
are permitted to move. We numerically discover that the
ground state degeneracy is not extensive in volume, and
is strongly dependent on the lattice geometry. We fur-
ther argue that a local magnetic field, which would allow
the quantum system to tunnel in between the degenerate
ground states, is prohibited in this geometry in the ther-
modynamic limit. Indeed, magnetic field terms are only
permitted under perturbations that extend to the bound-
ary of the system, and is thus suppressed in the ther-
modynamic limit. The lack of mobile excitations and a
non-extensive (yet geometry dependent) ground state de-
generacy strongly suggests that the breathing pyrochlore
lattice supports a quantum fractonic phase of matter.

The remainder of the paper is organized as follows.
In Sec. II we provide an overview of the important as-
pects of higher-rank U(1) gauge theories, and recap the
classical breathing pyrochlore model within the frame-
work of rank-2 vector gauge theory in Sec. III. We then
present the quantum breathing pyrochlore lattice model
in Sec. IV and elucidate the degenerate quantum ground
state degeneracy, the variety of perturbative terms, and
the excitations in terms of spinor charge degrees of free-
dom. We also emphasize the occurrence of a thermody-
namically large membrane operator that permits these
spinor excitations to be moved to the boundary of the
system, and argue the prohibition of local magnetic field
terms (or perturbative terms that connect the various
degenerate ground states) due to the complicated geo-
metrical configuration of our setting. Finally, in Sec. V
we discuss the broad implications of our work and pro-
pose future directions of exploration.

II. HIGHER-RANK U(1) GAUGE THEORIES

The interacting classical and quantum spin models
on the breathing pyrochlore lattice have an underlying
higher-rank gauge theory structure that emerges in the
low energy limit [41]. To specify our notation and ter-
minology, we present a succinct overview of rank-2 U(1)
gauge theories in this section.
The classical theory of electromagnetism is described

in terms of a rank-1 gauge theory, wherein the electric
field (Ei) and magnetic vector potential (Ai) transform
as vectors under spatial rotations. Associated with this
familiar Maxwell theory is a source-free Gauss’ law con-
straint for the electric field, @iEi = 0, and a U(1) gauge
transformation, Ai(x) ! Ai(x) + @i�(x), for a charge
density ⇢ and an arbitrary function �(x); we note that
repeated indices are summed over. This gauge transfor-
mation can be simply obtained by acting the source-free
Gauss’ law on a state vector/wavefunction. At higher-
energies, this source-free condition can be relaxed to
@iEi = ⇢ 6= 0, which allows the creation of charges of the
electric field; for a compact gauge theory (where Ai is de-
fined to modulo 2⇡) one necessarily admits the creation of
magnetic monopoles that violate the source-free Gauss’s
law constraint for the magnetic field, @iBi = 0. We will
henceforth focus on the electric charges and refer to the
electric Gauss’s law constraint as merely the Gauss’ law
for brevity. The Gauss’ law constraint imposes a conser-
vation law, where

R
⇢ =

R
@iEi = 0, as we integrate a

total derivative over the entire volume and the fields are
taken to vanish on the boundary. Physically, this ensures
that charges must be created from the vacuum so that the
total charge is zero i.e. an equal number of positive and
negative charges. The classical theory can be quantized
by imposing that the electric field and vector potential
are canonically conjugate, [Ai(x), Ej(y)] = i�ij�(x � y),
which leads to a low-energy description with an emergent
photon of dispersion ! / k.
A natural extension of the conventional rank-1 gauge

theory, is a rank-2 theory, wherein the electric field and
magnetic potential are now promoted to symmetric rank-
2 tensors Eij and Aij , respectively [20, 21, 43]. Unlike in
the rank-1 theory, the electric field has the possibility of
satisfying distinct source-free Gauss’s law constraints: (i)
@iEij = 0 and (ii) @i@jEij = 0 where the corresponding
theories are referred to as vector and scalar charge the-
ories, respectively. These theories may be further con-
strained by imposing that Eij is traceless. Just as in
the case of rank-1 gauge theory, these distinct Gauss’
law constraints lead to distinct gauge transformations
for Aij : (i) Aij ! Aij + @i�j(x) + @j�i(x) and (ii)
Aij ! Aij + @i@j�(x) for arbitrary functions �i(x),�(x).
The distinct Gauss’s laws impose a variety of possible
conservation laws. Focussing on the vector charge the-
ory, as will be pertinent for our work, the Gauss’s law
constraint can be relaxed to lead to permit the creation
of vector charges, @iEij = ⇢j 6= 0. Associated with this
are a conservation of total vector charge (“linear momen-

Both charge and dipole moments 
are conserved

Quadrupolar charge configurations
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that a classical spin liquid on the breathing pyrochlore
lattice [41], where interactions amongst classical spins
residing on the vertices of two unequal corner-sharing
tetrahedra, possesses a low energy manifold described
by an underlying classical rank-2 vector gauge theory.
Specifically, the rank-2 electric field tensor is populated
by linear combinations of spins on the four sublattices
of a tetrahedron (i.e. the “light” normal modes of the
Td point group tetrahedron, whose fluctuations are ener-
getically inexpensive), with a corresponding Gauss’s law
constraint due to the suppression of energetically costly
“heavy modes” [41]. The subsequent classical ground
state has been shown to exhibit fourfold pinch point sin-
gularities in certain correlation functions that may be
resolved under neutron scattering experiments [41, 42].

In this work, motivated by this classical study, we
demonstrate that a quantum model on the breathing py-
rochlore lattice can support a fractonic phase of mat-
ter. In the limit of particular energy penalties associated
with normal mode fluctuations, we show that the corre-
sponding quantum theory leads to spinor charges with
mobility restrictions. We also discuss lack of local op-
erators, except for a membrane operator where only the
corners of the membrane occupied by the spinor charges
are permitted to move. We numerically discover that the
ground state degeneracy is not extensive in volume, and
is strongly dependent on the lattice geometry. We fur-
ther argue that a local magnetic field, which would allow
the quantum system to tunnel in between the degenerate
ground states, is prohibited in this geometry in the ther-
modynamic limit. Indeed, magnetic field terms are only
permitted under perturbations that extend to the bound-
ary of the system, and is thus suppressed in the ther-
modynamic limit. The lack of mobile excitations and a
non-extensive (yet geometry dependent) ground state de-
generacy strongly suggests that the breathing pyrochlore
lattice supports a quantum fractonic phase of matter.

The remainder of the paper is organized as follows.
In Sec. II we provide an overview of the important as-
pects of higher-rank U(1) gauge theories, and recap the
classical breathing pyrochlore model within the frame-
work of rank-2 vector gauge theory in Sec. III. We then
present the quantum breathing pyrochlore lattice model
in Sec. IV and elucidate the degenerate quantum ground
state degeneracy, the variety of perturbative terms, and
the excitations in terms of spinor charge degrees of free-
dom. We also emphasize the occurrence of a thermody-
namically large membrane operator that permits these
spinor excitations to be moved to the boundary of the
system, and argue the prohibition of local magnetic field
terms (or perturbative terms that connect the various
degenerate ground states) due to the complicated geo-
metrical configuration of our setting. Finally, in Sec. V
we discuss the broad implications of our work and pro-
pose future directions of exploration.

II. HIGHER-RANK U(1) GAUGE THEORIES

The interacting classical and quantum spin models
on the breathing pyrochlore lattice have an underlying
higher-rank gauge theory structure that emerges in the
low energy limit [41]. To specify our notation and ter-
minology, we present a succinct overview of rank-2 U(1)
gauge theories in this section.
The classical theory of electromagnetism is described

in terms of a rank-1 gauge theory, wherein the electric
field (Ei) and magnetic vector potential (Ai) transform
as vectors under spatial rotations. Associated with this
familiar Maxwell theory is a source-free Gauss’ law con-
straint for the electric field, @iEi = 0, and a U(1) gauge
transformation, Ai(x) ! Ai(x) + @i�(x), for a charge
density ⇢ and an arbitrary function �(x); we note that
repeated indices are summed over. This gauge transfor-
mation can be simply obtained by acting the source-free
Gauss’ law on a state vector/wavefunction. At higher-
energies, this source-free condition can be relaxed to
@iEi = ⇢ 6= 0, which allows the creation of charges of the
electric field; for a compact gauge theory (where Ai is de-
fined to modulo 2⇡) one necessarily admits the creation of
magnetic monopoles that violate the source-free Gauss’s
law constraint for the magnetic field, @iBi = 0. We will
henceforth focus on the electric charges and refer to the
electric Gauss’s law constraint as merely the Gauss’ law
for brevity. The Gauss’ law constraint imposes a conser-
vation law, where

R
⇢ =

R
@iEi = 0, as we integrate a

total derivative over the entire volume and the fields are
taken to vanish on the boundary. Physically, this ensures
that charges must be created from the vacuum so that the
total charge is zero i.e. an equal number of positive and
negative charges. The classical theory can be quantized
by imposing that the electric field and vector potential
are canonically conjugate, [Ai(x), Ej(y)] = i�ij�(x � y),
which leads to a low-energy description with an emergent
photon of dispersion ! / k.
A natural extension of the conventional rank-1 gauge

theory, is a rank-2 theory, wherein the electric field and
magnetic potential are now promoted to symmetric rank-
2 tensors Eij and Aij , respectively [20, 21, 43]. Unlike in
the rank-1 theory, the electric field has the possibility of
satisfying distinct source-free Gauss’s law constraints: (i)
@iEij = 0 and (ii) @i@jEij = 0 where the corresponding
theories are referred to as vector and scalar charge the-
ories, respectively. These theories may be further con-
strained by imposing that Eij is traceless. Just as in
the case of rank-1 gauge theory, these distinct Gauss’
law constraints lead to distinct gauge transformations
for Aij : (i) Aij ! Aij + @i�j(x) + @j�i(x) and (ii)
Aij ! Aij + @i@j�(x) for arbitrary functions �i(x),�(x).
The distinct Gauss’s laws impose a variety of possible
conservation laws. Focussing on the vector charge the-
ory, as will be pertinent for our work, the Gauss’s law
constraint can be relaxed to lead to permit the creation
of vector charges, @iEij = ⇢j 6= 0. Associated with this
are a conservation of total vector charge (“linear momen-

Both “momentum” and “angular momentum” are conserved

Charges restricted to move along the charge vector directions
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Outline

1. Quantum spin ice (a 3D quantum spin liquid) as a 
U(1) gauge theory (review) 

2.  A realistic spin model for a rank-2 U(1) gauge theory 
in breathing pyrochlore lattice (Classical)

3.  A realistic spin model for fractonic phases in breathing 
pyrochlore lattice (Quantum):

Yan, Benton, Jaubert, Shannon 2020

SangEun Han, Adarsh Patri, YBK, arXiv:2109.03835



Ising Model: Classical Spin Ice
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space

r
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FIG. 2: The pyrochlore lattice (left), and one up-pointing
tetrahedron (right). One sublattice of tetrahedra is shaded,
and the other transparent. The thickened bonds show the
location of a pyrochlore hexagon. Each such hexagon is a
member of one of four orientations of kagomé lattice planes.
The numbering of sites in the up-pointing tetrahedron on the
right is the convention used in the text. For i = 0, 1, 2, the
fcc Bravais lattice vector ai points in the direction given by
looking from site 3 to site i.

the effective description of the U(1) spin liquid and the
soluble point in terms of Gaussian quantum electrody-
namics. Corrections to effective action and to the scaling
equalities between microscopic and effective degrees of
freedom are discussed in Sec. III C. Sec. IV contains a
discussion of the universal properties of the U(1) spin liq-
uid, including its novel U(1) topological order. In Sec. V
we present our analysis of the soluble point ground state
wavefunction, which gives strong support for the valid-
ity of our effective picture. We conclude in Sec. VI with
a discussion of open issues, focusing on the challenging
problems of understanding this physics in a broader range
of models and looking for U(1)-fractionalized phases in
real materials.

II. MODELS AND MAPPINGS

A. Pyrochlore Model

We begin with the nearest-neighbor S = 1/2 Heisen-
berg antiferromagnet on the pyrochlore lattice. This
structure is a three-dimensional network of corner-
sharing tetrahedra (Fig. 2). It can be obtained by trans-
lating one “up-pointing” tetrahedron (shown on the right
of Fig. 2) through the fcc Bravais lattice vectors R =
n0a0+n1a1+n2a2. We choose a0 = x, a1 = x/2+

√
3y/2,

and a2 = x/2 + y/2
√

3 +
√

2/3z. Basis vectors for the
reciprocal lattice are defined by bi =

√
2πεijkaj × ak,

so that ai · bj = 2πδij . The four sites in each unit cell
are distinguished by an index i = 0, . . . , 3, as indicated
in Fig. 2. Lattice sites are denoted either by single italic

C
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FIG. 3: Depiction of the processes contributing to the third-
order degenerate perturbation theory for the easy-axis py-
rochlore Heisenberg antiferromagnet. Processes (A) and (B)
give only trivial constant shifts of the energy. Process (C)
leads to an XY ring exchange term acting on hexagonal pla-
quettes.

letters like i, or by pairs (R, i) when we wish to specify
the position of a site within the unit cell.

Up to a constant the Hamiltonian can be written as a
sum over tetrahedra:

H =
J

2

∑

t

(St)
2, (1)

where St =
∑

i∈t Si is the total spin on the tetrahedron
t. Following the analysis of a generalized kagomé Heisen-
berg antiferromagnet in Ref. [9], we introduce easy-axis
exchange anisotropy:

H = HI + H′, (2)

HI =
Jz

2

∑

t

(Sz
t )2, (3)

H′ =
J⊥
2

∑

〈ij〉

(S+
i S−j + h.c.), (4)

where Jz # J⊥. This reduces the global SU(2) invari-
ance to U(1) × Z2. We first consider the point J⊥ = 0,
where H reduces to a classical Ising model, with ground
states specified by Sz

t = 0 on all tetrahedra. It was ar-
gued by Anderson23 that, almost identically to Pauling’s
model for water ice24, this Ising model has an extensive
ground state degeneracy (i.e. finite T = 0 entropy per
site).

A small J⊥ > 0 introduces quantum fluctuations and
lifts the extensive degeneracy; this splitting is encapsu-
lated in an effective Hamiltonian using standard tech-
niques of perturbation theory. The first-order contribu-
tion is easily seen to vanish. We will need to go to third
order, where we have the general expression:

Heff = (1−P)
[

−H′ PHI
H′+H′ PHI

H′ PHI
H′

]

(1−P). (5)
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FIG. 2: The pyrochlore lattice (left), and one up-pointing
tetrahedron (right). One sublattice of tetrahedra is shaded,
and the other transparent. The thickened bonds show the
location of a pyrochlore hexagon. Each such hexagon is a
member of one of four orientations of kagomé lattice planes.
The numbering of sites in the up-pointing tetrahedron on the
right is the convention used in the text. For i = 0, 1, 2, the
fcc Bravais lattice vector ai points in the direction given by
looking from site 3 to site i.

the effective description of the U(1) spin liquid and the
soluble point in terms of Gaussian quantum electrody-
namics. Corrections to effective action and to the scaling
equalities between microscopic and effective degrees of
freedom are discussed in Sec. III C. Sec. IV contains a
discussion of the universal properties of the U(1) spin liq-
uid, including its novel U(1) topological order. In Sec. V
we present our analysis of the soluble point ground state
wavefunction, which gives strong support for the valid-
ity of our effective picture. We conclude in Sec. VI with
a discussion of open issues, focusing on the challenging
problems of understanding this physics in a broader range
of models and looking for U(1)-fractionalized phases in
real materials.
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where Jz # J⊥. This reduces the global SU(2) invari-
ance to U(1) × Z2. We first consider the point J⊥ = 0,
where H reduces to a classical Ising model, with ground
states specified by Sz

t = 0 on all tetrahedra. It was ar-
gued by Anderson23 that, almost identically to Pauling’s
model for water ice24, this Ising model has an extensive
ground state degeneracy (i.e. finite T = 0 entropy per
site).

A small J⊥ > 0 introduces quantum fluctuations and
lifts the extensive degeneracy; this splitting is encapsu-
lated in an effective Hamiltonian using standard tech-
niques of perturbation theory. The first-order contribu-
tion is easily seen to vanish. We will need to go to third
order, where we have the general expression:
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FIG. 2: The pyrochlore lattice (left), and one up-pointing
tetrahedron (right). One sublattice of tetrahedra is shaded,
and the other transparent. The thickened bonds show the
location of a pyrochlore hexagon. Each such hexagon is a
member of one of four orientations of kagomé lattice planes.
The numbering of sites in the up-pointing tetrahedron on the
right is the convention used in the text. For i = 0, 1, 2, the
fcc Bravais lattice vector ai points in the direction given by
looking from site 3 to site i.

the effective description of the U(1) spin liquid and the
soluble point in terms of Gaussian quantum electrody-
namics. Corrections to effective action and to the scaling
equalities between microscopic and effective degrees of
freedom are discussed in Sec. III C. Sec. IV contains a
discussion of the universal properties of the U(1) spin liq-
uid, including its novel U(1) topological order. In Sec. V
we present our analysis of the soluble point ground state
wavefunction, which gives strong support for the valid-
ity of our effective picture. We conclude in Sec. VI with
a discussion of open issues, focusing on the challenging
problems of understanding this physics in a broader range
of models and looking for U(1)-fractionalized phases in
real materials.
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sum over tetrahedra:
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i∈t Si is the total spin on the tetrahedron
t. Following the analysis of a generalized kagomé Heisen-
berg antiferromagnet in Ref. [9], we introduce easy-axis
exchange anisotropy:
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where Jz # J⊥. This reduces the global SU(2) invari-
ance to U(1) × Z2. We first consider the point J⊥ = 0,
where H reduces to a classical Ising model, with ground
states specified by Sz

t = 0 on all tetrahedra. It was ar-
gued by Anderson23 that, almost identically to Pauling’s
model for water ice24, this Ising model has an extensive
ground state degeneracy (i.e. finite T = 0 entropy per
site).

A small J⊥ > 0 introduces quantum fluctuations and
lifts the extensive degeneracy; this splitting is encapsu-
lated in an effective Hamiltonian using standard tech-
niques of perturbation theory. The first-order contribu-
tion is easily seen to vanish. We will need to go to third
order, where we have the general expression:
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑
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(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
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3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
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t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:
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These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
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spins.
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where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is
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labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space
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corresponds to the presence/absence of a boson. Each
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in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is
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stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)
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spins or bosons is a dominant term, have recently been
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change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
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ing every site. To see this, observe that the centers of
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nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
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i = 1/2, or absent if Sz
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becomes the constraint that every diamond site touches
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cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
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2 cos(r⇥A)
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the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.

± r 2 A/B
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[Arr0 , Err0 ] = i
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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nian acting only within the low-energy manifold where
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t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
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given site we can make the transformation Sz → Sz and
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i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)
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∑
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3J3
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z , and the sum is over hexagonal plaquettes. The

labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
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els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space
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where the constant terms have been dropped. Mod-
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shown to exhibit a variety of unusual phases and crit-
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change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
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on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz
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becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
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the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.

± r 2 A/B
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of Ref. (26), one obtains the dual action:
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where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
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a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
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the projector Eq. (24). The spatial components enter
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where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
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tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
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cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J

2
z , and the sum is over hexagonal plaquettes. The

labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space

8

the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.
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state with q = 0, all–out (AIAO) order.
Predictions for neutron scattering. Neutron scat-

tering experiments do not measure correlations of
Eij directly, but rather the spin structure factor
S
↵�(q) = hS

↵(q)S�(�q)i. On general grounds [50],
S
↵�(q) is expected to bear witness to the singularity in

Eq. (17). But exactly how 4FPPs would manifest them-
selves in experiment remains an open question. In Fig. 3
we present simulation results for S

↵�(q) for parameters
equivalent to Fig. 3a. We find that the 4FPP is not visi-
ble in the structure factor measured by unpolarised neu-
tron scattering [see Supplemental Material]. However the
4FPP can be resolved using polarised neutrons. In this
case, it manifests itself in the spin–flip (SF) channel for
neutrons polarised perpendicular to the scattering plane
[68], [Fig. S1].

Application to materials. Breathing–pyrochlore mag-
nets were first studied as a tractable limit of the py-
rochlore HAF [70–73], but have since been realised in
materials based on both transition–metal [74–78] and
rare–earth ions [79, 80]. Interesting parallels are also
found in lacunar spinels [81, 82]. To date, most theo-
retical work has concentrated on SU(2)–invariant mod-
els [70–73, 83–85]. However, in the presence of spin–orbit
coupling, the symmetry of the lattice permits anisotropic
exchange [80, 86–88]. And, with respect to higher–rank
gauge theories, a promising line of enquiry are Yb–based
materials, where the required form of interactions appear
to predominate.

