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Superconductors New kid in town !
Topological Topology and Geometry
Semi-metals Error correcting codes
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New quantum field theory (UV-IR)
band topology Quantum Glassiness
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Excitations with mobility restrictions

Four fractons at the corner of 7
the membrane geometry

A / |
Lineons at the edge of the string vaRvaEvausnil
| )
/ / /
Fracton dipoles Lineon dipoles [ [ T T ([

' v

‘/ Planeons
Vijay, Haah, Fu ‘15




Fracton Order

Sub-extensive ground state degeneracy depends on geometry
e.g. X-Cube model GSD = 22(Le+Ly+L:)-3

Slagle, YBK, Shirley, X.Chen, Z.Wang,
Hemele, Barkeshili, Blumash,Y.You,
Burnell, Prem, M.Cheng, Williamson,
Aasen, Pretko, Gromov, XGWVen,
J.Wang, Seiberg, Shao, ...

Fracton quantum field theory

Relation to elasticity theory Radzihovsky, Pretko ’18-19

Rank-2 tensor gauge theory Pretko ‘17



Higher-rank Gauge Theory

Gauss’s law
Rank-1 U(1) O;E; =0

A; A; O; A
gauge theory 5 pi _ p 40 (@) = Ai(z) + dA@)



Higher-rank Gauge Theory

Gauss’s law
Rank-1 U(I) O E; =0
gauge theory 5 @i — , -

Rank-2 U(l) 0;0,E;; = 0

gauge theory .
(Scalar charge) 0;0; " = p #

R -

ank-2 U(I) 9, Ei; = 0
gauge theory

(Vector charge) Oibi; = pj # 0

Ai(x) = Ai(x) + 0;A\(x)

Aij = Aij +0,0;0(x)

Aii — Aij + 0:\i(x) + 0\ (x)

Pretko ‘|7



Higher-rank Gauge Theory

Rank-2 U(1)

gauge theory 0;0jE;; = 0 /p =0 /:T:’p =0
(Scalar charge)
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Both charge and dipole moments
are conserved
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Higher-rank Gauge Theory

Rank-2 U(1)

gauge theory 0;0jE;; = 0 /p =0 /:T:’p =0
(Scalar charge)

© O O

Both charge and dipole moments
are conserved

©
© O
Quadrupolar charge configurations = @ O (+)

Rank-2 U(I) ) o
gauge theory OiEi; =0 /,0 — /x X p=10

(Vector charge)

Both “momentum” and “angular momentum” are conserved

Charges restricted to move along the charge vector directions

Pretko ‘|7



Outline

. Quantum spin ice (a 3D quantum spin liquid) as a
U(l) gauge theory (review)

2. A realistic spin model for a rank-2 U(1) gauge theory
in breathing pyrochlore lattice (Classical)
Yan, Benton, Jaubert, Shannon 2020

3. A realistic spin model for fractonic phases in breathing
pyrochlore lattice (Quantum):

SangEun Han, Adarsh Patri, YBK, arXiv:2109.03835



Ising Model: Classical Spin Ice
Hy=J.Y SiS 7
(i)

L Jz >~ \2 z
7'[1—7%(5@) g =

+ constant




Ising Model: Classical Spin Ice

Hi=J.)» S;S
(i7)

Jz > z z rr’
H[ZEZ(SQ)Z ngzsi L >

N

+ constant

Si — Srr’
I' (dual) diamond lattice

/ . .
rr’  link connecting two
diamond lattice sites

‘N V>

Eyvw =£5.. dual diamond lattice
(V | E)r — Z Err’ — I:Siq
r'<r

(V-E)y =0 Classical spin ice
ground state

Gauss’s law ,
manifold

Moessner, Sondhi ’04-05



Quantum Spin Ice

H = H[—l—H/
‘]Z zZ \2 z
Hr=") (55) =) S
N A\
H = - J; (S;S; + h.c.)

(27)
J, > J, degenerate perturbation theory

Herr = —Jring ¥ (S1 95 S5 S5 S S5 + h.c.)
O

Jring = 12J3 | J2

Hermele, Balents, Fisher 03

Banerjee, Isakov, Damle,YBK ’08
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Quantum Electrodynamics

S:;-’ _ 6:I:’zr,AM/

:I'EA/B

[Arr’a Err’] =1
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_Err’

Quantum Electrodynamics

S;l;, _ 6:I:zA],mr/

:I'EA/B

Hers = —Jring » (ST S5 S5 8y S5 S5 + h.c.)