One concrete example is Ba3Yb2Zn5O11 [79, 80, 86,
88], where A–tetrahedra are estimated to have the
coupling parameters JA ⇡ 0.57 meV, DA ⇡ �0.16 meV,
with other interactions negligible. This is exactly the
form of interactions needed for an R2–U1 spin liquid,
a feature which is expected to be robust [88], since it
holds for a wide range of Slater–Koster overlap ratios
[89]. Meanwhile, exchange interactions on the larger B–
tetrahedra of Ba3Yb2Zn5O11, while less well understood,
appear to be orders of magnitude smaller [80, 86]. Thus,
while it seems plausible that Ba3Yb2Zn5O11 could realise
a R2–U1 spin liquid, this may occur at temperatures too
low to measure.

The encouraging example of Ba3Yb2Zn5O11 motivates
us to consider the possibility of a magnet with similar
structure, but smaller B–tetrahedra, such that the inter-
actions on the B–sublattice become non–negligible. For
concreteness, we consider a parameter set:

JA = 0.57 meV, JB = 0.028 meV ,

DA = �0.16 meV, DB = �0.007 meV , (19)

where we assume that the interactions on the B–
sublattice are of the same form as on the A–sublattice,
but substantially weaker, JA/JB = DA/DB ⇡ 20. To
demonstrate that the R2–U1 physics persists in the pres-
ence of finite DB we have used MC simulation to cal-
culate the spin structure factor. Once again, the 4FPP

(a) SSF(q), DB = 0 (b) SSF(q), DB ⌧ DA

FIG. 3. Spin structure factor found in MC simulation of
the BP model, Eq. (6), showing 4–fold pinch points (4FPPs)
characteristic of a R2–U1 spin liquid. (a) Correlations in the
[h0k] plane, in the spin–flip (SF) channel measured using
polarised neutrons. 4FPP are visible at [0, 0, 2] and points
related by symmetry. Results are for parameters Eq. (18),
T = 2.5⇥ 10�3JA. (b) Equivalent results for parameters mo-
tivated by Ba3Yb2Zn5O11, Eq. (19), T = 252 mK.

associated with the R2–U1 spin liquid remains clearly vis-
ible for a range of temperatures [Fig. 3b]. The same will
hold for a more general choice of interactions, as long as
the anisotropic part of the exchange on the B–sublattice
is su�ciently weak; for DB ⇠ DA, fluctuations are re-
stricted to the local easy plane, and the R2–U1 physics
will be lost.

Quantum e↵ects. The theory of an R2–U1 spin liq-
uid presented above is classical, so it is important to ask
what might change once quantum e↵ects are taken into
account. A useful point of comparison is quantum spin
ice (QSI), where quantum fluctuations leads to tunnelling
between di↵erent spin configurations satisfying the “ice
rules” constraint Eq. (1). This tunnelling, which occurs
on loops of spins, introduces a fluctuating magnetic field
B, and the result, at T = 0, is a QSL described by a
the deconfined phase of a U(1) quantum lattice gauge
theory [6–15]. However it is important to note that the
temperature scale associated with this QSL is three or-
ders of magnitude smaller than the range of temperatures
over which Eq. (1) holds [15]. Moreover, since the U(1)
QSL is gapless, any finite temperature immediately re-
stores classical correlations at long length scales [8]. As
a consequence, the spin structure factor S(q) continues
to be dominated by pinch–point singularities of the form
Eq. (16), down to the lowest temperatures studied [13].

The quantum limit of R2–U1 gauge theories has al-
ready been studied as a continuum field theory, and is
qualitatively very similar to QSI [26, 28, 50]. The low-
est lying excitations are gapless emergent photons which
modify, but do not eliminate, the singular features ob-
served in scattering [8, 50]. The microscopic study of
quantum e↵ects in Eq. (6) lies outside the scope of this
Letter. However we anticipate that coherent gauge fluc-
tuations will be confined to an even lower temperature
scale than in QSI, by the fact that the magnetic field Bij
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state with q = 0, all–out (AIAO) order.
Predictions for neutron scattering. Neutron scat-
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equivalent to Fig. 3a. We find that the 4FPP is not visi-
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(a) SSF(q), DB = 0 (b) SSF(q), DB ⌧ DA

FIG. 3. Spin structure factor found in MC simulation of
the BP model, Eq. (6), showing 4–fold pinch points (4FPPs)
characteristic of a R2–U1 spin liquid. (a) Correlations in the
[h0k] plane, in the spin–flip (SF) channel measured using
polarised neutrons. 4FPP are visible at [0, 0, 2] and points
related by symmetry. Results are for parameters Eq. (18),
T = 2.5⇥ 10�3JA. (b) Equivalent results for parameters mo-
tivated by Ba3Yb2Zn5O11, Eq. (19), T = 252 mK.
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ice (QSI), where quantum fluctuations leads to tunnelling
between di↵erent spin configurations satisfying the “ice
rules” constraint Eq. (1). This tunnelling, which occurs
on loops of spins, introduces a fluctuating magnetic field
B, and the result, at T = 0, is a QSL described by a
the deconfined phase of a U(1) quantum lattice gauge
theory [6–15]. However it is important to note that the
temperature scale associated with this QSL is three or-
ders of magnitude smaller than the range of temperatures
over which Eq. (1) holds [15]. Moreover, since the U(1)
QSL is gapless, any finite temperature immediately re-
stores classical correlations at long length scales [8]. As
a consequence, the spin structure factor S(q) continues
to be dominated by pinch–point singularities of the form
Eq. (16), down to the lowest temperatures studied [13].

The quantum limit of R2–U1 gauge theories has al-
ready been studied as a continuum field theory, and is
qualitatively very similar to QSI [26, 28, 50]. The low-
est lying excitations are gapless emergent photons which
modify, but do not eliminate, the singular features ob-
served in scattering [8, 50]. The microscopic study of
quantum e↵ects in Eq. (6) lies outside the scope of this
Letter. However we anticipate that coherent gauge fluc-
tuations will be confined to an even lower temperature
scale than in QSI, by the fact that the magnetic field Bij
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-
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yz

FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.

longing to each of the tetrahedra [41, 44, 45],
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where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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The combination of the normal modes of a single A

tetrahedron can be expressed in terms of a rank-2 tensor,
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A + Etrace

A , where we have sugges-
tively decomposed into a symmetric tensor,
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centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.
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on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k
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ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.
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The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
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Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.
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The immobility of the excitations compounded with a
non-extensive (yet geometry dependent) ground state de-
generacy is highly indicate of a fractonic phase of matter
[3, 5–7, 10, 11]. Intriguingly, the quantum model we con-
sider also lacks a local magnetic field term that connects
the various quantum states of the degenerate manifold at
finite order in perturbation theory. This salient feature
heralds the demise of any propagating photonic excita-
tion, and the birth of glassy dynamics [1–3], which is in
sharp contrast with conventional graviton excitations in
rank-2 gauge theories [47, 48].

The model we consider is in the limit of particular
energy scales that allows us to consider solely the diago-
nal components of the electric field i.e. the focussing on
the corresponding classical “light” A2,E,T1� modes. In-
deed, relaxing this condition may allow the introduction
of o↵-diagonal electric field components (namely T1+,T2

modes) into the quantum model. The virtue of our con-
sideration is a clean closure of the corresponding algebra.
It would be intriguing to explore whether the above prop-
erties of the breathing pyrochlore model survive with this

relaxation of the coupling constant values.
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Appendix A: Normal mode representation of the
microscopic interactions between spins on the

breathing pyrochlore lattice

A generalized nearest neighbour spin model on the
breathing pyrochlore lattice involving antiferromag-
netic Heisenberg, bond-dependent Dzyaloshinskii-Moriya
(DM), Kitaev and Gamma interactions, is of the form
given in Eq. A1,

H =
X

hiji2A

h
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2
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X
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aB,�m
2
B,�, (A2)

where J(A,B), D(A,B) are the interaction coe�cients of the
Heisenberg and DM interaction, and E(A,B),0 is the con-
stant energy shift on A (B)-tetrahedron, respectively, and
d̂ij are the bond-dependent vectors defined in Ref. [41].
For clarity, we note that,

K(A,B),01 =K(A,B),23 = K(A,B)(1, 0, 0), (A3)

K(A,B),02 =K(A,B),13 = K(A,B)(0, 1, 0), (A4)

K(A,B),03 =K(A,B),12 = K(A,B)(0, 0, 1), (A5)

�(A,B),01 =� �(A,B),23 = �A

0

@
0 0 0
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0 1 0

1

A , (A6)

�(A,B),02 =� �(A,B),13 = �A

0

@
0 0 1
0 0 0
1 0 0

1

A , (A7)

�(A,B),03 =� �(A,B),12 = �A

0

@
0 1 0
1 0 0
0 0 0

1

A , (A8)

with K(A,B) and �(A,B) denoting the interaction coe�-
cients of bond-dependent Kitaev and Gamma interac-

tions, respectively.

The interacting Hamiltonian can be recast into a nor-
mal mode representation, as given in Eq. A2. The corre-
sponding normal mode interaction coe�cients are related
to the microscopic interaction parameters via (dropped
the A- and B- tetrahedron labels for brevity),

aA2 =
2E0

3
� JA � 4DAp

2
+KA � 4�A, (A9)

aE =
2E0

3
� JA +

2DAp
2

+KA + 2�A, (A10)

aT1� =
2E0

3
� JA +

2DAp
2

�KA � 2�A, (A11)

aT2 =
2E0

3
� JA � 2DAp

2
�KA + 2�A, (A12)

aT1+ =
2E0

3
+ 3JA +KA. (A13)

We note that if J(A,B) is positive and larger than the other
coe�cients (i.e. a(A,B),T1+

> 0 is the largest coe�cient),
then we can take m(A,B),T1+

=0.

The generic interacting spin model in Eq. A1 reduces

Heisenberg

Dzyaloshinski-Moriya

Kitaev

Symmetric anisotropic 
exchange
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energy scales that allows us to consider solely the diago-
nal components of the electric field i.e. the focussing on
the corresponding classical “light” A2,E,T1� modes. In-
deed, relaxing this condition may allow the introduction
of o↵-diagonal electric field components (namely T1+,T2

modes) into the quantum model. The virtue of our con-
sideration is a clean closure of the corresponding algebra.
It would be intriguing to explore whether the above prop-
erties of the breathing pyrochlore model survive with this

relaxation of the coupling constant values.
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Appendix A: Normal mode representation of the
microscopic interactions between spins on the

breathing pyrochlore lattice

A generalized nearest neighbour spin model on the
breathing pyrochlore lattice involving antiferromag-
netic Heisenberg, bond-dependent Dzyaloshinskii-Moriya
(DM), Kitaev and Gamma interactions, is of the form
given in Eq. A1,
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where J(A,B), D(A,B) are the interaction coe�cients of the
Heisenberg and DM interaction, and E(A,B),0 is the con-
stant energy shift on A (B)-tetrahedron, respectively, and
d̂ij are the bond-dependent vectors defined in Ref. [41].
For clarity, we note that,
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with K(A,B) and �(A,B) denoting the interaction coe�-
cients of bond-dependent Kitaev and Gamma interac-

tions, respectively.

The interacting Hamiltonian can be recast into a nor-
mal mode representation, as given in Eq. A2. The corre-
sponding normal mode interaction coe�cients are related
to the microscopic interaction parameters via (dropped
the A- and B- tetrahedron labels for brevity),
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2
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We note that if J(A,B) is positive and larger than the other
coe�cients (i.e. a(A,B),T1+

> 0 is the largest coe�cient),
then we can take m(A,B),T1+

=0.

The generic interacting spin model in Eq. A1 reduces

Heisenberg

Dzyaloshinski-Moriya

Kitaev

Symmetric anisotropic 
exchange

<latexit sha1_base64="ODY6kDNlLBLEct+pOnNKT/Uqx/I=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPVYaw8eK9gPaEPYbDft0s0m7m6EEvonvHhQxKt/x5v/xm2bg7Y+GHi8N8PMPD/mTGnb/rZya+sbm1v57cLO7t7+QfHwqK2iRBLaIhGPZNfHinImaEszzWk3lhSHPqcdf3w78ztPVCoWiQc9iakb4qFgASNYG6nb8G4uUMOre8WSXbbnQKvEyUgJMjS94ld/EJEkpEITjpXqOXas3RRLzQin00I/UTTGZIyHtGeowCFVbjq/d4rOjDJAQSRNCY3m6u+JFIdKTULfdIZYj9SyNxP/83qJDq7dlIk40VSQxaIg4UhHaPY8GjBJieYTQzCRzNyKyAhLTLSJqGBCcJZfXiXtStm5LFfuq6VaPYsjDydwCufgwBXU4A6a0AICHJ7hFd6sR+vFerc+Fq05K5s5hj+wPn8AZGuO5g==</latexit>

DA, DB

<latexit sha1_base64="aOT22nlxILJqmWXYIxQvI7Pndp0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPVY60XopYL9gDaEzXbTLt1s4u5GKKF/wosHRbz6d7z5b9y2OWjrg4HHezPMzPNjzpS27W8rt7a+sbmV3y7s7O7tHxQPj9oqSiShLRLxSHZ9rChngrY005x2Y0lx6HPa8ce3M7/zRKVikXjQk5i6IR4KFjCCtZG6De/mAjW8ulcs2WV7DrRKnIyUIEPTK371BxFJQio04VipnmPH2k2x1IxwOi30E0VjTMZ4SHuGChxS5abze6fozCgDFETSlNBorv6eSHGo1CT0TWeI9UgtezPxP6+X6ODaTZmIE00FWSwKEo50hGbPowGTlGg+MQQTycytiIywxESbiAomBGf55VXSrpSdy3Llvlqq1bM48nACp3AODlxBDe6gCS0gwOEZXuHNerRerHfrY9Gas7KZY/gD6/MHeeKO9A==</latexit>

KA,KB

<latexit sha1_base64="gWCSq1E3RgCPVph+rtZ8WPnqviI=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEF1KSIuqy1oUuK9gLtCGcTCft0JkkzEzEEvoqblwo4tYXcefbOG2z0NYfBj7+cw7nzB8knCntON/Wyura+sZmYau4vbO7t28flFoqTiWhTRLzWHYCUJSziDY105x2EklBBJy2g9HNtN5+pFKxOHrQ44R6AgYRCxkBbSzfLvVuQQjwr89wTnXfLjsVZya8DG4OZZSr4dtfvX5MUkEjTTgo1XWdRHsZSM0Ip5NiL1U0ATKCAe0ajEBQ5WWz2yf4xDh9HMbSvEjjmft7IgOh1FgEplOAHqrF2tT8r9ZNdXjlZSxKUk0jMl8UphzrGE+DwH0mKdF8bACIZOZWTIYggWgTV9GE4C5+eRla1Yp7Uanen5dr9TyOAjpCx+gUuegS1dAdaqAmIugJPaNX9GZNrBfr3fqYt65Y+cwh+iPr8wd76ZNx</latexit>

�A,�B

<latexit sha1_base64="/pGS0kO1Rh5LWzf5CmQlXVT2jmw=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPUktV6kpwr2A9oQNttNu3SzCbsboYT+DS8eFPHqn/Hmv3Hb5qCtDwYe780wM8+POVPatr+t3Nr6xuZWfruws7u3f1A8PGqrKJGEtkjEI9n1saKcCdrSTHPajSXFoc9pxx/fzfzOE5WKReJRT2LqhngoWMAI1kbqN7zbC9Tw6ugG2V6xZJftOdAqcTJSggxNr/jVH0QkCanQhGOleo4dazfFUjPC6bTQTxSNMRnjIe0ZKnBIlZvOb56iM6MMUBBJU0Kjufp7IsWhUpPQN50h1iO17M3E/7xeooNrN2UiTjQVZLEoSDjSEZoFgAZMUqL5xBBMJDO3IjLCEhNtYiqYEJzll1dJu1J2LsuVh2qpVs/iyMMJnMI5OHAFNbiHJrSAQAzP8ApvVmK9WO/Wx6I1Z2Uzx/AH1ucPG/uPyA==</latexit>

JA, JB > 0

Interactions on B much smaller than those on A

Heisenberg dominates over other 
anisotropic interactions

A

B
0

1
2 3

Yan, Benton, Jaubert, Shannon ’17



3

x

yz

(a)

x

yz

(b)

FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-
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FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.
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where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
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which leads to a low-energy description with an emer-
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The immobility of the excitations compounded with a
non-extensive (yet geometry dependent) ground state de-
generacy is highly indicate of a fractonic phase of matter
[3, 5–7, 10, 11]. Intriguingly, the quantum model we con-
sider also lacks a local magnetic field term that connects
the various quantum states of the degenerate manifold at
finite order in perturbation theory. This salient feature
heralds the demise of any propagating photonic excita-
tion, and the birth of glassy dynamics [1–3], which is in
sharp contrast with conventional graviton excitations in
rank-2 gauge theories [47, 48].

The model we consider is in the limit of particular
energy scales that allows us to consider solely the diago-
nal components of the electric field i.e. the focussing on
the corresponding classical “light” A2,E,T1� modes. In-
deed, relaxing this condition may allow the introduction
of o↵-diagonal electric field components (namely T1+,T2

modes) into the quantum model. The virtue of our con-
sideration is a clean closure of the corresponding algebra.
It would be intriguing to explore whether the above prop-
erties of the breathing pyrochlore model survive with this

relaxation of the coupling constant values.
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Appendix A: Normal mode representation of the
microscopic interactions between spins on the

breathing pyrochlore lattice

A generalized nearest neighbour spin model on the
breathing pyrochlore lattice involving antiferromag-
netic Heisenberg, bond-dependent Dzyaloshinskii-Moriya
(DM), Kitaev and Gamma interactions, is of the form
given in Eq. A1,
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where J(A,B), D(A,B) are the interaction coe�cients of the
Heisenberg and DM interaction, and E(A,B),0 is the con-
stant energy shift on A (B)-tetrahedron, respectively, and
d̂ij are the bond-dependent vectors defined in Ref. [41].
For clarity, we note that,

K(A,B),01 =K(A,B),23 = K(A,B)(1, 0, 0), (A3)

K(A,B),02 =K(A,B),13 = K(A,B)(0, 1, 0), (A4)

K(A,B),03 =K(A,B),12 = K(A,B)(0, 0, 1), (A5)
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1

A , (A8)

with K(A,B) and �(A,B) denoting the interaction coe�-
cients of bond-dependent Kitaev and Gamma interac-

tions, respectively.

The interacting Hamiltonian can be recast into a nor-
mal mode representation, as given in Eq. A2. The corre-
sponding normal mode interaction coe�cients are related
to the microscopic interaction parameters via (dropped
the A- and B- tetrahedron labels for brevity),

aA2 =
2E0

3
� JA � 4DAp

2
+KA � 4�A, (A9)

aE =
2E0

3
� JA +

2DAp
2

+KA + 2�A, (A10)

aT1� =
2E0

3
� JA +

2DAp
2

�KA � 2�A, (A11)

aT2 =
2E0

3
� JA � 2DAp

2
�KA + 2�A, (A12)

aT1+ =
2E0

3
+ 3JA +KA. (A13)

We note that if J(A,B) is positive and larger than the other
coe�cients (i.e. a(A,B),T1+

> 0 is the largest coe�cient),
then we can take m(A,B),T1+

=0.

The generic interacting spin model in Eq. A1 reduces

similarly for B sub-lattices
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-

0

1

2

3

x

yz

FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.

longing to each of the tetrahedra [41, 44, 45],

H =
1

2

X

A,�

aA,�m
2
A,� +

1

2

X

B,�

aB,�m
2
B,�, (1)

where � = {A2,E,T2,T1+,T1�} is over the Td irreps
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corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k
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to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.
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croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k
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antiferromagnetic Heisenberg (JA/B), bond-dependent
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A). The classical Hamiltonian describing the interactions
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
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the constant creation of extra particles, these fractonic
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The immobility of the excitations compounded with a
non-extensive (yet geometry dependent) ground state de-
generacy is highly indicate of a fractonic phase of matter
[3, 5–7, 10, 11]. Intriguingly, the quantum model we con-
sider also lacks a local magnetic field term that connects
the various quantum states of the degenerate manifold at
finite order in perturbation theory. This salient feature
heralds the demise of any propagating photonic excita-
tion, and the birth of glassy dynamics [1–3], which is in
sharp contrast with conventional graviton excitations in
rank-2 gauge theories [47, 48].