— Z ei(A12—A23‘|‘A34_A45‘|‘A56_A61) + h.c. :Z QCOS(V % A)

O

O

[Arr’a Err’] =1

O

O



Quantum Electrodynamics

A S;;, _ pEid +reA/B (Appry By = 1

rr’/

Hers = —Jring » (ST S5 S5 8y S5 S5 + h.c.)

O
— Z ei(A12— Aoz +Ass—Aus+Ase—Ae1) 4 p » = Z 2 cos(V x A)O
O O
[ 1 large U
H=— (Ef.r, — —) — K  cos(V x A)q
2 @zr% 4 O K ~ Jring

(V x A)Q = E Appr = Ao — Aoz + Asy — Ays + Asg — Aer

rr’ €O

(V : E)I. = Z J ::S&

r’'<r




Fracton Phases on Breathing
Pyrochlore Lattice and
rank-2 Gauge Theory
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Spin exchange interactions are
different on A and B tetrahedra

Jg is order of magnitude smaller than Ja

Kimura, Nakatsuji, Kimura ’ 14




Breathing Pyrochlore Lattice

Bangg ZH5 011

Spin exchange interactions are
different on A and B tetrahedra

Jg is order of magnitude smaller than Ja

Kimura, Nakatsuji, Kimura ’ 14

A and B sub-lattices make FCC lattices, respectively



Most generic spin model

H = Z {JASi S+ DAaz'j - (8 X Sj) + KR 5555 + FWA(fij(SgS? + S?S?) * EA’O}

i~
(if) €A
+ Y [JBSZ- 'S;+ Dpdy; - (Si x Sj) + K5 ;5058 + T, (S50 + S057) + EB’O}
(ij)eB
Ja,Jp >0 Heisenberg Ka,Kp Kitaev

Da,Dp Dzyaloshinski-Moriya T'4,I'gz Symmetric anisotropic
exchange

Yan, Benton, Jaubert, Shannon ’17



Most generic spin model

H=Y" [JAS 'S; + Dady; - (S; x S, )+KA,L]SO‘SO‘+FAU(SZS?+S§SS})+EA,O]
(ij)EA

+ 0y [JBS .S, + Dpdy; - (S; x S; )+KB,LJSO‘SO‘+FBZ](S]Sf+SfS})+EB,O]
(1j)€B

Ja,Jp >0 Heisenberg Ka,Kp Kitaev

Da,Dp Dzyaloshinski-Moriya T'4,I'gz Symmetric anisotropic
exchange

Interactions on B much smaller than those on A

Heisenberg dominates over other
anisotropic interactions

Yan, Benton, Jaubert, Shannon ’|7



Spin model via normal mode representation

0
1 5 1 5
H = 9 Z AATTMA P T 5 Z aB,rmp
AT B.T
I' = {AQ, E,TQ,T1_|_,T1_} aA/B,F I

Irreducible representations of Ty Interac.tlon “mass”
coefficients



Spin model via normal mode representation

0
1 2 1 2
H — 5 Z a/A,FmA,F _I_ 5 Z azB,FmB,F
AT B,I
' = {A27 E7T27T1+7T1—} aA/B’F I

Irreducible representations of 1 Interaction |,

coefficients mass”
an, = QTEO—JA—%%—KA—ZEA,
ag = QTEO_JA—F%—FKA—FQFAa
aT,_ = QTE()—JA+%_KA_2FA7
aT, = QTEO—JA—%—KA‘FQFAH

2F
CLTlJr — TO—|—3JA—|—KA.

similarly for B sub-lattices



Spin model via normal mode representation
0

1 E ! 2 1 E ! 2
H — 5 a/A,FmA,F _I_ 5 azB,FmB,F
AT B.T

I' = {AQ,E,TQ,T1_|_,T1_} a’A/B,F I

Irreducible representations of Ty Interac.tlon “mass”
coefficients

2E 4D
=20 gy - 2 4 K AT
“he = 73 NG A A Assume Ja,Jp >0
2E 2D A
CLE—T_JA‘FW‘FKA_'_QFPU J > |D|7|K|7‘F‘
2L 2D
art,_ = TO—JA+—A_KA_2FA7
. 2\1/95 Heaviest mode
_ 220 g, _2A
aT, = 3 JA \/§ KA + 2FA7 CL(A7B),T1+ > O
2E
at,, = 5 +3Ja + Ka. We can set
. . m =0 m = 0
similarly for B sub-lattices A BTy
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mpT1,, =0 J

generates the constraints on the normal modes of the A tetrahedra
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mpT1,, =0 J

generates the constraints on the normal modes of the A tetrahedra
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Emergent constraints