The model we consider is in the limit of particular
energy scales that allows us to consider solely the diago-
nal components of the electric field i.e. the focussing on
the corresponding classical “light” A2,E,T1� modes. In-
deed, relaxing this condition may allow the introduction
of o↵-diagonal electric field components (namely T1+,T2

modes) into the quantum model. The virtue of our con-
sideration is a clean closure of the corresponding algebra.
It would be intriguing to explore whether the above prop-
erties of the breathing pyrochlore model survive with this

relaxation of the coupling constant values.
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Appendix A: Normal mode representation of the
microscopic interactions between spins on the

breathing pyrochlore lattice

A generalized nearest neighbour spin model on the
breathing pyrochlore lattice involving antiferromag-
netic Heisenberg, bond-dependent Dzyaloshinskii-Moriya
(DM), Kitaev and Gamma interactions, is of the form
given in Eq. A1,
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where J(A,B), D(A,B) are the interaction coe�cients of the
Heisenberg and DM interaction, and E(A,B),0 is the con-
stant energy shift on A (B)-tetrahedron, respectively, and
d̂ij are the bond-dependent vectors defined in Ref. [41].
For clarity, we note that,

K(A,B),01 =K(A,B),23 = K(A,B)(1, 0, 0), (A3)
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with K(A,B) and �(A,B) denoting the interaction coe�-
cients of bond-dependent Kitaev and Gamma interac-

tions, respectively.

The interacting Hamiltonian can be recast into a nor-
mal mode representation, as given in Eq. A2. The corre-
sponding normal mode interaction coe�cients are related
to the microscopic interaction parameters via (dropped
the A- and B- tetrahedron labels for brevity),
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We note that if J(A,B) is positive and larger than the other
coe�cients (i.e. a(A,B),T1+

> 0 is the largest coe�cient),
then we can take m(A,B),T1+

=0.

The generic interacting spin model in Eq. A1 reduces

similarly for B sub-lattices
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-
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FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.
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action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,

2p
3

0

B@
@xm

1
A,E

� 1
2@ym

1
A,E +

p
3
2 @ym

2
A,E

� 1
2@zm

1
A,E �

p
3
2 @zm

2
A,E

1

CA+

0

@
@ym

z
A,T1�

+ @zm
y
A,T1�

@xm
z
A,T1�

+ @zm
x
A,T1�

@xm
y
A,T1�

+ @ym
x
A,T1�

1

A

�
r

2

3
rmA,A2 �r⇥mA,T2 = 0. (2)

The combination of the normal modes of a single A

tetrahedron can be expressed in terms of a rank-2 tensor,
EA = Esym

A + Eantisym
A + Etrace

A , where we have sugges-
tively decomposed into a symmetric tensor,

3

x

yz

(a)

x

yz

(b)

FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.

tum” )
R
⇢ = 0, and “angular momentum”

R
x ⇥ ⇢ = 0

[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
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portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
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croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
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well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
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on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
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minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-
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FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.
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TABLE III. The definition of the normal modes on the A- and B-tetrahedra in terms of the spin degrees of freedom.
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Here, the diagonal components satisfy the SU(2) algebra,

[EA,iEA0,j ] = i�AA0✏ijkEA,k {i, j, k} 2 {xx, yy, zz}. (B12)

Appendix C: Charge-neutral quantum ground state configurations

In this section, we show 85 charge-neutral configurations for the ground states which satisfy (a � b � c + d) = 0
(Eq. 11) for (Lx, Ly, Lz) = (1, 1, 1) where a, b, c, d 2 {±2,±1, 0} are the quantum numbers of the electric fields on
each A-tetrahedron. The result is shown in Table. IV.

Appendix D: Normal modes on B-tetrahedron in terms of normal modes on A-tetrahedra

The normal modes on B-tetrahedron in terms of normal modes on A-tetrahedra are as follows (where cx,A =
(�1,�1, 1, 1), cy,A = (�1, 1,�1, 1), and cz,A = (�1, 1, 1,�1)):
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.
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[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-
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FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.
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where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k
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ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.
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The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
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minimally take antiferromagnetic JA, JB > 0, while tak-
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leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in
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TABLE III. The definition of the normal modes on the A- and B-tetrahedra in terms of the spin degrees of freedom.
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Here, the diagonal components satisfy the SU(2) algebra,
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In this section, we show 85 charge-neutral configurations for the ground states which satisfy (a � b � c + d) = 0
(Eq. 11) for (Lx, Ly, Lz) = (1, 1, 1) where a, b, c, d 2 {±2,±1, 0} are the quantum numbers of the electric fields on
each A-tetrahedron. The result is shown in Table. IV.
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In this section, we show 85 charge-neutral configurations for the ground states which satisfy (a � b � c + d) = 0
(Eq. 11) for (Lx, Ly, Lz) = (1, 1, 1) where a, b, c, d 2 {±2,±1, 0} are the quantum numbers of the electric fields on
each A-tetrahedron. The result is shown in Table. IV.
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.

tum” )
R
⇢ = 0, and “angular momentum”

R
x ⇥ ⇢ = 0

[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-

0

1

2

3

x

yz

FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.

longing to each of the tetrahedra [41, 44, 45],

H =
1

2

X

A,�

aA,�m
2
A,� +

1

2

X

B,�

aB,�m
2
B,�, (1)

where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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The combination of the normal modes of a single A

tetrahedron can be expressed in terms of a rank-2 tensor,
EA = Esym

A + Eantisym
A + Etrace

A , where we have sugges-
tively decomposed into a symmetric tensor,
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2 in Eq.(S22) definition in terms of J and D
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TABLE II. Coe�cients aX of the irrep invariants |mX|
2 appearing in H [Eq.(S22)]. Coe�cients are expressed as a function of

J and D. Here the subscripts for the A- and B-tetrahedra are suppressed.

and on B-tetrahedra

aA2,B = aE,B = aT2,B = aT1�,B = �JB , (S27)

aT1+,B = 3JB . (S28)

For JA, JB > 0 and DA < 0, these parameters are in order

on A-tetrahedra: aE,A = aT1�,A < aA2,A, aT2,A, aT1+,A, (S29)

on B-tetrahedra: aA2,B = aE,B = aT2,B = aT1�,B < aT1+,B, (S30)

which plays the central role of dictating the low energy physics.
The irreducible representation fields are subject to constraints arising from fixed spin length

X

X

m
2
X
= 1 (S31)

for both A- and B-tetrahedra. As a consequence, the low energy sector allows the m
2
X
corresponding to the smallest

aX to fluctuate, while all other fields have to vanish. This principle applied to our model leads to

• On A-tetrahedra, the fields mE and mT1� can fluctuate;

• On A-tetrahedra, the fields mT1+ = mT2
= 0, mA2

= 0;

• On B-tetrahedra, the fields mA2
, mE, mT2

, mT1� can fluctuate;

• On B-tetrahedra,

mT1+ = 0 (S32)

Since every spin is shared by an A- and a B-tetrahedron, the fluctuating fields mE and mT1� on A-tetrahedra must
obey additional constraints to respect the the low-energy sector condition on B-tetrahedron imposed by Eq. (S32).
Assuming that the fields are varying slowly in space such that the continuous limit can be taken, the constraint
Eq. (S32) can be expressed in terms of fields living on A-tetrahedron as
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From this constraint we can build the symmetric, traceless, rank-two magnetic field Eij as

Eij =
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such that Eq. (S33) becomes

@iEij = 0 , (S35)

in the low energy limit

Yan, Benton, Jaubert, Shannon ‘20
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TABLE II. Coe�cients aX of the irrep invariants |mX|
2 appearing in H [Eq.(S22)]. Coe�cients are expressed as a function of

J and D. Here the subscripts for the A- and B-tetrahedra are suppressed.

and on B-tetrahedra

aA2,B = aE,B = aT2,B = aT1�,B = �JB , (S27)

aT1+,B = 3JB . (S28)

For JA, JB > 0 and DA < 0, these parameters are in order

on A-tetrahedra: aE,A = aT1�,A < aA2,A, aT2,A, aT1+,A, (S29)

on B-tetrahedra: aA2,B = aE,B = aT2,B = aT1�,B < aT1+,B, (S30)

which plays the central role of dictating the low energy physics.
The irreducible representation fields are subject to constraints arising from fixed spin length

X

X

m
2
X
= 1 (S31)

for both A- and B-tetrahedra. As a consequence, the low energy sector allows the m
2
X
corresponding to the smallest

aX to fluctuate, while all other fields have to vanish. This principle applied to our model leads to

• On A-tetrahedra, the fields mE and mT1� can fluctuate;

• On A-tetrahedra, the fields mT1+ = mT2
= 0, mA2

= 0;

• On B-tetrahedra, the fields mA2
, mE, mT2

, mT1� can fluctuate;

• On B-tetrahedra,

mT1+ = 0 (S32)

Since every spin is shared by an A- and a B-tetrahedron, the fluctuating fields mE and mT1� on A-tetrahedra must
obey additional constraints to respect the the low-energy sector condition on B-tetrahedron imposed by Eq. (S32).
Assuming that the fields are varying slowly in space such that the continuous limit can be taken, the constraint
Eq. (S32) can be expressed in terms of fields living on A-tetrahedron as
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From this constraint we can build the symmetric, traceless, rank-two magnetic field Eij as
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such that Eq. (S33) becomes

@iEij = 0 , (S35)

in the low energy limit
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.

tum” )
R
⇢ = 0, and “angular momentum”

R
x ⇥ ⇢ = 0

[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-

0

1

2

3

x

yz

FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.

longing to each of the tetrahedra [41, 44, 45],

H =
1

2

X

A,�

aA,�m
2
A,� +

1

2

X

B,�

aB,�m
2
B,�, (1)

where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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The combination of the normal modes of a single A

tetrahedron can be expressed in terms of a rank-2 tensor,
EA = Esym

A + Eantisym
A + Etrace

A , where we have sugges-
tively decomposed into a symmetric tensor,
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The remaining electric fields are symmetric and traceless
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TABLE III. The definition of the normal modes on the A- and B-tetrahedra in terms of the spin degrees of freedom.
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The traceful electric fields defined in main text are defined as
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EA,xy =
p
2mz

A,T1� , EA,yz =
p
2mx

A,T1� , EA,zx =
p
2my

A,T1�
. (B11)

Here, the diagonal components satisfy the SU(2) algebra,

[EA,iEA0,j ] = i�AA0✏ijkEA,k {i, j, k} 2 {xx, yy, zz}. (B12)

Appendix C: Charge-neutral quantum ground state configurations

In this section, we show 85 charge-neutral configurations for the ground states which satisfy (a � b � c + d) = 0
(Eq. 11) for (Lx, Ly, Lz) = (1, 1, 1) where a, b, c, d 2 {±2,±1, 0} are the quantum numbers of the electric fields on
each A-tetrahedron. The result is shown in Table. IV.

Appendix D: Normal modes on B-tetrahedron in terms of normal modes on A-tetrahedra

The normal modes on B-tetrahedron in terms of normal modes on A-tetrahedra are as follows (where cx,A =
(�1,�1, 1, 1), cy,A = (�1, 1,�1, 1), and cz,A = (�1, 1, 1,�1)):
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and on B-tetrahedra
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aT1+,B = 3JB . (S28)

For JA, JB > 0 and DA < 0, these parameters are in order
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which plays the central role of dictating the low energy physics.
The irreducible representation fields are subject to constraints arising from fixed spin length
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for both A- and B-tetrahedra. As a consequence, the low energy sector allows the m
2
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corresponding to the smallest

aX to fluctuate, while all other fields have to vanish. This principle applied to our model leads to

• On A-tetrahedra, the fields mE and mT1� can fluctuate;

• On A-tetrahedra, the fields mT1+ = mT2
= 0, mA2

= 0;

• On B-tetrahedra, the fields mA2
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, mT1� can fluctuate;

• On B-tetrahedra,

mT1+ = 0 (S32)

Since every spin is shared by an A- and a B-tetrahedron, the fluctuating fields mE and mT1� on A-tetrahedra must
obey additional constraints to respect the the low-energy sector condition on B-tetrahedron imposed by Eq. (S32).
Assuming that the fields are varying slowly in space such that the continuous limit can be taken, the constraint
Eq. (S32) can be expressed in terms of fields living on A-tetrahedron as
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From this constraint we can build the symmetric, traceless, rank-two magnetic field Eij as
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such that Eq. (S33) becomes

@iEij = 0 , (S35)

in the low energy limit

We could achieve this by taking
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to the microscopic spin model considered in Ref. [41] by
settingK, � and E0 to zero. In particular, the coe�cients
reduce to,

aA2 =� JA � 4DAp
2
, (A14)

aE = aT1� = �JA +
2DAp

2
, (A15)

aT2 =� JA � 2DAp
2

(A16)

aT1+ = 3JA. (A17)

In the main text, we consider aA,A2 = aA,E and the
hierarchy, aA,A2 = aA,E < aA,T1� < aA,T2 < aA,T1+ ,
which give us the light normal modes mA,A2 and mA,E,
and heavy normal modes, mA,T1± and mA,T2 . These
conditions can be easily achieved from the microscopic
interactions of the generic spin model. For instance, for
aA,A2 = aA,E, one can take �A = �DA/

p
2. And, to

satisfy the aforementioned hierarchy of energies, one can
take DA = �|DA| < 0, KA = �|KA| < �

p
2|DA| < 0,

�A = |DA|/
p
2 > 0, and JA > (

p
2|DA| + |KA|)/2 > 0.

These lead to,

aA,A2 = aE = �JA � |KA|, (A18)

aA,T1� =� JA � 4|DA|p
2

+ |KA|, (A19)

aA,T2 =� JA +
4|DA|p

2
+ |KA|, (A20)

aA,T1+ = 3JA � |KA|, (A21)

where we also set E0 = 0, to thus recover the aforemen-
tioned hierarchy of energies.

Appendix B: Derivation of Gauss’ laws

The classical Gauss’s law constraint arises from taking
the m(A,B),T1+

= 0. Using Table III, the B-normal mode
can be rewritten in terms of the normal modes of the
surrounding four A-tetrahedron surrounding a given B-
tetrahedron,

m
x
B,T1+

=
1

4

X

A

[mx
T1+

+
cz,Ap

2
(my

T1�
�m

y
T2
) +

cy,Ap
2
(mz

T1� +m
z
T2
) + cx,A(

1p
3
mA2 �

q
2
3m

1
E)]A

⇡m
x
A,T1+

(B) +
1p
2
@z(m

y
A,T1�

�m
y
A,T2

) +
1p
2
@y(m

z
A,T1� +m

z
A,T2

)� @x(
1p
3
mA,A2 �

q
2
3m

1
A,E), (B1)

m
y
B,T1+

=
1

4

X

A

[my
T1+

+
cx,Ap

2
(mz

T1� �m
z
T2
) +

cz,Ap
2
(mx

T1� +m
x
T2
)� cy,A(

1p
3
mA2 +

1p
6
m

1
E � 1p

2
m

2
E)]A

⇡m
y
A,T1+

(B) +
1p
2
@x(m

z
A,T1� �m

z
A,T2

) +
1p
2
@z(m

x
A,T1� +m

x
A,T2

)� @y(
1p
3
mA,A2 +

1p
6
m

1
A,E � 1p

2
m

2
A,E),

(B2)

m
z
B,T1+

=
1

4

X

A

[mz
T1+

+
cy,Ap

2
(mx

T1� �m
x
T2
) +

cx,Ap
2
(my

T1�
+m

y
T2
)� cz,A(

1p
3
mA2 +

1p
6
m

1
E + 1p

2
m

2
E)]A

⇡m
z
A,T1+

(B) +
1p
2
@y(m

x
A,T1� �m

x
A,T2

) +
1p
2
@x(m

y
A,T1�

+m
y
A,T2

)� @z(
1p
3
mA,A2 +

1p
6
m

1
A,E + 1p

2
m

2
A,E),

(B3)

where on the right side of the equalities the 0, 1, 2, 3 subscript indicates the A-tetrahedron sharing a 0, 1, 2, 3 site on the
B-tetrahedron. In Eq. B1, B3, and B3, we take a continuum limit. In the continuum limit, if we take m(A,B),T1+

= 0

and multiply them by
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and we can rewrite them as follows:
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FIG. 2. Momentum-dependent dynamical structure factor in
the [⌘0:] plane at varying energies, for the parameterization
(�

�
, �⌫ ,⇡�

,⇡⌫) = (1, 1,�0.15, 0) at )/|�
�
| = 0.01. The four-

fold pinch point structure is shown in the spin-flip (SF) channel in the
right column, while the total dynamic structure factor is shown on the
left column. The intensity scale for each panel has been normalized
to arbitrary units.

temperature window, we used the many degenerate spin con-
figurations obtained from our MC simulations as the initial
conditions (IC) for the molecular dynamics (MD) at various
temperatures. We time-evolved each IC according to the semi-
classical Landau Lifshitz equations of motion[42, 43], and we
numerically integrated and averaged over the configurations
to obtain the dynamical spin structure factor. Details of the
numerical methods used can be found in [40].

Results.— The dynamical structure factor is plotted at vary-
ing energies as a function of momentum at fixed temperature,
shown in Fig. 2, as a function of energy and momentum at
increasing temperatures, shown in Fig. 3, and along high
symmetry directions in momentum space, shown in Fig. 4.

FIG. 3. Energy dependence of dynamical structure factor along the
[⌘⌘0] momentum cut, for the parameterization (�

�
, �⌫ ,⇡�

,⇡⌫) =
(1, 1,�0.15, 0). The total dynamic structure factor (left column) and
dynamic structure factor in the spin-flip (SF) channel (right column)
are shown for )/|�

�
| = 0.01 and )/|�

�
| = 0.03 within the R2-U1

regime, and )/|�
�
| = 0.10 within the * (1) spin liquid regime. The

intensity scale for each panel has been normalized to arbitrary units.

Fig. 2 depicts the normalized total and spin-flip dynamical
structure factor in the ⌘0: plane at energies 0, 0.1, 0.15, and
0.2 |�� | for ) = 0.01 |�� | where the R2-U1 state is stable. The
4FPP characteristic present in the equal-time structure factor
is also seen in the static structure factor SSF (q,l) in the spin-
flip channel. As the energy increases, the four-fold nature of
the pinch point gradually washes out to a two-fold pinch point
characteristic of * (1) spin liquids. Interestingly, the energy
at which this cross-over occurs, i.e. approximately 0.2 |�� |, is
similar to the temperature above which the 4FPP disappears in
the equal-time structure factor.

Next, we present the energy dependence of the dynamical
structure factor along the ⌘⌘0 momentum path in Fig. 3. The

4

R2-U1

U(1)

FIG. 4. Energy dependence of dynamical structure factor in the spin flip channel along high symmetry directions in the first Brillouin zone
(FBZ). The dynamical structure factor is plotted along the FBZ edge (left column) and inside the FBZ (right column), where �2,  2, ,2, -2,
*2, and !2 are shorthands for 1/2 of each high symmetry point respectively. The temperatures used were )/|�

�
| = 0.03 within the R2-U1

regime, and )/|�
�
| = 0.13 within the * (1) spin liquid regime. Note that the energy scales between the R2-U1 and * (1) case di�er. The

intensity scale for each panel has been normalized to arbitrary units.

first two rows are depicted for temperatures well within the
R2-U1 regime, while the last row shows the dynamics in the
* (1) spin liquid regime. There are two important observations
to note. First, as the temperature is increased from 0.01 |�� |

to 0.03 |�� |, the energy scale for the excitations also increases.
Secondly, the triple-peak structure of the signatures in the R2-
U1 state are easily di�erentiated from the broad structures seen
in the* (1) spin liquid case.

Fig. 4 shows the dynamical structure factor in the spin flip
channel along a high symmetry path �- -,---*-!-� in the
extended first Brillouin zone (FBZ), and along a path �2- 2-
,2--2-*2-!2-�2 inside the extended FBZ. There are a few
notable distinguishing features of the R2-U1 state to contrast
with the * (1) state. Along the FBZ edges, the multi-peak
structure present in Fig. 3 also appears along the �- path in
the R2-U1 regime, whereas the signal is simply broad along
this cut for the * (1) spin liquid. On the second path within
the FBZ, there is a stark contrast between the R2-U1 and
* (1) inelastic structure factors. The signal for the R2-U1 is
suppressed between the ,2 and -2 points, and between the
-2 and *2 points, as opposed to the broad signal along these
points in the * (1) case. In other words, the signal supression
in the inelastic structure factor along this second momentum
path is another characteristic of the R2-U1 state, in addition to
the 4FPP structure in seen in Fig. 2.

Discussion.— In this letter, we demonstrated distinguishing
characteristics of the R2-U1 state in its inelastic spin structure
factor. Not only does the 4FPP characteristic persist at low
energies, shown in Fig. 2, but both Figs. 3 and 4 demonstrate

how the energy dependence of the dynamical structure factor
can be used to distinguish the R2-U1 from the * (1) state.
Thus, our results illuminate a new path for experimentally
detecting the R2-U1 state from inelastic neutron scattering in
real materials.