Yan, Benton, |aubert, Shannon 20
mpT1,, =0 J

generates the constraints on the normal modes of the A tetrahedra

9 o 8 mA\/E_ aymf&y-rl_ -+ azmi;l—l_
7 50 mA e+ 30 mA e | + 3xm;A’T1_ -+ (9zmﬁ’Tl_
18 My g — f@ L3 g Opmp 1, +O0ymi 1,

\/7VmAA2 VXmAT2—0

(B L EYT A ET™ =0 Gauss’s law !

2 1 z Yy
/3 VA E A T, NG

sym z 1 1 2 x

EX = MAaT,_ —5MAeTMaAE MA T, Rank-2
anK-
My MA T ——=Mp e — MR g
7T - Y - ) ) .
! ! V3 electric fields

trace _ antisym . k
(EA \[ MA,A; 0ij (Ex )i = — €ijpma T,



Rank-2 gauge theory (Classical)

Choose Yan, Benton, Jaubert, Shannon 20

A = a1 _ < aA27afT27aT1_|_

Then my,, =my, =0, ma, =0 in the low energy limit



Rank-2 gauge theory (Classical)

Choose Yan, Benton, Jaubert, Shannon 20

A = a1 _ < aA27afT27aT1_|_

Then my,, =my, =0, ma, =0 in the low energy limit

The remaining electric fields are symmetric and traceless

2 1 z Yy
/3 A E A T, AT,
sym 1 1 2 T
EX" =| mat1,. —3MAE T MaE M T,
Yy x 1 1 2
AT, AT, —/3MAE T MAE
1 1
H= ) aarmir ——» H=- [d E,;E9
AT 2
Fr=ET,_

Traceless and symmetric tensor gauge theory



Rank-2 gauge theory (Classical)

Choose Yan, Benton, Jaubert, Shannon 20

Qg = a1,_ < GA,,QT,, 0T,

Then my,, =my, =0, ma, =0 in the low energy limit

We could achieve this by taking

7 4D 5
ap, — — JA — —F—,
i V2
2D
ag = aT, ——JA+—\/§,
2D
CLT1+:3JA.

K., I'and Ej to zero




Dynamical signatures in the neutron scattering

E.Z. Zhang, F L. Buessen,YBK, arXiv:2110.10180

S(q,w) Ssr(q, w)
w/|J4]=0.0

T K W

[R00] [R00]

Unpolarized Spin flip
scattering
(Polarized)

4-fold pinch point

c.f. Equaltime correlator
Yan, Benton, Jaubert, Shannon 20

X U L r I, Ky W, Xy Uy Ly r,

Spin flip scattering (Polarized)

1.0
0.8
0.6
0.4
0.2

0.0
1.0

0.8
0.6
0.4
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Quantum Theory

ma r are essentially spin variables Non-commutative

—
E;; are non-commuting fields quantum field theory

Look at a different limit
ap, = ag < ar,_ <ar, < aT,

Then maa,,ma g # 0 in the low energy limit

Recall
2 1 z Yy
ﬁmAaE] mA7T1 mAaTl—
sym = 1 1 2
EX = mMaT,_ C\/gmA,E T M I; mA T,
Y T
MAT, AT, C \/_mA E mA E
t antisym .
E race C fmA A252] (EA )2] = — Ef,;jkmA,T2

E;; becomes symmetric, diagonal and traceful



Quantum Theory

ma r are essentially spin variables Non-commutative

—
E;; are non-commuting fields quantum field theory

Look at a different limit
ap, = ag < ar,_ <ar, < aT,

Then maa,,ma g # 0 in the low energy limit

This can be achieved by

aan, = 0 = —Ja — [Kal, Dy <0
4/D
anT = s — ’ﬂAMKAy, Ty = |Dal/v2 > 0
41D Kjp <0
apT, = — JA + ’\/§‘+|KA‘7 4
Ja >0
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Quantum Theory