Naturally, the question of whether these features would also
be present in the quantum spin system arises. Solving the
quantum model and its dynamics for 3D systems, however, has
been a historically di�cult feat. Meanwhile, classical simu-
lations of frustrated spin systems using molecular dynamics
have indicated good qualitative agreement with their quantum
counterparts, even in the quantum spin liquid and quantum
paramagnetic regimes[44, 45]. This type of semi-classical
modeling has been done for Kitaev-like frustrated magnets,
involving bond-dependent Kitaev[44] and o�-diagonal �[45]
interactions on a honeycomb. These studies showed that qual-
itative features seen in the classical inelastic spin structure
factor persisted in the dynamics for the quantum system, im-
plying that the highly degenerate classical states are participat-
ing in quantum fluctuations down to low energy scales. Due
to this quantum-classical correspondence in the dynamics, we
believe that our classical results provide invaluable insight into
the putative R2-U1 quantum state. This work therefore serves
as a reference point for future finite-temperature dynamical
simulations for the quantum rank-2 * (1) spin liquid state.
Moreover, if the magnitude of the spin magnetic moments in
real breathing pyrochlore materials are large, then our classical
results would directly apply. Yb-based pyrochlore oxides such
as Ba3Yb2Zn5O11[46–49], whose Yb atoms form a breathing

3

FIG. 2. Momentum-dependent dynamical structure factor in
the [⌘0:] plane at varying energies, for the parameterization
(�

�
, �⌫ ,⇡�

,⇡⌫) = (1, 1,�0.15, 0) at )/|�
�
| = 0.01. The four-

fold pinch point structure is shown in the spin-flip (SF) channel in the
right column, while the total dynamic structure factor is shown on the
left column. The intensity scale for each panel has been normalized
to arbitrary units.

temperature window, we used the many degenerate spin con-
figurations obtained from our MC simulations as the initial
conditions (IC) for the molecular dynamics (MD) at various
temperatures. We time-evolved each IC according to the semi-
classical Landau Lifshitz equations of motion[42, 43], and we
numerically integrated and averaged over the configurations
to obtain the dynamical spin structure factor. Details of the
numerical methods used can be found in [40].

Results.— The dynamical structure factor is plotted at vary-
ing energies as a function of momentum at fixed temperature,
shown in Fig. 2, as a function of energy and momentum at
increasing temperatures, shown in Fig. 3, and along high
symmetry directions in momentum space, shown in Fig. 4.

FIG. 3. Energy dependence of dynamical structure factor along the
[⌘⌘0] momentum cut, for the parameterization (�

�
, �⌫ ,⇡�

,⇡⌫) =
(1, 1,�0.15, 0). The total dynamic structure factor (left column) and
dynamic structure factor in the spin-flip (SF) channel (right column)
are shown for )/|�

�
| = 0.01 and )/|�

�
| = 0.03 within the R2-U1

regime, and )/|�
�
| = 0.10 within the * (1) spin liquid regime. The

intensity scale for each panel has been normalized to arbitrary units.

Fig. 2 depicts the normalized total and spin-flip dynamical
structure factor in the ⌘0: plane at energies 0, 0.1, 0.15, and
0.2 |�� | for ) = 0.01 |�� | where the R2-U1 state is stable. The
4FPP characteristic present in the equal-time structure factor
is also seen in the static structure factor SSF (q,l) in the spin-
flip channel. As the energy increases, the four-fold nature of
the pinch point gradually washes out to a two-fold pinch point
characteristic of * (1) spin liquids. Interestingly, the energy
at which this cross-over occurs, i.e. approximately 0.2 |�� |, is
similar to the temperature above which the 4FPP disappears in
the equal-time structure factor.

Next, we present the energy dependence of the dynamical
structure factor along the ⌘⌘0 momentum path in Fig. 3. The
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(3)

anti-symmetric tensor, (Eantisym
A )ij = �✏ijkm

k
A,T2

, and a

traceful tensor (Etrace
A )ij = ��ij

q
2
3mA,A2 .

Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,

@i

h
Esym

A +Etrace
A

i

ii
= 0, 8i 2 {x, y, z}, (4)

which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth

define (EA)ij =
p
2(Esym

A +Etrace
A )ij (where we mutiply it

by
p
2 for later convenience), and the source-free Gauss’s

law constraint becomes @i(EA)ij = 0 8i 2 {x, y, z}.

IV. QUANTUM BREATHING PYROCHLORE
LATTICE MODEL

The quantum breathing pyrochlore model involving
the A2 and E irrep normal modes can be written as
H = H0 +H

0, where

H0 = �4|aA|
X

A

�
m2

A,E +m
2
A,A2

�
, (5)

with aA,A2 = aA,E = �8|aA|, and

H
0 =

1

2

X

B,�

aB,�m
2
B,�. (6)

In the quantum model, the electric field compo-
nents satisfy a canonically normalized SU(2) Lie al-
gebra, [EA,i,EA0,j ] = i�A,A0✏ijkEA,k, where {i, j, k} 2
{xx, yy, zz}. Note that the electric field variables do not
commute. With these electric field variables, H0 takes
the simple form,

H0 = �|aA|
X

A

�
E2
A,xx + E2

A,yy + E2
A,zz

�

= �|aA|
X

A

~E2
A. (7)

To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ

2

which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,

⇢
k
B =

3X

A=0

c
k
AEkk, (8)

where c
k
A is a site-dependent phase factor vector:

c
x
A = (�1,�1, 1, 1), c

y
A = (�1, 1,�1, 1), and c

z
A =

(�1, 1, 1,�1). The components of the vector charge den-

in the low energy limit
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TABLE III. The definition of the normal modes on the A- and B-tetrahedra in terms of the spin degrees of freedom.
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The traceful electric fields defined in main text are defined as
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EA,xy =
p
2mz

A,T1� , EA,yz =
p
2mx

A,T1� , EA,zx =
p
2my

A,T1�
. (B11)

Here, the diagonal components satisfy the SU(2) algebra,

[EA,iEA0,j ] = i�AA0✏ijkEA,k {i, j, k} 2 {xx, yy, zz}. (B12)

Appendix C: Charge-neutral quantum ground state configurations

In this section, we show 85 charge-neutral configurations for the ground states which satisfy (a � b � c + d) = 0
(Eq. 11) for (Lx, Ly, Lz) = (1, 1, 1) where a, b, c, d 2 {±2,±1, 0} are the quantum numbers of the electric fields on
each A-tetrahedron. The result is shown in Table. IV.

Appendix D: Normal modes on B-tetrahedron in terms of normal modes on A-tetrahedra

The normal modes on B-tetrahedron in terms of normal modes on A-tetrahedra are as follows (where cx,A =
(�1,�1, 1, 1), cy,A = (�1, 1,�1, 1), and cz,A = (�1, 1, 1,�1)):
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TABLE III. The definition of the normal modes on the A- and B-tetrahedra in terms of the spin degrees of freedom.
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TABLE III. The definition of the normal modes on the A- and B-tetrahedra in terms of the spin degrees of freedom.
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The traceful electric fields defined in main text are defined as
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EA,xy =
p
2mz

A,T1� , EA,yz =
p
2mx

A,T1� , EA,zx =
p
2my

A,T1�
. (B11)

Here, the diagonal components satisfy the SU(2) algebra,

[EA,iEA0,j ] = i�AA0✏ijkEA,k {i, j, k} 2 {xx, yy, zz}. (B12)

Appendix C: Charge-neutral quantum ground state configurations

In this section, we show 85 charge-neutral configurations for the ground states which satisfy (a � b � c + d) = 0
(Eq. 11) for (Lx, Ly, Lz) = (1, 1, 1) where a, b, c, d 2 {±2,±1, 0} are the quantum numbers of the electric fields on
each A-tetrahedron. The result is shown in Table. IV.

Appendix D: Normal modes on B-tetrahedron in terms of normal modes on A-tetrahedra

The normal modes on B-tetrahedron in terms of normal modes on A-tetrahedra are as follows (where cx,A =
(�1,�1, 1, 1), cy,A = (�1, 1,�1, 1), and cz,A = (�1, 1, 1,�1)):

Recall
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anti-symmetric tensor, (Eantisym
A )ij = �✏ijkm

k
A,T2

, and a

traceful tensor (Etrace
A )ij = ��ij

q
2
3mA,A2 .

Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,

@i

h
Esym

A +Etrace
A

i

ii
= 0, 8i 2 {x, y, z}, (4)

which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth

define (EA)ij =
p
2(Esym

A +Etrace
A )ij (where we mutiply it

by
p
2 for later convenience), and the source-free Gauss’s

law constraint becomes @i(EA)ij = 0 8i 2 {x, y, z}.

IV. QUANTUM BREATHING PYROCHLORE
LATTICE MODEL

The quantum breathing pyrochlore model involving
the A2 and E irrep normal modes can be written as
H = H0 +H

0, where

H0 = �4|aA|
X

A

�
m2

A,E +m
2
A,A2

�
, (5)

with aA,A2 = aA,E = �8|aA|, and

H
0 =

1

2

X

B,�

aB,�m
2
B,�. (6)

In the quantum model, the electric field compo-
nents satisfy a canonically normalized SU(2) Lie al-
gebra, [EA,i,EA0,j ] = i�A,A0✏ijkEA,k, where {i, j, k} 2
{xx, yy, zz}. Note that the electric field variables do not
commute. With these electric field variables, H0 takes
the simple form,

H0 = �|aA|
X

A

�
E2
A,xx + E2

A,yy + E2
A,zz

�

= �|aA|
X

A

~E2
A. (7)

To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ

2

which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,

⇢
k
B =

3X

A=0

c
k
AEkk, (8)

where c
k
A is a site-dependent phase factor vector:

c
x
A = (�1,�1, 1, 1), c

y
A = (�1, 1,�1, 1), and c

z
A =

(�1, 1, 1,�1). The components of the vector charge den-

in the low energy limit
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aA2 = aE < aT1� < aT2 < aT1+



Quantum Theory
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Eij are non-commuting fields 

Non-commutative 
quantum field theory
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
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� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,
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This can be achieved by 
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to the microscopic spin model considered in Ref. [41] by
settingK, � and E0 to zero. In particular, the coe�cients
reduce to,

aA2 =� JA � 4DAp
2
, (A14)

aE = aT1� = �JA +
2DAp

2
, (A15)

aT2 =� JA � 2DAp
2

(A16)

aT1+ = 3JA. (A17)

In the main text, we consider aA,A2 = aA,E and the
hierarchy, aA,A2 = aA,E < aA,T1� < aA,T2 < aA,T1+ ,
which give us the light normal modes mA,A2 and mA,E,
and heavy normal modes, mA,T1± and mA,T2 . These
conditions can be easily achieved from the microscopic
interactions of the generic spin model. For instance, for
aA,A2 = aA,E, one can take �A = �DA/

p
2. And, to

satisfy the aforementioned hierarchy of energies, one can
take DA = �|DA| < 0, KA = �|KA| < �

p
2|DA| < 0,

�A = |DA|/
p
2 > 0, and JA > (

p
2|DA| + |KA|)/2 > 0.

These lead to,

aA,A2 = aE = �JA � |KA|, (A18)

aA,T1� =� JA � 4|DA|p
2

+ |KA|, (A19)

aA,T2 =� JA +
4|DA|p

2
+ |KA|, (A20)

aA,T1+ = 3JA � |KA|, (A21)

where we also set E0 = 0, to thus recover the aforemen-
tioned hierarchy of energies.

Appendix B: Derivation of Gauss’ laws

The classical Gauss’s law constraint arises from taking
the m(A,B),T1+

= 0. Using Table III, the B-normal mode
can be rewritten in terms of the normal modes of the
surrounding four A-tetrahedron surrounding a given B-
tetrahedron,
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where on the right side of the equalities the 0, 1, 2, 3 subscript indicates the A-tetrahedron sharing a 0, 1, 2, 3 site on the
B-tetrahedron. In Eq. B1, B3, and B3, we take a continuum limit. In the continuum limit, if we take m(A,B),T1+

= 0

and multiply them by
p
2, we have
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and we can rewrite them as follows:
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In the main text, we consider aA,A2 = aA,E and the
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which give us the light normal modes mA,A2 and mA,E,
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where we also set E0 = 0, to thus recover the aforemen-
tioned hierarchy of energies.
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where on the right side of the equalities the 0, 1, 2, 3 subscript indicates the A-tetrahedron sharing a 0, 1, 2, 3 site on the
B-tetrahedron. In Eq. B1, B3, and B3, we take a continuum limit. In the continuum limit, if we take m(A,B),T1+
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anti-symmetric tensor, (Eantisym
A )ij = �✏ijkm

k
A,T2

, and a

traceful tensor (Etrace
A )ij = ��ij

q
2
3mA,A2 .

Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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= 0, 8i 2 {x, y, z}, (4)

which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth

define (EA)ij =
p
2(Esym

A +Etrace
A )ij (where we mutiply it

by
p
2 for later convenience), and the source-free Gauss’s

law constraint becomes @i(EA)ij = 0 8i 2 {x, y, z}.

IV. QUANTUM BREATHING PYROCHLORE
LATTICE MODEL

The quantum breathing pyrochlore model involving
the A2 and E irrep normal modes can be written as
H = H0 +H

0, where
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In the quantum model, the electric field compo-
nents satisfy a canonically normalized SU(2) Lie al-
gebra, [EA,i,EA0,j ] = i�A,A0✏ijkEA,k, where {i, j, k} 2
{xx, yy, zz}. Note that the electric field variables do not
commute. With these electric field variables, H0 takes
the simple form,
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ

2

which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,

⇢
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A is a site-dependent phase factor vector:
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth
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In the quantum model, the electric field compo-
nents satisfy a canonically normalized SU(2) Lie al-
gebra, [EA,i,EA0,j ] = i�A,A0✏ijkEA,k, where {i, j, k} 2
{xx, yy, zz}. Note that the electric field variables do not
commute. With these electric field variables, H0 takes
the simple form,
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ

2

which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,

@i

h
Esym

A +Etrace
A

i

ii
= 0, 8i 2 {x, y, z}, (4)
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dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
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model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
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generacy of 2S+1, we are able to identify �6 eigenvalue
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due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
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A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth
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To make progress, we make a choice for the remaining
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particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
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quantum flip terms J±S
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� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
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due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
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A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.
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group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
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fashion to the B-tetrahedron normal modes, this leads to
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five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
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A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
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model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth
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B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
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actions, and permits a controlled study of the low-energy
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with two-fold degeneracy. Drawing inspiration from the
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of the A-tetrahedron network can be described by S = 2
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ber of A-tetrahedron irreps in non-trivial combinations.
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that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
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model. Using the defined electric field tensors, Eq. 2
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ

2

which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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2 gauge theory for a vector charge density ⇢ = 0. Evi-
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
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quantum flip terms J±S
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model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.
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the existence of charges, allows the electric charge density
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merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
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we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
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fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
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the normal modes in the quantum breathing pyrochlore
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particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
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A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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which is identical to the Gauss’s law constraint for a rank-
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gauge theory description. We note that Eq. 4 holds even
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
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A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
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ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth

define (EA)ij =
p
2(Esym

A +Etrace
A )ij (where we mutiply it

by
p
2 for later convenience), and the source-free Gauss’s

law constraint becomes @i(EA)ij = 0 8i 2 {x, y, z}.

IV. QUANTUM BREATHING PYROCHLORE
LATTICE MODEL

The quantum breathing pyrochlore model involving
the A2 and E irrep normal modes can be written as
H = H0 +H

0, where

H0 = �4|aA|
X

A

�
m2

A,E +m
2
A,A2

�
, (5)

with aA,A2 = aA,E = �8|aA|, and

H
0 =

1

2

X

B,�

aB,�m
2
B,�. (6)

In the quantum model, the electric field compo-
nents satisfy a canonically normalized SU(2) Lie al-
gebra, [EA,i,EA0,j ] = i�A,A0✏ijkEA,k, where {i, j, k} 2
{xx, yy, zz}. Note that the electric field variables do not
commute. With these electric field variables, H0 takes
the simple form,

H0 = �|aA|
X

A

�
E2
A,xx + E2

A,yy + E2
A,zz

�

= �|aA|
X

A

~E2
A. (7)

To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
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� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
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model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,

⇢
k
B =

3X

A=0

c
k
AEkk, (8)

where c
k
A is a site-dependent phase factor vector:

c
x
A = (�1,�1, 1, 1), c

y
A = (�1, 1,�1, 1), and c

z
A =

(�1, 1, 1,�1). The components of the vector charge den-

<latexit sha1_base64="BXQrUuDCov3CDj37kh7Sg028Yn8=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEQShJEXUjFF3oskJf0IQwmU7boTOTMDMRSghu/BU3LhRx61e482+ctllo64ELh3Pu5d57wphRpR3n2yosLa+srhXXSxubW9s79u5eS0WJxKSJIxbJTogUYVSQpqaakU4sCeIhI+1wdDPx2w9EKhqJhh7HxOdoIGifYqSNFNgH3i3iHEFPRPoKpp7ksJEFqXuaBXbZqThTwEXi5qQMctQD+8vrRTjhRGjMkFJd14m1nyKpKWYkK3mJIjHCIzQgXUMF4kT56fSFDB4bpQf7kTQlNJyqvydSxJUa89B0cqSHat6biP953UT3L/2UijjRRODZon7CoI7gJA/Yo5JgzcaGICypuRXiIZIIa5NayYTgzr+8SFrVinteqd6flWvXeRxFcAiOwAlwwQWogTtQB02AwSN4Bq/gzXqyXqx362PWWrDymX3wB9bnD9Vclm8=</latexit>

� 6= T1+



Quantum Theory

We can work with

4

Esym
A

=

0

B@

2p
3
m

1
A,E m

z
A,T1�

m
y
A,T1�

m
z
A,T1�

� 1p
3
m

1
A,E +m

2
A,E m

x
A,T1�

m
y
A,T1�

m
x
A,T1�

� 1p
3
m

1
A,E �m

2
A,E

1

CA ,

(3)

anti-symmetric tensor, (Eantisym
A )ij = �✏ijkm

k
A,T2

, and a

traceful tensor (Etrace
A )ij = ��ij

q
2
3mA,A2 .

Evidently, the continuity equation involves a num-
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group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
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a priori. Indeed, one would naturally expect that in-
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particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
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lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
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multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,

⇢
k
B =

3X

A=0

c
k
AEkk, (8)

where c
k
A is a site-dependent phase factor vector:

c
x
A = (�1,�1, 1, 1), c

y
A = (�1, 1,�1, 1), and c

z
A =

(�1, 1, 1,�1). The components of the vector charge den-

perturbation

4

Esym
A

=

0

B@

2p
3
m

1
A,E m

z
A,T1�

m
y
A,T1�

m
z
A,T1�

� 1p
3
m

1
A,E +m

2
A,E m

x
A,T1�

m
y
A,T1�

m
x
A,T1�

� 1p
3
m

1
A,E �m

2
A,E

1

CA ,

(3)

anti-symmetric tensor, (Eantisym
A )ij = �✏ijkm

k
A,T2

, and a

traceful tensor (Etrace
A )ij = ��ij

q
2
3mA,A2 .

Evidently, the continuity equation involves a num-
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that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
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model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
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A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
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quantum flip terms J±S

+
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model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ
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which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
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lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
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B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
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fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ
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that though the interaction coe�cients may involve the
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merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
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fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
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{xx, yy, zz}. Note that the electric field variables do not
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ

2

which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,
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Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,
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B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
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ficients. Such a choice is certainly permitted as the A
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which has a spectrum of S(S +1) and corresponding de-
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state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
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due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
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A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.
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For each tetrahedron, the ground state is five-fold degenerate with

5

sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢

j
B] = i✏

k
ij⇢

k
B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
m

z
T1+

term in Eq. 6,
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z
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E

±
A,zz] = ±c

z
AE

±
A,zz. The

second commutator results in raising and lowering the ⇢z
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,
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where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B
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Quantum Theory

For each tetrahedron, the ground state is five-fold degenerate with
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢

j
B] = i✏

k
ij⇢

k
B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
m

z
T1+

term in Eq. 6,

1

2

X

B

aB,T1+(m
z
B,T1+

)2 =
1

2

X

B

aB,T1+(⇢
z
B)

2
, (9)

where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E

±
A,zz] = ±c

z
AE

±
A,zz. The

second commutator results in raising and lowering the ⇢z

x

yz

E+
zz

(a)

x

y

z

E+
zz

(b)

FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,

H
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aAA0EA,zzEA0,zz +
X
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(bAA0E+
A,zzE

�
A0,zz + h.c.)

+
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(cAA0EA,zzE+
A0,zz + h.c.)

+
X

A,A0

(dAA0E+
A,zzE

+
A0,zz + h.c.) (12)

where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B

that can be expressed as mA2,B = 1
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Ground state manifold of the network of A-tetrahedra is 
described by the S=2 multiplet, 

satisfying the Gauss’s law constraint

Massive degeneracy

4

Esym
A

=

0

B@

2p
3
m

1
A,E m

z
A,T1�

m
y
A,T1�

m
z
A,T1�

� 1p
3
m

1
A,E +m

2
A,E m

x
A,T1�

m
y
A,T1�

m
x
A,T1�

� 1p
3
m

1
A,E �m

2
A,E

1

CA ,

(3)

anti-symmetric tensor, (Eantisym
A )ij = �✏ijkm

k
A,T2

, and a

traceful tensor (Etrace
A )ij = ��ij

q
2
3mA,A2 .

Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,

@i

h
Esym

A +Etrace
A

i

ii
= 0, 8i 2 {x, y, z}, (4)

which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth

define (EA)ij =
p
2(Esym

A +Etrace
A )ij (where we mutiply it

by
p
2 for later convenience), and the source-free Gauss’s

law constraint becomes @i(EA)ij = 0 8i 2 {x, y, z}.

IV. QUANTUM BREATHING PYROCHLORE
LATTICE MODEL

The quantum breathing pyrochlore model involving
the A2 and E irrep normal modes can be written as
H = H0 +H

0, where

H0 = �4|aA|
X

A

�
m2

A,E +m
2
A,A2

�
, (5)

with aA,A2 = aA,E = �8|aA|, and

H
0 =

1

2

X

B,�

aB,�m
2
B,�. (6)

In the quantum model, the electric field compo-
nents satisfy a canonically normalized SU(2) Lie al-
gebra, [EA,i,EA0,j ] = i�A,A0✏ijkEA,k, where {i, j, k} 2
{xx, yy, zz}. Note that the electric field variables do not
commute. With these electric field variables, H0 takes
the simple form,

H0 = �|aA|
X

A

�
E2
A,xx + E2

A,yy + E2
A,zz

�

= �|aA|
X

A

~E2
A. (7)

To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ

2

which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,

⇢
k
B =

3X

A=0

c
k
AEkk, (8)

where c
k
A is a site-dependent phase factor vector:

c
x
A = (�1,�1, 1, 1), c

y
A = (�1, 1,�1, 1), and c

z
A =

(�1, 1, 1,�1). The components of the vector charge den-
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢

j
B] = i✏

k
ij⇢

k
B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
m

z
T1+

term in Eq. 6,

1

2

X

B

aB,T1+(m
z
B,T1+

)2 =
1

2

X

B

aB,T1+(⇢
z
B)

2
, (9)

where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E

±
A,zz] = ±c

z
AE

±
A,zz. The

second commutator results in raising and lowering the ⇢z
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,

H
0 =

X

A,A0

aAA0EA,zzEA0,zz +
X

A,A0

(bAA0E+
A,zzE

�
A0,zz + h.c.)

+
X

A,A0

(cAA0EA,zzE+
A0,zz + h.c.)

+
X

A,A0

(dAA0E+
A,zzE

+
A0,zz + h.c.) (12)

where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B

that can be expressed as mA2,B = 1
4

P3
A=0 mA,A2 =

�1
8
p
3

P
A(EA,xx+EA,yy+EA,zz) =

�1
8
p
3

P
A(

p
2(p+E�

A,zz+

p
�E+

A,zz) + EA,zz) with p
± = e

± i⇡
4 . The subsequent

square of the aforementioned normal mode is,
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.

tum” )
R
⇢ = 0, and “angular momentum”

R
x ⇥ ⇢ = 0

[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-

0

1

2

3

x

yz

FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.

longing to each of the tetrahedra [41, 44, 45],

H =
1

2

X

A,�

aA,�m
2
A,� +

1

2

X

B,�

aB,�m
2
B,�, (1)

where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,

2p
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0
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rmA,A2 �r⇥mA,T2 = 0. (2)

The combination of the normal modes of a single A

tetrahedron can be expressed in terms of a rank-2 tensor,
EA = Esym

A + Eantisym
A + Etrace

A , where we have sugges-
tively decomposed into a symmetric tensor,

k = x, y, z
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢

j
B] = i✏

k
ij⇢

k
B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
m

z
T1+

term in Eq. 6,

1

2

X

B

aB,T1+(m
z
B,T1+

)2 =
1

2

X

B

aB,T1+(⇢
z
B)

2
, (9)

where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E

±
A,zz] = ±c

z
AE

±
A,zz. The

second commutator results in raising and lowering the ⇢z
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,
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+
X

A,A0
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+
A0,zz + h.c.) (12)

where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B

that can be expressed as mA2,B = 1
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢
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B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
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term in Eq. 6,
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE
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A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,
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where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢

j
B] = i✏

k
ij⇢

k
B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
m
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term in Eq. 6,
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
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a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,
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A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.

tum” )
R
⇢ = 0, and “angular momentum”

R
x ⇥ ⇢ = 0

[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-

0

1

2

3

x

yz

FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.

longing to each of the tetrahedra [41, 44, 45],
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X
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aB,�m
2
B,�, (1)

where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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The combination of the normal modes of a single A

tetrahedron can be expressed in terms of a rank-2 tensor,
EA = Esym

A + Eantisym
A + Etrace

A , where we have sugges-
tively decomposed into a symmetric tensor,
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢
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A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
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where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B
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sity also satisfy a canonically normalized SU(2) Lie alge-
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ij⇢
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B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,
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where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
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A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±
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iEA,yy)/2, that satisfy the algebra [EA,zz,E±
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.
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B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.
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eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every
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The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)
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{±2,±1, 0}. The sign structure of Eq. 11 comes from
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A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE
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0 may be on the same or
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most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.
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eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢
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B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,
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Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)
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on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
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uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
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anti-symmetric tensor, (Eantisym
A )ij = �✏ijkm

k
A,T2

, and a

traceful tensor (Etrace
A )ij = ��ij

q
2
3mA,A2 .

Evidently, the continuity equation involves a num-
ber of A-tetrahedron irreps in non-trivial combinations.
To shine light on the underlying structure, we recall
that though the interaction coe�cients may involve the
aforementioned microscopic coupling parameters, from
group-theoretic methods the interaction coe�cients are
merely known to be (in general) distinct from each other
a priori. Indeed, one would naturally expect that in-
cluding further neighbour-interactions, for instance, may
renormalize these interaction coe�cients. To that end,
we consider the case where aA2 = aE < 0 on the A-
tetrahedron, and take the remaining A-modes to be en-
ergetically positive and costly (we explicitly show such
a microscopic construction in Appendix A). In a similar
fashion to the B-tetrahedron normal modes, this leads to
only mA,A2 ,mA,E 6= 0 on the A-tetrahedron. As will be
seen in the next section, the simple choice of the interac-
tion coe�cients is necessary to ensure a closed algebra for
the normal modes in the quantum breathing pyrochlore
model. Using the defined electric field tensors, Eq. 2
then takes an elegant form,

@i

h
Esym

A +Etrace
A

i

ii
= 0, 8i 2 {x, y, z}, (4)

which is identical to the Gauss’s law constraint for a rank-
2 gauge theory for a vector charge density ⇢ = 0. Evi-
dently, the classical (microscopic) breathing pyrochlore
lattice model has an emergent classical rank-2 vector
gauge theory description. We note that Eq. 4 holds even
with non-vanishing mA,T1� normal mode. We henceforth

define (EA)ij =
p
2(Esym

A +Etrace
A )ij (where we mutiply it

by
p
2 for later convenience), and the source-free Gauss’s

law constraint becomes @i(EA)ij = 0 8i 2 {x, y, z}.

IV. QUANTUM BREATHING PYROCHLORE
LATTICE MODEL

The quantum breathing pyrochlore model involving
the A2 and E irrep normal modes can be written as
H = H0 +H

0, where

H0 = �4|aA|
X

A

�
m2

A,E +m
2
A,A2

�
, (5)

with aA,A2 = aA,E = �8|aA|, and

H
0 =

1

2

X

B,�

aB,�m
2
B,�. (6)

In the quantum model, the electric field compo-
nents satisfy a canonically normalized SU(2) Lie al-
gebra, [EA,i,EA0,j ] = i�A,A0✏ijkEA,k, where {i, j, k} 2
{xx, yy, zz}. Note that the electric field variables do not
commute. With these electric field variables, H0 takes
the simple form,

H0 = �|aA|
X

A

�
E2
A,xx + E2

A,yy + E2
A,zz

�

= �|aA|
X

A

~E2
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To make progress, we make a choice for the remaining
B tetrahedron normal modes interaction coe�cients. In
particular, we take the aB,� coe�cients to be pertur-
batively small as compared to the A tetrahedron coef-
ficients. Such a choice is certainly permitted as the A
and B tetrahedron possess their own microscopic inter-
actions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quan-
tum spin ice model on the pyrochlore lattice [46], the
quantum flip terms J±S

+
S
� were taken to be pertur-

batively weaker than the Ising interaction Jzz between
neighbouring spins. Such a choice enabled a controlled
emergence of the underlying U(1) gauge structure of the
model.

Diagonalizing this Hamiltonian over each (decoupled)
A tetrahedron, results in an eigen-spectrum of �6 with
five-fold degeneracy, �2 with nine-fold degeneracy, and 0
with two-fold degeneracy. Drawing inspiration from the
fact that Eq. 7 is the form of a spin-Hamiltonian ⇠ Ŝ

2

which has a spectrum of S(S +1) and corresponding de-
generacy of 2S+1, we are able to identify �6 eigenvalue
state as corresponding to a S = 2 manifold of states, �2
eigenvalue state as corresponding to three sets of S = 1
manifold of states, and 0 eigenvalue state as correspond-
ing to two sets of S = 0 manifold of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra,
we can label the states on each A-tetrahedron as |S, Szi,
where S(S + 1) ⌘ E2

A. Hence, the ground state manifold
of the A-tetrahedron network can be described by S = 2
multiplet in the low energy limit.

Relaxing the Gauss’s law constraint in Eq. 4 to permit
the existence of charges, allows the electric charge density
about a B-tetrahedron centre to be similarly defined as,

⇢
k
B =

3X

A=0

c
k
AEkk, (8)

where c
k
A is a site-dependent phase factor vector:

c
x
A = (�1,�1, 1, 1), c

y
A = (�1, 1,�1, 1), and c

z
A =

(�1, 1, 1,�1). The components of the vector charge den-
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B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
m
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term in Eq. 6,
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,
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where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.

tum” )
R
⇢ = 0, and “angular momentum”

R
x ⇥ ⇢ = 0

[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-

0

1

2

3

x

yz

FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.

longing to each of the tetrahedra [41, 44, 45],

H =
1

2

X

A,�

aA,�m
2
A,� +

1

2

X

B,�

aB,�m
2
B,�, (1)

where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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The combination of the normal modes of a single A

tetrahedron can be expressed in terms of a rank-2 tensor,
EA = Esym

A + Eantisym
A + Etrace

A , where we have sugges-
tively decomposed into a symmetric tensor,
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢
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B = 0 on every
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A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢
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B] = i✏
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ij⇢
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B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,
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Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
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where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.
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that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
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most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
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Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
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most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
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mostbeassociatedastheeigenstateofoneofthecom-
ponents;wetakethe⇢zBeigenvalueasthelabel.Inthat
sense,agivenchargeconfigurationisnotrepresentedby
thevalueofallofit⇢x,y,zcomponents,whichisunlike
theclassicalrank-2U(1)gaugetheorydescribedinSec.
II.Thus,thesechargesshouldbeconsideredasspinor
charges.Weemphasizethattheelectricfieldvariables
existonthecentreoftheA-tetrahedra,whiletheelectric
chargesresideonthecentreoftheB-tetrahedra.
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whereaB,T1+>0.Thispenaltycostliftsthedegen-
eracyofstatesformedbytakingcombinationsofthe
S=2statesonalltheA-tetrahedra,andpermitsthe
groundstatetobecategorizedwith⇢
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B-tetrahedron.

A.Groundstates:degeneratemanifold

Thecharge-neutralconfigurationisadescriptionofthe
groundstates.Asanillustrativeexample,foragiven
charge-neutralBtetrahedron,thestatesofthesurround-
ingfourAtetrahedramustconspireinamannerthat
satisfiestheGauss’slawconstraint;thiscanbeconsid-
eredasasingleGauss’slawunit.Consideringthestate
( )ofthesurroundingAtetrahedron,andimposingthe
charge-neutralfreeconfigurationrequires,
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B.Varietyofperturbationterms
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FIG.3.(a)ThechargeconfigurationwhenweincreaseEzz.
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spectively.
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ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢
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B = 0 on every
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A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,
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{±2,±1, 0}. The sign structure of Eq. 11 comes from
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uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
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A,zz] =

±E±
A,zz, and importantly [⇢zB,E
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
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where A,A
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scopic variables. As an example, consider the mA2,B
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TABLE I. The planes in which Ea
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FIG. 4. The top-down view of charge configuration for
E+

zz,1E�
zz,2. Here, the gray and white squares are cubics lo-

cated on z = �1/4 and z = 1/4, respectively. The green
circles indicate the location of the A-tetrahedra on the same
xy-plane, z = 0.
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The details about representing the normal modes on B-
tetrahedron in terms of the normal modes on the sur-
rounding A-tetrahedra can be found in the Appendix D.
Note that Ea

A,zzEb
A0,zz (a, b = ±, 1) acts on di↵erent

planes, depending on the locations of A,A
0, as shown

in Table I.

C. Membrane operators from perturbation

The perturbative terms permit the construction of a
membrane operator that allows charges created from the
vacuum to be brought to the boundaries of the system.
As an illustrative example, we focus on E+

zz,1E�
zz,2, and

perform degenerate perturbation theory on the ground
states on the same xy plane. At first-order in perturba-
tion, this results in a state that has the charge configura-
tion presented in Fig. 4. This is in fact an excited state,
due to the presence of non-trivial charges, and as such
there is no overlap with the underlying (charge-neutral)
ground state manifold. At second-order in perturbation
on the same xy-plane, the leading contribution arises
from the charge combinations presented in Fig. 5(a). In
this case, the charges residing on the overlapping regions
between the successive E+

zz,1E�
zz,2 operations are can-

celled out, leaving behind a charge on the ‘edge’. Repeat-
ing the application of the perturbative E+

zz,1E�
zz,2 term on

the same xy-plane, one obtains (at higher-orders in per-
turbation) a leading order contribution of charges that
resemble a membrane. Importantly, there is no charge
inside the membrane, due to the aforementioned can-
cellation, and the remaining charges reside on the edge
(Fig. 5(b)); as such this is still an excited state. However,
by imposing the appropriate periodic boundary condi-
tions, these edge charges may be cancelled out. For ex-
ample, in Fig. 6, by identifying green and yellow lines
as the adjoining boundaries, the positive and negative
edge charges are promptly cancelled out. We have thus
returned back to the charge-neutral vacuum, which is dis-
tinct from the original charge-neutral ground state due
to the application of the raising/lowering operators that
have given di↵erent electric field quantum numbers on
A-tetrahedron sites. In this sense, the application of the
membrane operator, in conjunction with the appropriate
boundary condition, makes the quantum system to be
able to tunnel between its manifold of ground states.
Similarly, we may be able to construct membrane oper-

ators on each of the cubic planes of the system. The mem-
brane operators on xy-plane are generated by E±

zz,1E⌥
zz,2

and E±
zz,0E⌥

zz,3, the membrane operators xz-plane are

generated by E±
zz,0E±

zz,2 and E±
zz,1E±

zz,3, and the mem-

brane operators yz-plane are generated by E±
zz,0E±

zz,1 and

E±
zz,2E±

zz,3, respectively.

1. Subsystem symmetry of membrane operators

The application of the membrane operator results in
the creation of charges that obey certain conservation
laws on the planes on which the operator is acting on.
Indeed, the charges are independently conserved on each
of the planes. This arises due to the charge configuration
created when we increase or decrease the electric fields
on the A-tetrahedron (Fig. 3). Thus the creation of the
charges on the various planes is a consequence of not only
conserving the total charge, but also the charge within a
plane as well. This emergent subsystem symmetry can
be interpreted as the conservation “first moment” of the
charge in the plane

P
i yi⇢z = 0 and

P
i xi⇢z = 0, whileP

i zi⇢z 6= 0, where (x, y, z)i is the (x, y, z)-coordinate
of the location of the charge. As such, one can say the
membrane operator is protected by the subsystem sym-
metries.

2. Ground state degeneracy

The ground state degeneracy of the quantum breath-
ing pyrochlore model can be obtained by using the mem-
brane operators. The membrane operators allow tunnel-
ing between the various ground states, and as such we can
generate a particular ground state from a given ground
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢

j
B] = i✏

k
ij⇢

k
B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
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term in Eq. 6,
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,
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where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B

that can be expressed as mA2,B = 1
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most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,
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where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B

that can be expressed as mA2,B = 1
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B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
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where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
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a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE
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where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B
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sense,agivenchargeconfigurationisnotrepresentedby
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whereaB,T1+>0.Thispenaltycostliftsthedegen-
eracyofstatesformedbytakingcombinationsofthe
S=2statesonalltheA-tetrahedra,andpermitsthe
groundstatetobecategorizedwith⇢

z
B=0onevery

B-tetrahedron.

A.Groundstates:degeneratemanifold

Thecharge-neutralconfigurationisadescriptionofthe
groundstates.Asanillustrativeexample,foragiven
charge-neutralBtetrahedron,thestatesofthesurround-
ingfourAtetrahedramustconspireinamannerthat
satisfiestheGauss’slawconstraint;thiscanbeconsid-
eredasasingleGauss’slawunit.Consideringthestate
( )ofthesurroundingAtetrahedron,andimposingthe
charge-neutralfreeconfigurationrequires,

| i=
X

a,b,c,d

Fa,b,c,d|2,ai0|2,bi1|2,ci2|2,di3(10)

=)h 0|(⇢zB)2| i/� , 0|Fa,b,c,d|2(a�b�c+d)2=0.
(11)

whereFa,b,c,disacomplexcoe�cient,thesubscript
ontheketlabelstheAtetrahedron,and{a,b,c,d}2
{±2,±1,0}.ThesignstructureofEq.11comesfrom
c

z
A=(�1,1,1,�1)inEq.8.Thecharge-neutralconfig-
urationthuscorrespondsto85possiblestates(listedin
AppendixC)forasingleGauss’slawunit,thusproviding
amanifoldofgroundstates.

B.Varietyofperturbationterms

ThecollectionofnormalmodesinEq.6providease-
riesofraisingandloweringoperatorsofE±

A,zz=(EA,xx±
iEA,yy)/2,thatsatisfythealgebra[EA,zz,E±

A,zz]=

±E±
A,zz,andimportantly[⇢zB,E

±
A,zz]=±c

z
AE

±
A,zz.The

secondcommutatorresultsinraisingandloweringthe⇢z
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FIG.3.(a)ThechargeconfigurationwhenweincreaseEzz.
Theredupwardandbluedownwardarrowsstandfortheplus
andminuszcharges,respectively.Thegreencirclesstandthe
A-tetrahedra.(b)Thetop-downviewofthechargeconfigu-
rationwhenweincreaseEzzontheA-tetrahedron.Thered
andbluecirclesstandfortheplusandminuszcharges,re-
spectively.

eigenvalueofthestateofthesystem.Figure3depictsthe
operationoftheraisingoperatoronthevacuum.Since
wetaketheformoftheinteractioncoe�cientsinEq.6to
beaprioriindependent,wefocusonthetypesofterms
thatmayoccur:(i)EA,zzE±

A0,zz,(ii)E±
A,zzE

±
A0,zz,and

(iii)E±
A,zzE

⌥
A0,zz.Here,AandA

0maybeonthesameor
di↵erentA-tetrahedronlocation.Theperturbativeterms
canthusberewrittenintermsoftheseraising/lowering
operators,

H
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aAA0EA,zzEA0,zz+
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(bAA0E+
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(cAA0EA,zzE+
A0,zz+h.c.)

+
X

A,A0

(dAA0E+
A,zzE

+
A0,zz+h.c.)(12)

whereA,A
0=0,1,2,3representsthelocationofA-

tetrahedronrelativetoB-tetrahedrononwhichtheop-
eratoracts(Fig.2),andweusethegeneralizedvariables
aAA0,bAA0,cAA0anddAA0thatarefunctionsofmicro-
scopicvariables.Asanexample,considerthemA2,B

thatcanbeexpressedasmA2,B=1
4

P3
A=0mA,A2=
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P
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�1
8

p
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squareoftheaforementionednormalmodeis,
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢

j
B] = i✏

k
ij⇢

k
B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
m

z
T1+

term in Eq. 6,

1

2

X

B

aB,T1+(m
z
B,T1+

)2 =
1

2

X

B

aB,T1+(⇢
z
B)

2
, (9)

where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E

±
A,zz] = ±c

z
AE

±
A,zz. The

second commutator results in raising and lowering the ⇢z
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,

H
0 =

X

A,A0

aAA0EA,zzEA0,zz +
X

A,A0

(bAA0E+
A,zzE

�
A0,zz + h.c.)

+
X

A,A0

(cAA0EA,zzE+
A0,zz + h.c.)

+
X

A,A0

(dAA0E+
A,zzE

+
A0,zz + h.c.) (12)

where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B

that can be expressed as mA2,B = 1
4

P3
A=0 mA,A2 =

�1
8
p
3

P
A(EA,xx+EA,yy+EA,zz) =

�1
8
p
3

P
A(

p
2(p+E�

A,zz+

p
�E+

A,zz) + EA,zz) with p
± = e

± i⇡
4 . The subsequent

square of the aforementioned normal mode is,
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(iE�
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�
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(A,A
0) plane

(0, 3), (1, 2) xy

(0, 2), (1, 3) xz

(0, 1), (2, 3) yz

TABLE I. The planes in which Ea
A,zzEb

A0,zz (a, b = ±, 1)
acts depending on A,A0. For example, for (A,A0) = (1, 2),
Ea

1,zzEb
2,zz acts on xy-plane.

x

y

z

E+
zz

E�
zz

FIG. 4. The top-down view of charge configuration for
E+

zz,1E�
zz,2. Here, the gray and white squares are cubics lo-

cated on z = �1/4 and z = 1/4, respectively. The green
circles indicate the location of the A-tetrahedra on the same
xy-plane, z = 0.

+
1

192

X

A,A0

EA,zzEA0,zz +
1

96
p
2

X

A,A0

(p�EA,zzE+
A0,zz + h.c.)

+
1

96
p
2

X

A,A0

(p�E+
A,zzEA0,zz + h.c.).

The details about representing the normal modes on B-
tetrahedron in terms of the normal modes on the sur-
rounding A-tetrahedra can be found in the Appendix D.
Note that Ea

A,zzEb
A0,zz (a, b = ±, 1) acts on di↵erent

planes, depending on the locations of A,A
0, as shown

in Table I.

C. Membrane operators from perturbation

The perturbative terms permit the construction of a
membrane operator that allows charges created from the
vacuum to be brought to the boundaries of the system.
As an illustrative example, we focus on E+

zz,1E�
zz,2, and

perform degenerate perturbation theory on the ground
states on the same xy plane. At first-order in perturba-
tion, this results in a state that has the charge configura-
tion presented in Fig. 4. This is in fact an excited state,
due to the presence of non-trivial charges, and as such
there is no overlap with the underlying (charge-neutral)
ground state manifold. At second-order in perturbation
on the same xy-plane, the leading contribution arises
from the charge combinations presented in Fig. 5(a). In
this case, the charges residing on the overlapping regions
between the successive E+

zz,1E�
zz,2 operations are can-

celled out, leaving behind a charge on the ‘edge’. Repeat-
ing the application of the perturbative E+

zz,1E�
zz,2 term on

the same xy-plane, one obtains (at higher-orders in per-
turbation) a leading order contribution of charges that
resemble a membrane. Importantly, there is no charge
inside the membrane, due to the aforementioned can-
cellation, and the remaining charges reside on the edge
(Fig. 5(b)); as such this is still an excited state. However,
by imposing the appropriate periodic boundary condi-
tions, these edge charges may be cancelled out. For ex-
ample, in Fig. 6, by identifying green and yellow lines
as the adjoining boundaries, the positive and negative
edge charges are promptly cancelled out. We have thus
returned back to the charge-neutral vacuum, which is dis-
tinct from the original charge-neutral ground state due
to the application of the raising/lowering operators that
have given di↵erent electric field quantum numbers on
A-tetrahedron sites. In this sense, the application of the
membrane operator, in conjunction with the appropriate
boundary condition, makes the quantum system to be
able to tunnel between its manifold of ground states.
Similarly, we may be able to construct membrane oper-

ators on each of the cubic planes of the system. The mem-
brane operators on xy-plane are generated by E±

zz,1E⌥
zz,2

and E±
zz,0E⌥

zz,3, the membrane operators xz-plane are

generated by E±
zz,0E±

zz,2 and E±
zz,1E±

zz,3, and the mem-

brane operators yz-plane are generated by E±
zz,0E±

zz,1 and

E±
zz,2E±

zz,3, respectively.

1. Subsystem symmetry of membrane operators

The application of the membrane operator results in
the creation of charges that obey certain conservation
laws on the planes on which the operator is acting on.
Indeed, the charges are independently conserved on each
of the planes. This arises due to the charge configuration
created when we increase or decrease the electric fields
on the A-tetrahedron (Fig. 3). Thus the creation of the
charges on the various planes is a consequence of not only
conserving the total charge, but also the charge within a
plane as well. This emergent subsystem symmetry can
be interpreted as the conservation “first moment” of the
charge in the plane

P
i yi⇢z = 0 and

P
i xi⇢z = 0, whileP

i zi⇢z 6= 0, where (x, y, z)i is the (x, y, z)-coordinate
of the location of the charge. As such, one can say the
membrane operator is protected by the subsystem sym-
metries.

2. Ground state degeneracy

The ground state degeneracy of the quantum breath-
ing pyrochlore model can be obtained by using the mem-
brane operators. The membrane operators allow tunnel-
ing between the various ground states, and as such we can
generate a particular ground state from a given ground
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sity also satisfy a canonically normalized SU(2) Lie alge-
bra, [⇢iB, ⇢

j
B] = i✏

k
ij⇢

k
B, and as such a given state can at

most be associated as the eigenstate of one of the com-
ponents; we take the ⇢zB eigenvalue as the label. In that
sense, a given charge configuration is not represented by
the value of all of it ⇢x,y,z components, which is unlike
the classical rank-2 U(1) gauge theory described in Sec.
II. Thus, these charges should be considered as spinor
charges. We emphasize that the electric field variables
exist on the centre of the A-tetrahedra, while the electric
charges reside on the centre of the B-tetrahedra.

The creation of a ⇢zB charge from the vacuum is en-
ergetically costly. This penalty is accounted for by the
m

z
T1+

term in Eq. 6,
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z
B,T1+

)2 =
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z
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2
, (9)

where aB,T1+ > 0. This penalty cost lifts the degen-
eracy of states formed by taking combinations of the
S = 2 states on all the A-tetrahedra, and permits the
ground state to be categorized with ⇢

z
B = 0 on every

B-tetrahedron.

A. Ground states: degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given
charge-neutral B tetrahedron, the states of the surround-
ing four A tetrahedra must conspire in a manner that
satisfies the Gauss’s law constraint; this can be consid-
ered as a single Gauss’s law unit. Considering the state
( ) of the surrounding A tetrahedron, and imposing the
charge-neutral free configuration requires,

| i =
X

a,b,c,d

Fa,b,c,d |2, ai0 |2, bi1 |2, ci2 |2, di3 (10)

=) h 0| (⇢zB)2 | i / � , 0 |Fa,b,c,d|2(a� b� c+ d)2 = 0.
(11)

where Fa,b,c,d is a complex coe�cient, the subscript
on the ket labels the A tetrahedron, and {a, b, c, d} 2
{±2,±1, 0}. The sign structure of Eq. 11 comes from
c
z
A = (�1, 1, 1,�1) in Eq. 8. The charge-neutral config-
uration thus corresponds to 85 possible states (listed in
Appendix C) for a single Gauss’s law unit, thus providing
a manifold of ground states.

B. Variety of perturbation terms

The collection of normal modes in Eq. 6 provide a se-
ries of raising and lowering operators of E±

A,zz = (EA,xx±
iEA,yy)/2, that satisfy the algebra [EA,zz,E±

A,zz] =

±E±
A,zz, and importantly [⇢zB,E

±
A,zz] = ±c

z
AE

±
A,zz. The

second commutator results in raising and lowering the ⇢z
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FIG. 3. (a) The charge configuration when we increase Ezz.
The red upward and blue downward arrows stand for the plus
and minus z charges, respectively. The green circles stand the
A-tetrahedra. (b) The top-down view of the charge configu-
ration when we increase Ezz on the A-tetrahedron. The red
and blue circles stand for the plus and minus z charges, re-
spectively.

eigenvalue of the state of the system. Figure 3 depicts the
operation of the raising operator on the vacuum. Since
we take the form of the interaction coe�cients in Eq. 6 to
be a priori independent, we focus on the types of terms
that may occur: (i) EA,zzE±

A0,zz, (ii) E±
A,zzE

±
A0,zz, and

(iii) E±
A,zzE

⌥
A0,zz. Here, A and A

0 may be on the same or
di↵erent A-tetrahedron location. The perturbative terms
can thus be rewritten in terms of these raising/lowering
operators,
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+
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where A,A
0 = 0, 1, 2, 3 represents the location of A-

tetrahedron relative to B-tetrahedron on which the op-
erator acts (Fig. 2), and we use the generalized variables
aAA0 , bAA0 , cAA0 and dAA0 that are functions of micro-
scopic variables. As an example, consider the mA2,B

that can be expressed as mA2,B = 1
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P3
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(0, 1), (2, 3) yz

TABLE I. The planes in which Ea
A,zzEb

A0,zz (a, b = ±, 1)
acts depending on A,A0. For example, for (A,A0) = (1, 2),
Ea

1,zzEb
2,zz acts on xy-plane.
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E+
zz

E�
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FIG. 4. The top-down view of charge configuration for
E+

zz,1E�
zz,2. Here, the gray and white squares are cubics lo-

cated on z = �1/4 and z = 1/4, respectively. The green
circles indicate the location of the A-tetrahedra on the same
xy-plane, z = 0.
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The details about representing the normal modes on B-
tetrahedron in terms of the normal modes on the sur-
rounding A-tetrahedra can be found in the Appendix D.
Note that Ea

A,zzEb
A0,zz (a, b = ±, 1) acts on di↵erent

planes, depending on the locations of A,A
0, as shown

in Table I.

C. Membrane operators from perturbation

The perturbative terms permit the construction of a
membrane operator that allows charges created from the
vacuum to be brought to the boundaries of the system.
As an illustrative example, we focus on E+

zz,1E�
zz,2, and

perform degenerate perturbation theory on the ground
states on the same xy plane. At first-order in perturba-
tion, this results in a state that has the charge configura-
tion presented in Fig. 4. This is in fact an excited state,
due to the presence of non-trivial charges, and as such
there is no overlap with the underlying (charge-neutral)
ground state manifold. At second-order in perturbation
on the same xy-plane, the leading contribution arises
from the charge combinations presented in Fig. 5(a). In
this case, the charges residing on the overlapping regions
between the successive E+

zz,1E�
zz,2 operations are can-

celled out, leaving behind a charge on the ‘edge’. Repeat-
ing the application of the perturbative E+

zz,1E�
zz,2 term on

the same xy-plane, one obtains (at higher-orders in per-
turbation) a leading order contribution of charges that
resemble a membrane. Importantly, there is no charge
inside the membrane, due to the aforementioned can-
cellation, and the remaining charges reside on the edge
(Fig. 5(b)); as such this is still an excited state. However,
by imposing the appropriate periodic boundary condi-
tions, these edge charges may be cancelled out. For ex-
ample, in Fig. 6, by identifying green and yellow lines
as the adjoining boundaries, the positive and negative
edge charges are promptly cancelled out. We have thus
returned back to the charge-neutral vacuum, which is dis-
tinct from the original charge-neutral ground state due
to the application of the raising/lowering operators that
have given di↵erent electric field quantum numbers on
A-tetrahedron sites. In this sense, the application of the
membrane operator, in conjunction with the appropriate
boundary condition, makes the quantum system to be
able to tunnel between its manifold of ground states.
Similarly, we may be able to construct membrane oper-

ators on each of the cubic planes of the system. The mem-
brane operators on xy-plane are generated by E±

zz,1E⌥
zz,2

and E±
zz,0E⌥

zz,3, the membrane operators xz-plane are

generated by E±
zz,0E±

zz,2 and E±
zz,1E±

zz,3, and the mem-

brane operators yz-plane are generated by E±
zz,0E±

zz,1 and

E±
zz,2E±

zz,3, respectively.

1. Subsystem symmetry of membrane operators

The application of the membrane operator results in
the creation of charges that obey certain conservation
laws on the planes on which the operator is acting on.
Indeed, the charges are independently conserved on each
of the planes. This arises due to the charge configuration
created when we increase or decrease the electric fields
on the A-tetrahedron (Fig. 3). Thus the creation of the
charges on the various planes is a consequence of not only
conserving the total charge, but also the charge within a
plane as well. This emergent subsystem symmetry can
be interpreted as the conservation “first moment” of the
charge in the plane

P
i yi⇢z = 0 and

P
i xi⇢z = 0, whileP

i zi⇢z 6= 0, where (x, y, z)i is the (x, y, z)-coordinate
of the location of the charge. As such, one can say the
membrane operator is protected by the subsystem sym-
metries.

2. Ground state degeneracy

The ground state degeneracy of the quantum breath-
ing pyrochlore model can be obtained by using the mem-
brane operators. The membrane operators allow tunnel-
ing between the various ground states, and as such we can
generate a particular ground state from a given ground
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top view for the xy plane
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FIG. 5. Depiction of the perturbation. (a) is for the second order perturbation, and (b) is for the fourth order perturbation.
The charges in the overlapped region are cancelled out, but there are still remaining charges on the edge.

E+
zz

E�
zz

E+
zz

E�
zz

E+
zz

E�
zz

E+
zz

E�
zz

x

y

z

FIG. 6. The periodic boundary condition to cancel out the
charges on the edge of the membrane operators. By identify-
ing green lines, the charges on the left side of the green lines
are cancelled out. Similarly, by identifying yellow lines, the
charges above the yellow lines are cancelled out. As a result,
we can get another charge-neutral state.

state by applying membrane operators. We tabulate the
numerically computed ground state degeneracy in Table
II for di↵erent finite size cluster specified by (Lx, Ly, Lz).
We note that there are two procedures of determining the
states satisfying the Gauss’ law constraint: (i) a “naive”
methodology where one enumerates over all the possible
states to find those that satisfy Eq. 11, and (ii) employ-
ment of the aforementioned membrane operators, which
allow tunneling between the various states in the ground
state manifold. We have explicitly verified that these
methods agree for cases LxLyLz  4; for ease of numer-
ical computation, it is advantageous to implement the
membrane operator approach.

The computed ground state degeneracies shed a re-
markable insight into the non-trivial nature of the quan-
tum ground states. Firstly, having the same volume
(LxLyLz) or same perimeter (Lx + Ly + Lz) does not
imply the same number of the ground state degeneracy.
This is unlike the X-cube model [5], where the (loga-
rithm of the) ground state degeneracy only depends on
the perimeter, Lx + Ly + Lz [5, 10–12, 14]. As such,
for the X-cube model, this implies that having the same
perimeter Lx +Ly +Lz, even with di↵erent (Lx, Ly, Lz)
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state by applying membrane operators. We tabulate the
numerically computed ground state degeneracy in Table
II for di↵erent finite size cluster specified by (Lx, Ly, Lz).
We note that there are two procedures of determining the
states satisfying the Gauss’ law constraint: (i) a “naive”
methodology where one enumerates over all the possible
states to find those that satisfy Eq. 11, and (ii) employ-
ment of the aforementioned membrane operators, which
allow tunneling between the various states in the ground
state manifold. We have explicitly verified that these
methods agree for cases LxLyLz  4; for ease of numer-
ical computation, it is advantageous to implement the
membrane operator approach.

The computed ground state degeneracies shed a re-
markable insight into the non-trivial nature of the quan-
tum ground states. Firstly, having the same volume
(LxLyLz) or same perimeter (Lx + Ly + Lz) does not
imply the same number of the ground state degeneracy.
This is unlike the X-cube model [5], where the (loga-
rithm of the) ground state degeneracy only depends on
the perimeter, Lx + Ly + Lz [5, 10–12, 14]. As such,
for the X-cube model, this implies that having the same
perimeter Lx +Ly +Lz, even with di↵erent (Lx, Ly, Lz)
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state by applying membrane operators. We tabulate the
numerically computed ground state degeneracy in Table
II for di↵erent finite size cluster specified by (Lx, Ly, Lz).
We note that there are two procedures of determining the
states satisfying the Gauss’ law constraint: (i) a “naive”
methodology where one enumerates over all the possible
states to find those that satisfy Eq. 11, and (ii) employ-
ment of the aforementioned membrane operators, which
allow tunneling between the various states in the ground
state manifold. We have explicitly verified that these
methods agree for cases LxLyLz  4; for ease of numer-
ical computation, it is advantageous to implement the
membrane operator approach.

The computed ground state degeneracies shed a re-
markable insight into the non-trivial nature of the quan-
tum ground states. Firstly, having the same volume
(LxLyLz) or same perimeter (Lx + Ly + Lz) does not
imply the same number of the ground state degeneracy.
This is unlike the X-cube model [5], where the (loga-
rithm of the) ground state degeneracy only depends on
the perimeter, Lx + Ly + Lz [5, 10–12, 14]. As such,
for the X-cube model, this implies that having the same
perimeter Lx +Ly +Lz, even with di↵erent (Lx, Ly, Lz)
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state by applying membrane operators. We tabulate the
numerically computed ground state degeneracy in Table
II for di↵erent finite size cluster specified by (Lx, Ly, Lz).
We note that there are two procedures of determining the
states satisfying the Gauss’ law constraint: (i) a “naive”
methodology where one enumerates over all the possible
states to find those that satisfy Eq. 11, and (ii) employ-
ment of the aforementioned membrane operators, which
allow tunneling between the various states in the ground
state manifold. We have explicitly verified that these
methods agree for cases LxLyLz  4; for ease of numer-
ical computation, it is advantageous to implement the
membrane operator approach.

The computed ground state degeneracies shed a re-
markable insight into the non-trivial nature of the quan-
tum ground states. Firstly, having the same volume
(LxLyLz) or same perimeter (Lx + Ly + Lz) does not
imply the same number of the ground state degeneracy.
This is unlike the X-cube model [5], where the (loga-
rithm of the) ground state degeneracy only depends on
the perimeter, Lx + Ly + Lz [5, 10–12, 14]. As such,
for the X-cube model, this implies that having the same
perimeter Lx +Ly +Lz, even with di↵erent (Lx, Ly, Lz)
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ing green lines, the charges on the left side of the green lines
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state by applying membrane operators. We tabulate the
numerically computed ground state degeneracy in Table
II for di↵erent finite size cluster specified by (Lx, Ly, Lz).
We note that there are two procedures of determining the
states satisfying the Gauss’ law constraint: (i) a “naive”
methodology where one enumerates over all the possible
states to find those that satisfy Eq. 11, and (ii) employ-
ment of the aforementioned membrane operators, which
allow tunneling between the various states in the ground
state manifold. We have explicitly verified that these
methods agree for cases LxLyLz  4; for ease of numer-
ical computation, it is advantageous to implement the
membrane operator approach.

The computed ground state degeneracies shed a re-
markable insight into the non-trivial nature of the quan-
tum ground states. Firstly, having the same volume
(LxLyLz) or same perimeter (Lx + Ly + Lz) does not
imply the same number of the ground state degeneracy.
This is unlike the X-cube model [5], where the (loga-
rithm of the) ground state degeneracy only depends on
the perimeter, Lx + Ly + Lz [5, 10–12, 14]. As such,
for the X-cube model, this implies that having the same
perimeter Lx +Ly +Lz, even with di↵erent (Lx, Ly, Lz)
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state by applying membrane operators. We tabulate the
numerically computed ground state degeneracy in Table
II for di↵erent finite size cluster specified by (Lx, Ly, Lz).
We note that there are two procedures of determining the
states satisfying the Gauss’ law constraint: (i) a “naive”
methodology where one enumerates over all the possible
states to find those that satisfy Eq. 11, and (ii) employ-
ment of the aforementioned membrane operators, which
allow tunneling between the various states in the ground
state manifold. We have explicitly verified that these
methods agree for cases LxLyLz  4; for ease of numer-
ical computation, it is advantageous to implement the
membrane operator approach.

The computed ground state degeneracies shed a re-
markable insight into the non-trivial nature of the quan-
tum ground states. Firstly, having the same volume
(LxLyLz) or same perimeter (Lx + Ly + Lz) does not
imply the same number of the ground state degeneracy.
This is unlike the X-cube model [5], where the (loga-
rithm of the) ground state degeneracy only depends on
the perimeter, Lx + Ly + Lz [5, 10–12, 14]. As such,
for the X-cube model, this implies that having the same
perimeter Lx +Ly +Lz, even with di↵erent (Lx, Ly, Lz)
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state by applying membrane operators. We tabulate the
numerically computed ground state degeneracy in Table
II for di↵erent finite size cluster specified by (Lx, Ly, Lz).
We note that there are two procedures of determining the
states satisfying the Gauss’ law constraint: (i) a “naive”
methodology where one enumerates over all the possible
states to find those that satisfy Eq. 11, and (ii) employ-
ment of the aforementioned membrane operators, which
allow tunneling between the various states in the ground
state manifold. We have explicitly verified that these
methods agree for cases LxLyLz  4; for ease of numer-
ical computation, it is advantageous to implement the
membrane operator approach.

The computed ground state degeneracies shed a re-
markable insight into the non-trivial nature of the quan-
tum ground states. Firstly, having the same volume
(LxLyLz) or same perimeter (Lx + Ly + Lz) does not
imply the same number of the ground state degeneracy.
This is unlike the X-cube model [5], where the (loga-
rithm of the) ground state degeneracy only depends on
the perimeter, Lx + Ly + Lz [5, 10–12, 14]. As such,
for the X-cube model, this implies that having the same
perimeter Lx +Ly +Lz, even with di↵erent (Lx, Ly, Lz)
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Ground state degeneracy
9

Lx Ly Lz volume perimeter GSD constraints

1 1 1 1 3 85 1
2 1 1 2 4 1, 333 3
3 1 1 3 5 25, 405 5
4 1 1 4 6 535, 333 7
5 1 1 5 7 11, 982, 925 9
6 1 1 6 8 278, 766, 133 11
2 2 1 4 5 10, 213 16
3 2 1 6 6 116, 653 24
4 2 1 8 7 1, 664, 533 32
3 3 1 9 7 889, 525 36
5 2 1 10 8 27, 510, 973 40
4 3 1 12 8 9, 103, 453 48
2 2 2 8 6 49, 541 32
3 2 2 12 7 392, 365 48
4 2 2 16 8 4, 201, 589 64
3 3 2 18 8 2, 258, 486 72
5 2 2 20 9 55, 306, 813 80
4 3 2 24 9 18, 470, 173 96
3 3 3 27 9 9, 912, 253 108

TABLE II. Table for the ground state degeneracy constructed
by applying the membrane operators in terms of (Lx, Ly, Lz).
The first block is the ground state degeneracy for Lx = Ly =
Lz = 1, the second block is the ground state degeneracy for
Lx = Ly = Lz = 1, the third block is for Li � 2 and Lj =
Lk = 1, the last block is for Li, Lj � 2 and Lk = 1, and
the last block is for Li � 2 for all i = x, y, z. If the volume,
LxLyLz, and the perimeter, Lx+Ly +Lz, are the same, then
we have the same number of the ground state degeneracy.
In the same block, if the perimeter is large and the volume
is small, we may have a large number of the ground state
degeneracy.

Analogously, we may regard our system as similarly re-
quiring long time to tunnel between two di↵erent ground

states, tchar ⇠ t0e
(L2/2) ln(aB,T1+/t), where t0 is a micro-

scopic time scale.
The disappearance of the perturbative magnetic field

term in the thermodynamic limit is in stark compar-
ison to the magnetic field term that is generated at
finite-order perturbation theory in quantum spin ice
[46] and previous higher-rank gauge theory construc-
tions [20–22, 47, 48]. Indeed it is the complicated three-
dimensional geometry of the breathing pyrochlore lat-
tice that prohibits a finite-order perturbative process
that allows tunnelling between the degenerate ground
state manifold. We recall that the application of a rais-
ing/lowering operator leads to charges being created in
a three-dimensional volume as seen in Fig. 3. This is
unlike the case of creating gauge charges along a line or
a plane [20–22, 47, 48], where a perturbative pathway
may be considered along a two-dimensional plane or a
three-dimensional volume (respectively) that allows the
charges to be “wrapped around” and eventually cancel
each other. We provide a simple example of such a pro-
cess for gauge charges created in one and two-dimensions
in Appendix E. In either case the “corner charges” (end

of a line for one-dimensional line-charges or corners of a
plane for two-dimensional plane-charges) are eliminated
by appealing to a higher dimension than that of the
charges; i.e. moving the one-dimensional line-charges
around a two-dimensional plane, and two-dimensional
planar-charges in an three-dimensional volume. By ex-
tending the ideas of eliminating lower-dimensional charge
configurations, it suggests that an additional (and not
achievable in this setting) fourth dimension may be re-
quired to eliminate the corner charge on the breathing
pyrochlore lattice. We note that even in these previ-
ous rank-2 U(1) models, this required higher-order per-
turbation processes in order to generate the magnetic
field. For example, it required eighth-order in perturba-
tion for the scenario of traceful magnetic fields, while in
the traceless case a colossal thirty-second order of per-
turbation was needed [47, 48]. We note that in previous
higher-rank gauge theory constructions, it was that fact
of having diagonal and o↵-diagonal electric field compo-
nents reside on inequivalent lattice sites that allowed a
finite-order perturbative process to connect the di↵erent
ground states [20–22, 47, 48]. In our case, since diagonal
and o↵-diagonal electric field components reside on the
equivalent sites, lowering/raising operators of the electric
field component lead to charges being created in a three-
dimensional (tetragonal) volume regardless of whether it
is a diagonal or o↵-diagonal component. As such, this
suggests that we may not find such finite order pertur-
bation processes, even if we have all the electric field
components.

V. DISCUSSIONS

In this work, we provide a concrete model for frac-
tonic quantum phases on the breathing pyrochlore lat-
tice. In contrast to recently studied exactly-solvable frac-
tonic models that involve interactions between a large
number of particles/spins, the quantum model we con-
sider involves bilinear interactions between spin-1/2 mo-
ments residing on the vertices of the corner-sharing tetra-
hedra. As such, this provides a more natural and realistic
setting to realize such exotic quantum phases of matter.
Though the previously studied classical model on the

breathing pyrochlore lattice is captured within the frame-
work of a rank-2 vector gauge theory [41], we find that the
quantum model has some sharp distinctions. In partic-
ular, the electric field components do not commute (and
satisfy an SU(2) algebra), and the conserved charge de-
gree of freedom is the z-component of the vector charge,
⇢z, with the remaining components completing the SU(2)
spinor algebra, [⇢x, ⇢y] = i⇢z. These corresponding ele-
mentary spinor excitations are created in a quartet in
three-dimensional space such that attempting to move a
single particle results in a “burst” of collective quartet of
spinor charges. Furthermore, the ground state is found
to have a degeneracy that is non-extensive with volume,
yet strongly dependent on the geometrical configuration.
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FIG. 1. Breathing pyrochlore. (a) The green and yellow tetra-
hedra stand for the A and B-tetrahedra, respectively. (b)
Unit cell of the face-centered cubic lattice of A-tetrahedron
(Lx = Ly = Lz = 1). Each A and B-tetrahedra form the face-
centered cubic lattices. The green and yellow circles stand for
the center of the A and B-tetrahedra, respectively. Note that
we have two planes (that contain A sites) in each direction
per one unit cell.

tum” )
R
⇢ = 0, and “angular momentum”

R
x ⇥ ⇢ = 0

[20, 21]. These conservation laws place strong constraints
on the number of charges that may be created from the
vacuum and how they may be allowed to move. In par-
ticular, they lead to sub-dimensional excitations, where
the vector charges are restricted to move along certain
lines or planes, and fractonic excitations, where parti-
cles cannot only move unless extra particles are created.
In the absence of a constant energy input to facilitate
the constant creation of extra particles, these fractonic
excitations thus remain immobile. Just as the rank-1
theory, this theory can also be quantized by taking the
electric and magnetic tensor potentials to be canonically
conjugate, [Aij(x), Ekl(y)] = i (�ik�jl + �il�jk) �(x � y),
which leads to a low-energy description with an emer-
gent photon of dispersion ! / k

2 [21, 22, 28, 43]. Im-
portantly, in the quantum theory, the electric field com-
ponents commute with themselves. We direct the reader
to Ref. [20, 21, 28, 43] for a comprehensive description of
the other rank-2 gauge theories alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of cor-
ner sharing tetrahedra of two di↵erent sizes A/B, with
interactions between neighbouring spins residing on the
vertices of the tetrahedra as seen in Fig. 1. The mi-
croscopic interactions between the spins may involve
antiferromagnetic Heisenberg (JA/B), bond-dependent
Dzyaloshinskii-Moriya (DM, DA/B) interactions [41], as
well as Kitaev and Gamma interactions (see Appendix
A). The classical Hamiltonian describing the interactions
between the neighbouring spins can be captured in terms
of the irreducible representation formed by the spins be-

0
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3

x

yz

FIG. 2. The location of the A-tetrahedra surrounding the
B-tetrahedron. Here, the yellow circle stands for the B-
tetrahedron and the green circles stand for the A-tetrahedra
surrounding B-tetrahedron.

longing to each of the tetrahedra [41, 44, 45],

H =
1

2

X

A,�

aA,�m
2
A,� +

1

2

X

B,�

aB,�m
2
B,�, (1)

where � = {A2,E,T2,T1+,T1�} is over the Td irreps
for a given tetrahedron (A or B), aA/B,� are the inter-
action coe�cients, and mA/B,� denotes the pseudospin
corresponding to di↵erent irrep on the A/B tetrahedron.
Microscopically (as presented in Appendix A), one can
minimally take antiferromagnetic JA, JB > 0, while tak-
ing DA < 0, and DB = 0. With this choice, on the B-
tetrahedron, aB,T1+ > 0, while the remaining modes are
negative [41]. As a consequence, at low energies, the fluc-
tuations of the TB,1+ mode are energetically costly lead-
ing to mB,T1+ = 0. Analogously, for the A-tetrahedron,
the DM interaction leads to having small (and negative)
interaction coe�cients for a number of interaction coef-
ficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+
can be rewritten in

terms of the normal modes of the surrounding four A
tetrahedron, as seen in Fig. 2. Performing a gradient
expansion of the A normal modes about the central B
site location (as described in Appendix B), we arrive at
the continuity equation,
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The combination of the normal modes of a single A

tetrahedron can be expressed in terms of a rank-2 tensor,
EA = Esym

A + Eantisym
A + Etrace

A , where we have sugges-
tively decomposed into a symmetric tensor,
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(Lx, Ly, Lz) = (1, 1, 1)
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Lx Ly Lz volume perimeter GSD constraints

1 1 1 1 3 85 1
2 1 1 2 4 1, 333 3
3 1 1 3 5 25, 405 5
4 1 1 4 6 535, 333 7
5 1 1 5 7 11, 982, 925 9
6 1 1 6 8 278, 766, 133 11
2 2 1 4 5 10, 213 16
3 2 1 6 6 116, 653 24
4 2 1 8 7 1, 664, 533 32
3 3 1 9 7 889, 525 36
5 2 1 10 8 27, 510, 973 40
4 3 1 12 8 9, 103, 453 48
2 2 2 8 6 49, 541 32
3 2 2 12 7 392, 365 48
4 2 2 16 8 4, 201, 589 64
3 3 2 18 8 2, 258, 486 72
5 2 2 20 9 55, 306, 813 80
4 3 2 24 9 18, 470, 173 96
3 3 3 27 9 9, 912, 253 108

TABLE II. Table for the ground state degeneracy constructed
by applying the membrane operators in terms of (Lx, Ly, Lz).
The first block is the ground state degeneracy for Lx = Ly =
Lz = 1, the second block is the ground state degeneracy for
Lx = Ly = Lz = 1, the third block is for Li � 2 and Lj =
Lk = 1, the last block is for Li, Lj � 2 and Lk = 1, and
the last block is for Li � 2 for all i = x, y, z. If the volume,
LxLyLz, and the perimeter, Lx+Ly +Lz, are the same, then
we have the same number of the ground state degeneracy.
In the same block, if the perimeter is large and the volume
is small, we may have a large number of the ground state
degeneracy.

Analogously, we may regard our system as similarly re-
quiring long time to tunnel between two di↵erent ground

states, tchar ⇠ t0e
(L2/2) ln(aB,T1+/t), where t0 is a micro-

scopic time scale.
The disappearance of the perturbative magnetic field

term in the thermodynamic limit is in stark compar-
ison to the magnetic field term that is generated at
finite-order perturbation theory in quantum spin ice
[46] and previous higher-rank gauge theory construc-
tions [20–22, 47, 48]. Indeed it is the complicated three-
dimensional geometry of the breathing pyrochlore lat-
tice that prohibits a finite-order perturbative process
that allows tunnelling between the degenerate ground
state manifold. We recall that the application of a rais-
ing/lowering operator leads to charges being created in
a three-dimensional volume as seen in Fig. 3. This is
unlike the case of creating gauge charges along a line or
a plane [20–22, 47, 48], where a perturbative pathway
may be considered along a two-dimensional plane or a
three-dimensional volume (respectively) that allows the
charges to be “wrapped around” and eventually cancel
each other. We provide a simple example of such a pro-
cess for gauge charges created in one and two-dimensions
in Appendix E. In either case the “corner charges” (end

of a line for one-dimensional line-charges or corners of a
plane for two-dimensional plane-charges) are eliminated
by appealing to a higher dimension than that of the
charges; i.e. moving the one-dimensional line-charges
around a two-dimensional plane, and two-dimensional
planar-charges in an three-dimensional volume. By ex-
tending the ideas of eliminating lower-dimensional charge
configurations, it suggests that an additional (and not
achievable in this setting) fourth dimension may be re-
quired to eliminate the corner charge on the breathing
pyrochlore lattice. We note that even in these previ-
ous rank-2 U(1) models, this required higher-order per-
turbation processes in order to generate the magnetic
field. For example, it required eighth-order in perturba-
tion for the scenario of traceful magnetic fields, while in
the traceless case a colossal thirty-second order of per-
turbation was needed [47, 48]. We note that in previous
higher-rank gauge theory constructions, it was that fact
of having diagonal and o↵-diagonal electric field compo-
nents reside on inequivalent lattice sites that allowed a
finite-order perturbative process to connect the di↵erent
ground states [20–22, 47, 48]. In our case, since diagonal
and o↵-diagonal electric field components reside on the
equivalent sites, lowering/raising operators of the electric
field component lead to charges being created in a three-
dimensional (tetragonal) volume regardless of whether it
is a diagonal or o↵-diagonal component. As such, this
suggests that we may not find such finite order pertur-
bation processes, even if we have all the electric field
components.

V. DISCUSSIONS

In this work, we provide a concrete model for frac-
tonic quantum phases on the breathing pyrochlore lat-
tice. In contrast to recently studied exactly-solvable frac-
tonic models that involve interactions between a large
number of particles/spins, the quantum model we con-
sider involves bilinear interactions between spin-1/2 mo-
ments residing on the vertices of the corner-sharing tetra-
hedra. As such, this provides a more natural and realistic
setting to realize such exotic quantum phases of matter.
Though the previously studied classical model on the

breathing pyrochlore lattice is captured within the frame-
work of a rank-2 vector gauge theory [41], we find that the
quantum model has some sharp distinctions. In partic-
ular, the electric field components do not commute (and
satisfy an SU(2) algebra), and the conserved charge de-
gree of freedom is the z-component of the vector charge,
⇢z, with the remaining components completing the SU(2)
spinor algebra, [⇢x, ⇢y] = i⇢z. These corresponding ele-
mentary spinor excitations are created in a quartet in
three-dimensional space such that attempting to move a
single particle results in a “burst” of collective quartet of
spinor charges. Furthermore, the ground state is found
to have a degeneracy that is non-extensive with volume,
yet strongly dependent on the geometrical configuration.
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Lx Ly Lz volume perimeter GSD constraints

1 1 1 1 3 85 1
2 1 1 2 4 1, 333 3
3 1 1 3 5 25, 405 5
4 1 1 4 6 535, 333 7
5 1 1 5 7 11, 982, 925 9
6 1 1 6 8 278, 766, 133 11
2 2 1 4 5 10, 213 16
3 2 1 6 6 116, 653 24
4 2 1 8 7 1, 664, 533 32
3 3 1 9 7 889, 525 36
5 2 1 10 8 27, 510, 973 40
4 3 1 12 8 9, 103, 453 48
2 2 2 8 6 49, 541 32
3 2 2 12 7 392, 365 48
4 2 2 16 8 4, 201, 589 64
3 3 2 18 8 2, 258, 486 72
5 2 2 20 9 55, 306, 813 80
4 3 2 24 9 18, 470, 173 96
3 3 3 27 9 9, 912, 253 108

TABLE II. Table for the ground state degeneracy constructed
by applying the membrane operators in terms of (Lx, Ly, Lz).
The first block is the ground state degeneracy for Lx = Ly =
Lz = 1, the second block is the ground state degeneracy for
Lx = Ly = Lz = 1, the third block is for Li � 2 and Lj =
Lk = 1, the last block is for Li, Lj � 2 and Lk = 1, and
the last block is for Li � 2 for all i = x, y, z. If the volume,
LxLyLz, and the perimeter, Lx+Ly +Lz, are the same, then
we have the same number of the ground state degeneracy.
In the same block, if the perimeter is large and the volume
is small, we may have a large number of the ground state
degeneracy.

Analogously, we may regard our system as similarly re-
quiring long time to tunnel between two di↵erent ground

states, tchar ⇠ t0e
(L2/2) ln(aB,T1+/t), where t0 is a micro-

scopic time scale.
The disappearance of the perturbative magnetic field

term in the thermodynamic limit is in stark compar-
ison to the magnetic field term that is generated at
finite-order perturbation theory in quantum spin ice
[46] and previous higher-rank gauge theory construc-
tions [20–22, 47, 48]. Indeed it is the complicated three-
dimensional geometry of the breathing pyrochlore lat-
tice that prohibits a finite-order perturbative process
that allows tunnelling between the degenerate ground
state manifold. We recall that the application of a rais-
ing/lowering operator leads to charges being created in
a three-dimensional volume as seen in Fig. 3. This is
unlike the case of creating gauge charges along a line or
a plane [20–22, 47, 48], where a perturbative pathway
may be considered along a two-dimensional plane or a
three-dimensional volume (respectively) that allows the
charges to be “wrapped around” and eventually cancel
each other. We provide a simple example of such a pro-
cess for gauge charges created in one and two-dimensions
in Appendix E. In either case the “corner charges” (end

of a line for one-dimensional line-charges or corners of a
plane for two-dimensional plane-charges) are eliminated
by appealing to a higher dimension than that of the
charges; i.e. moving the one-dimensional line-charges
around a two-dimensional plane, and two-dimensional
planar-charges in an three-dimensional volume. By ex-
tending the ideas of eliminating lower-dimensional charge
configurations, it suggests that an additional (and not
achievable in this setting) fourth dimension may be re-
quired to eliminate the corner charge on the breathing
pyrochlore lattice. We note that even in these previ-
ous rank-2 U(1) models, this required higher-order per-
turbation processes in order to generate the magnetic
field. For example, it required eighth-order in perturba-
tion for the scenario of traceful magnetic fields, while in
the traceless case a colossal thirty-second order of per-
turbation was needed [47, 48]. We note that in previous
higher-rank gauge theory constructions, it was that fact
of having diagonal and o↵-diagonal electric field compo-
nents reside on inequivalent lattice sites that allowed a
finite-order perturbative process to connect the di↵erent
ground states [20–22, 47, 48]. In our case, since diagonal
and o↵-diagonal electric field components reside on the
equivalent sites, lowering/raising operators of the electric
field component lead to charges being created in a three-
dimensional (tetragonal) volume regardless of whether it
is a diagonal or o↵-diagonal component. As such, this
suggests that we may not find such finite order pertur-
bation processes, even if we have all the electric field
components.

V. DISCUSSIONS

In this work, we provide a concrete model for frac-
tonic quantum phases on the breathing pyrochlore lat-
tice. In contrast to recently studied exactly-solvable frac-
tonic models that involve interactions between a large
number of particles/spins, the quantum model we con-
sider involves bilinear interactions between spin-1/2 mo-
ments residing on the vertices of the corner-sharing tetra-
hedra. As such, this provides a more natural and realistic
setting to realize such exotic quantum phases of matter.
Though the previously studied classical model on the

breathing pyrochlore lattice is captured within the frame-
work of a rank-2 vector gauge theory [41], we find that the
quantum model has some sharp distinctions. In partic-
ular, the electric field components do not commute (and
satisfy an SU(2) algebra), and the conserved charge de-
gree of freedom is the z-component of the vector charge,
⇢z, with the remaining components completing the SU(2)
spinor algebra, [⇢x, ⇢y] = i⇢z. These corresponding ele-
mentary spinor excitations are created in a quartet in
three-dimensional space such that attempting to move a
single particle results in a “burst” of collective quartet of
spinor charges. Furthermore, the ground state is found
to have a degeneracy that is non-extensive with volume,
yet strongly dependent on the geometrical configuration.
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Lx Ly Lz volume perimeter GSD constraints

1 1 1 1 3 85 1
2 1 1 2 4 1, 333 3
3 1 1 3 5 25, 405 5
4 1 1 4 6 535, 333 7
5 1 1 5 7 11, 982, 925 9
6 1 1 6 8 278, 766, 133 11
2 2 1 4 5 10, 213 16
3 2 1 6 6 116, 653 24
4 2 1 8 7 1, 664, 533 32
3 3 1 9 7 889, 525 36
5 2 1 10 8 27, 510, 973 40
4 3 1 12 8 9, 103, 453 48
2 2 2 8 6 49, 541 32
3 2 2 12 7 392, 365 48
4 2 2 16 8 4, 201, 589 64
3 3 2 18 8 2, 258, 486 72
5 2 2 20 9 55, 306, 813 80
4 3 2 24 9 18, 470, 173 96
3 3 3 27 9 9, 912, 253 108

TABLE II. Table for the ground state degeneracy constructed
by applying the membrane operators in terms of (Lx, Ly, Lz).
The first block is the ground state degeneracy for Lx = Ly =
Lz = 1, the second block is the ground state degeneracy for
Lx = Ly = Lz = 1, the third block is for Li � 2 and Lj =
Lk = 1, the last block is for Li, Lj � 2 and Lk = 1, and
the last block is for Li � 2 for all i = x, y, z. If the volume,
LxLyLz, and the perimeter, Lx+Ly +Lz, are the same, then
we have the same number of the ground state degeneracy.
In the same block, if the perimeter is large and the volume
is small, we may have a large number of the ground state
degeneracy.

Analogously, we may regard our system as similarly re-
quiring long time to tunnel between two di↵erent ground

states, tchar ⇠ t0e
(L2/2) ln(aB,T1+/t), where t0 is a micro-

scopic time scale.
The disappearance of the perturbative magnetic field

term in the thermodynamic limit is in stark compar-
ison to the magnetic field term that is generated at
finite-order perturbation theory in quantum spin ice
[46] and previous higher-rank gauge theory construc-
tions [20–22, 47, 48]. Indeed it is the complicated three-
dimensional geometry of the breathing pyrochlore lat-
tice that prohibits a finite-order perturbative process
that allows tunnelling between the degenerate ground
state manifold. We recall that the application of a rais-
ing/lowering operator leads to charges being created in
a three-dimensional volume as seen in Fig. 3. This is
unlike the case of creating gauge charges along a line or
a plane [20–22, 47, 48], where a perturbative pathway
may be considered along a two-dimensional plane or a
three-dimensional volume (respectively) that allows the
charges to be “wrapped around” and eventually cancel
each other. We provide a simple example of such a pro-
cess for gauge charges created in one and two-dimensions
in Appendix E. In either case the “corner charges” (end

of a line for one-dimensional line-charges or corners of a
plane for two-dimensional plane-charges) are eliminated
by appealing to a higher dimension than that of the
charges; i.e. moving the one-dimensional line-charges
around a two-dimensional plane, and two-dimensional
planar-charges in an three-dimensional volume. By ex-
tending the ideas of eliminating lower-dimensional charge
configurations, it suggests that an additional (and not
achievable in this setting) fourth dimension may be re-
quired to eliminate the corner charge on the breathing
pyrochlore lattice. We note that even in these previ-
ous rank-2 U(1) models, this required higher-order per-
turbation processes in order to generate the magnetic
field. For example, it required eighth-order in perturba-
tion for the scenario of traceful magnetic fields, while in
the traceless case a colossal thirty-second order of per-
turbation was needed [47, 48]. We note that in previous
higher-rank gauge theory constructions, it was that fact
of having diagonal and o↵-diagonal electric field compo-
nents reside on inequivalent lattice sites that allowed a
finite-order perturbative process to connect the di↵erent
ground states [20–22, 47, 48]. In our case, since diagonal
and o↵-diagonal electric field components reside on the
equivalent sites, lowering/raising operators of the electric
field component lead to charges being created in a three-
dimensional (tetragonal) volume regardless of whether it
is a diagonal or o↵-diagonal component. As such, this
suggests that we may not find such finite order pertur-
bation processes, even if we have all the electric field
components.

V. DISCUSSIONS

In this work, we provide a concrete model for frac-
tonic quantum phases on the breathing pyrochlore lat-
tice. In contrast to recently studied exactly-solvable frac-
tonic models that involve interactions between a large
number of particles/spins, the quantum model we con-
sider involves bilinear interactions between spin-1/2 mo-
ments residing on the vertices of the corner-sharing tetra-
hedra. As such, this provides a more natural and realistic
setting to realize such exotic quantum phases of matter.
Though the previously studied classical model on the

breathing pyrochlore lattice is captured within the frame-
work of a rank-2 vector gauge theory [41], we find that the
quantum model has some sharp distinctions. In partic-
ular, the electric field components do not commute (and
satisfy an SU(2) algebra), and the conserved charge de-
gree of freedom is the z-component of the vector charge,
⇢z, with the remaining components completing the SU(2)
spinor algebra, [⇢x, ⇢y] = i⇢z. These corresponding ele-
mentary spinor excitations are created in a quartet in
three-dimensional space such that attempting to move a
single particle results in a “burst” of collective quartet of
spinor charges. Furthermore, the ground state is found
to have a degeneracy that is non-extensive with volume,
yet strongly dependent on the geometrical configuration.
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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regardless of the volume. This is because the number
of times the membrane operators can be applied on the
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i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
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to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
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configurations, yields the same ground state degeneracy.
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Li � 2 for all i = x, y, z. In the case (i), the ground
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crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
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regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
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operators. Since the membrane operators act on the
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D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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membrane operator generates the terms corresponds to
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2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)
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i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].

Ground state degeneracy



8

configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
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membrane operator generates the terms corresponds to
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2, we may regard the corresponding permeability 1/µ /
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gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
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8

configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)
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which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system
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ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
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for such a perturbative process, or the membrane opera-
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)
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i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
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degeneracy can di↵er. For example, consider the cases
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haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
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As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
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regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
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ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system
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etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
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that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
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D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].

8

configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
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of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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membrane operator generates the terms corresponds to
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2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)
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i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].

GSD monotonically increases with
<latexit sha1_base64="Pl07o6DF9c1PdAPEkQKwX2MHazY=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0QtQzaWFhENB+QHGFvM5cs2ds7dveEcOQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHnIGTVWerjr8V6p7FbcGcgy8XJShhz1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns1Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfRv0ucKmRFjSyhT3N5K2JAqyoxNp2hD8BZfXibNasW7qFTvz8u16zyOAhzDCZyBB5dQg1uoQwMYDOAZXuHNEc6L8+58zFtXnHzmCP7A+fwBH9KNsw==</latexit>

Li

8

configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system
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ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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2, since the

membrane operator generates the terms corresponds to
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2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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2 + 1
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2, since the

membrane operator generates the terms corresponds to
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2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)
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i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system
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etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].

8

configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].

GSD monotonically increases with
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
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membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
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gests that the corresponding “speed of light” is similiarly
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in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
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generacy of our system is an indication that our system
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ground state manifold (with the appropriate boundary
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etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)
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gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
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ing between two di↵erent ground states requires an ex-
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
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for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].

GSD monotonically increases with
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
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gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
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i.e. 1/µ ! 0 in large system size. This sug-
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].

GSD does not monotonically increases with volume or perimeter

GSD is larger for larger perimeters for a given volume

The number of times the membrane operators can 
be applied depends on the number of planes

For FCC, there are        number of planes in each   direction
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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2, we may regard the corresponding permeability 1/µ /
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gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
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ponentially long time, leading to glassy behaviour [1–3].

GSD monotonically increases with
<latexit sha1_base64="Pl07o6DF9c1PdAPEkQKwX2MHazY=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0QtQzaWFhENB+QHGFvM5cs2ds7dveEcOQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHnIGTVWerjr8V6p7FbcGcgy8XJShhz1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns1Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfRv0ucKmRFjSyhT3N5K2JAqyoxNp2hD8BZfXibNasW7qFTvz8u16zyOAhzDCZyBB5dQg1uoQwMYDOAZXuHNEc6L8+58zFtXnHzmCP7A+fwBH9KNsw==</latexit>

Li

8

configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
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degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system
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etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
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that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
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The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)
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GSD does not monotonically increases with volume or perimeter

GSD is larger for larger perimeters for a given volume

The number of times the membrane operators can 
be applied depends on the number of planes

For FCC, there are        number of planes in each   direction
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
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boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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2, we may regard the corresponding permeability 1/µ /
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i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].

This is like
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2
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dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)
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which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
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(3, 1, 1) is greater than (2, 2, 1). We do note, however,
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state degeneracy. This strongly suggests that the ground
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Secondly, we discover that having a large volume leads
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ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
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the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
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rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
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ous fractonic phase of matters which show sub-extensive
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generacy of our system is an indication that our system
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perturbation theory

The membrane operators require the system size-
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
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2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2
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gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏
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membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)
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i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/
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L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
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degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
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consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
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regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
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applied thus also depends on the number of planes in
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by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
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This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
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degeneracy. Furthermore, we find that the ground state
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creases for a fixed perimeter. This is because the number
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(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
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cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
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have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system
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configurations, yields the same ground state degeneracy.
However, in our model, this is not the case i.e. even with
the same perimeter or same volume, the ground state
degeneracy can di↵er. For example, consider the cases
of (Lx, Ly, Lz) = (2, 2, 2) and (4, 2, 1), where though
both have the same volume, the ground state degener-
acy of (2, 2, 2) is less than (4, 2, 1). As another example,
consider (Lx, Ly, Lz) = (3, 1, 1) and (2, 2, 1) which have
the same perimeter, but the ground state degeneracy of
(3, 1, 1) is greater than (2, 2, 1). We do note, however,
that (2, 1, 1), (1, 2, 1), and (1, 1, 2) have the same ground
state degeneracy. This strongly suggests that the ground
state degeneracy is the same only when the perimeter
and volume are identical.

Secondly, we discover that having a large volume leads
to a smaller ground state degeneracy, for a fixed perime-
ter; for instance, the cases of (4,2,2) and (3,2,2) demon-
strate this behaviour. As well, we notice that a larger
perimeter implies a larger ground state degeneracy, when
we compare the same volume configurations; for instance,
the cases of (4,1,1) and (2,2,1) demonstrate this be-
haviour. However, we emphasize that a large perimeter
does not always lead to the large number of ground state
degeneracy. For example, (Lx, Ly, Lz) = (3, 3, 2) has a
larger perimeter than (5, 1, 1), but the ground state de-
generacy of (3, 3, 2) is smaller than (5, 1, 1).

These observations and tendencies indicate that the
ground state degeneracy does not simply depend on the
volume and perimeter, but is strongly dependent on the
geometry and orientation of the system’s configuration.
As such, to comment on the behaviours of the ground
state degeneracy, we need to distinguish the cases de-
pending on their geometry.

We classify the cases as follows: (i) Li � 2 and
Lj = Lk = 1, (ii) Li, Lj � 2 and Lk = 1, and (iii)
Li � 2 for all i = x, y, z. In the case (i), the ground
state degeneracy monotonically increases as a function
of the length of the system, Li. In the cases (ii) and (iii),
the ground state degeneracy does not monotonically in-
crease as volume and perimeter increase, as mentioned
previously. In each case of (ii) and (iii), the configura-
tion having a larger perimeter has larger ground state
degeneracy than configuration having smaller perimeter,
regardless of the volume. This is because the number
of times the membrane operators can be applied on the
system depends on the perimeter; we recall that since we
construct the ground states by applying the membrane
operators, the ground state degeneracy is thus depen-
dent on how many times we can apply the membrane
operators. Since the membrane operators act on the
planes in the system, the number of times they may be
applied thus also depends on the number of planes in
the system. The face-centered cubic geometry formed
by the A-tetrahedra has 2Li number of planes in each
i-direction; in each direction, Li number of planes con-
sists of A-tetrahedra sites on the vertex of the cube, and
remaining Li number of planes consist of A-tetrahedron
sites on the centre of the faces of the cube (Fig. 1(b)).

As such, the total number of the planes in a given ge-
ometry is 2(Lx + Ly + Lz), i.e., double the perimeter.
This subsequently implies that the number of the oper-
ation depends on the perimeter. Therefore, having large
perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state
degeneracy monotonically decreases as the volume in-
creases for a fixed perimeter. This is because the number
of independent constraints for the ground states (which
are Gauss’ law constraints) depends on the volume. The
numbers of independent Gauss’ law constraints is found
to be 2LxLyLz � 1 for case (i), and 4LxLyLz for cases of
(ii) and (iii), respectively. The reason why the number of
independent Gauss’ law constraints of case (i) is less than
cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
can find four units of Gauss’ law constraints per one unit
cell of FCC lattices (Fig. 1(b)), but due to the periodic
boundary conditions, case (i) has two independent units
of Gauss’ law constraints in one unit cell. As such, when
they have the same perimeter, if we have case (ii) or (iii)
rather than case (i), if we have a larger volume, then we
have a smaller ground state degeneracy because there are
a large number of independent constraints.
As a result, the ground state degeneracy of the system

is non-extensive with volume and depends on the geom-
etry of the system. This tendency is similar to previ-
ous fractonic phase of matters which show sub-extensive
ground state degeneracy [3, 5–7, 10, 11]. This suggests
that the non-extensive behavior of the ground state de-
generacy of our system is an indication that our system
is indeed fractonic.

D. Absence of magnetic field from finite-order of
perturbation theory

The membrane operators require the system size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coe�cient
for such a perturbative process, or the membrane opera-
tor, is proportional to (t/aB,T1+)

L2

which is system size-
dependent where t ⌧ aB,T1+ is the coe�cient of the per-
turbation Hamiltonian containing the raising and lower-
ing operators. Drawing an analogy with the Hamiltonian
for the electromagnetism, H = ✏

2E
2 + 1

2µB
2, since the

membrane operator generates the terms corresponds to
B

2, we may regard the corresponding permeability 1/µ /
(t/aB,T1+)

L2

i.e. 1/µ ! 0 in large system size. This sug-
gests that the corresponding “speed of light” is similiarly
suppressed to zero, as c ⇠ 1/

p
µ / (t/aB,T1+)

L2/2 ! 0
in large system size. This allows us to interpret that
the photon in the breathing pyrochlore lattice as being
extremely “slow”. Indeed, this interpretation is reminis-
cent of physics of quantum glassiness where the tunnel-
ing between two di↵erent ground states requires an ex-
ponentially long time, leading to glassy behaviour [1–3].
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cases (ii) and (iii) is due to the finite size e↵ect arising
from the periodic boundary condition. We recall that we
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Quantum glassiness
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Lx Ly Lz volume perimeter GSD constraints

1 1 1 1 3 85 1
2 1 1 2 4 1, 333 3
3 1 1 3 5 25, 405 5
4 1 1 4 6 535, 333 7
5 1 1 5 7 11, 982, 925 9
6 1 1 6 8 278, 766, 133 11
2 2 1 4 5 10, 213 16
3 2 1 6 6 116, 653 24
4 2 1 8 7 1, 664, 533 32
3 3 1 9 7 889, 525 36
5 2 1 10 8 27, 510, 973 40
4 3 1 12 8 9, 103, 453 48
2 2 2 8 6 49, 541 32
3 2 2 12 7 392, 365 48
4 2 2 16 8 4, 201, 589 64
3 3 2 18 8 2, 258, 486 72
5 2 2 20 9 55, 306, 813 80
4 3 2 24 9 18, 470, 173 96
3 3 3 27 9 9, 912, 253 108

TABLE II. Table for the ground state degeneracy constructed
by applying the membrane operators in terms of (Lx, Ly, Lz).
The first block is the ground state degeneracy for Lx = Ly =
Lz = 1, the second block is the ground state degeneracy for
Lx = Ly = Lz = 1, the third block is for Li � 2 and Lj =
Lk = 1, the last block is for Li, Lj � 2 and Lk = 1, and
the last block is for Li � 2 for all i = x, y, z. If the volume,
LxLyLz, and the perimeter, Lx+Ly +Lz, are the same, then
we have the same number of the ground state degeneracy.
In the same block, if the perimeter is large and the volume
is small, we may have a large number of the ground state
degeneracy.

Analogously, we may regard our system as similarly re-
quiring long time to tunnel between two di↵erent ground

states, tchar ⇠ t0e
(L2/2) ln(aB,T1+/t), where t0 is a micro-

scopic time scale.
The disappearance of the perturbative magnetic field

term in the thermodynamic limit is in stark compar-
ison to the magnetic field term that is generated at
finite-order perturbation theory in quantum spin ice
[46] and previous higher-rank gauge theory construc-
tions [20–22, 47, 48]. Indeed it is the complicated three-
dimensional geometry of the breathing pyrochlore lat-
tice that prohibits a finite-order perturbative process
that allows tunnelling between the degenerate ground
state manifold. We recall that the application of a rais-
ing/lowering operator leads to charges being created in
a three-dimensional volume as seen in Fig. 3. This is
unlike the case of creating gauge charges along a line or
a plane [20–22, 47, 48], where a perturbative pathway
may be considered along a two-dimensional plane or a
three-dimensional volume (respectively) that allows the
charges to be “wrapped around” and eventually cancel
each other. We provide a simple example of such a pro-
cess for gauge charges created in one and two-dimensions
in Appendix E. In either case the “corner charges” (end

of a line for one-dimensional line-charges or corners of a
plane for two-dimensional plane-charges) are eliminated
by appealing to a higher dimension than that of the
charges; i.e. moving the one-dimensional line-charges
around a two-dimensional plane, and two-dimensional
planar-charges in an three-dimensional volume. By ex-
tending the ideas of eliminating lower-dimensional charge
configurations, it suggests that an additional (and not
achievable in this setting) fourth dimension may be re-
quired to eliminate the corner charge on the breathing
pyrochlore lattice. We note that even in these previ-
ous rank-2 U(1) models, this required higher-order per-
turbation processes in order to generate the magnetic
field. For example, it required eighth-order in perturba-
tion for the scenario of traceful magnetic fields, while in
the traceless case a colossal thirty-second order of per-
turbation was needed [47, 48]. We note that in previous
higher-rank gauge theory constructions, it was that fact
of having diagonal and o↵-diagonal electric field compo-
nents reside on inequivalent lattice sites that allowed a
finite-order perturbative process to connect the di↵erent
ground states [20–22, 47, 48]. In our case, since diagonal
and o↵-diagonal electric field components reside on the
equivalent sites, lowering/raising operators of the electric
field component lead to charges being created in a three-
dimensional (tetragonal) volume regardless of whether it
is a diagonal or o↵-diagonal component. As such, this
suggests that we may not find such finite order pertur-
bation processes, even if we have all the electric field
components.

V. DISCUSSIONS

In this work, we provide a concrete model for frac-
tonic quantum phases on the breathing pyrochlore lat-
tice. In contrast to recently studied exactly-solvable frac-
tonic models that involve interactions between a large
number of particles/spins, the quantum model we con-
sider involves bilinear interactions between spin-1/2 mo-
ments residing on the vertices of the corner-sharing tetra-
hedra. As such, this provides a more natural and realistic
setting to realize such exotic quantum phases of matter.
Though the previously studied classical model on the

breathing pyrochlore lattice is captured within the frame-
work of a rank-2 vector gauge theory [41], we find that the
quantum model has some sharp distinctions. In partic-
ular, the electric field components do not commute (and
satisfy an SU(2) algebra), and the conserved charge de-
gree of freedom is the z-component of the vector charge,
⇢z, with the remaining components completing the SU(2)
spinor algebra, [⇢x, ⇢y] = i⇢z. These corresponding ele-
mentary spinor excitations are created in a quartet in
three-dimensional space such that attempting to move a
single particle results in a “burst” of collective quartet of
spinor charges. Furthermore, the ground state is found
to have a degeneracy that is non-extensive with volume,
yet strongly dependent on the geometrical configuration.

It will take a long time to tunnel between different ground states

Similar to Chamon, Nankishore, …



Summary

Fractonic quantum ground state in a quantum spin model 
with two-spin exchange interactions on the breathing 

pyrochlore lattice

Gapped “charge” excitations can only move as a cluster at 
the edge of the membrane objects

Sub-extensive GSD depends on the lattice geometry - can 
be generated by expanding and wrapping the membranes 

around the 3-torus

In this model, the “photons” are “localized”

A realistic model for the fractonic quantum phases !
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