We can work with

Gauss’s law constraint

H:HO—I—H/ aA A, :CLAE:—SICLA‘
1
Ho = —4|ax) Z (m3 g +m3 4, ) H’ =5 ZaB,FmQBI
A BT
I'# Ty

perturbation



Quantum Theory

We can work with

Gauss’s law constraint

1
" BT
I'#T
HO — —‘CLA‘ Z (E?A,:ca: + Ei,yy -+ E?&,zz) ’ 1+,
- perturbation



Quantum Theory

We can work with

Gauss’s law constraint

H:HO—I—H/ aA A, CLAE——SICLA‘
1
A B,
T #T
HO — _‘G’A‘ Z (E?Ax,a::c + ]E?A,yy T E?&,zz) 7
A perturbation
= —|aal Y E3.
A
EaisEarj] = i0a a€ijEak Ea = (Ea e, Eayy: Ea )

16,4, k} € {zz,yy, 22}




Quantum Theory

£, Ea,z2] =0 This is just like 5% and S~

E% = S(S +1) Eg..=2S"
For each tetrahedron, the ground state is five-fold degenerate with

Ea..=-2,-1,0,1,2 (S=2 states)



Quantum Theory

[E%,Ea,22] =0 This is just like S% and §*

E% = S(S +1) Eg..=2S"
For each tetrahedron, the ground state is five-fold degenerate with

Ea..=-2,-1,0,1,2 (S=2 states)

Ground state manifold of the network of A-tetrahedra is
described by the S=2 multiplet,
satisfying the Gauss’s law constraint

0;(En)i; = 0 Vi € {z,y, 2}

Massive degeneracy



Spinor charges

Relaxing the Gauss’s law constraint, the electric charges are
located at the B-tetrahedra center

r _ w0 1l 2 w3 - ' ,

_]Egzx T ]E;;:B o ]E:QL':B T ]Eix k = X, ) Z

P%

.......
...........

.......



Quantum fluctuations

Note the non-commuting nature of the electric fields

Ef . = Bawe® iBayy)/2  [EasBES,] = +E5 .
[pB7 E?):zz] :FEO 2z [IOB7 Eétzz] iEétzz
+
[/037 Eitzz] iEitzz [IOB7 ES zz] :FES 2z

-------

.......



Quantum fluctuations

Note the non-commuting nature of the electric fields

Ef . = Bawe® iBayy)/2  [EasBES,] = +E5 .

2 i + 2 it +
[pB7EO,zz] — :FEO,ZZ [pB7E2,zz] — :le2,zz
[IOZB7Eit,zz] — iEit,zz [IOZB7E§|:,,22] — :FEét,zz

. 1
Rewriting H' =5 Z aB,rm%,p as a perturbation
B.T
I'# Ty

H' = Z apsarlla KA L, + Z (bAA’EZZZEZz’ZZ + h.c.)

AA AA @ """"""""""""
.,“ / E‘_\ \ IR
‘.' / :'_\ N ," .
. I/ . \\ \\\ . .
/ \ N

+ Z (CAA/EA,ZZEZ”ZZ + hC)
A,A’

™ Z (dAA/EZ,ZZEZ’,zz + hC)
AA’

AA = 0,1,2,3



Quantum fluctuations
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top view for the xy plane

Start from some background
charge configuration,
e.g.a uniform background



Quantum fluctuations
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e 4
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e.g.a uniform background



Quantum fluctuations

9 &
e 4
(E:) —
4 e
Q@ A'
top view for the xy plane ©
@ ©-
1o
e 4
TE) @ Cancelled
D S charges in
Start from some background -Q E_— the bulk
charge configuration, @ | ©
e.g. a uniform background Q——9




Quantum fluctuations

Cancelled

charges in
the bulk

Charges pushed
to the boundary

1o 4
OGBO/LGB

G R ¢
@ —
4;—;3 efo|eTe

_o
_o
©



Quantum fluctuations

[ofele Lol
IA."H
ﬂ‘ﬂll
I‘Tﬂ

Membrane operators

This is happening
in the xy plane

o=t ot o
© & G/Lﬁ
Ta < (E=) '
o S
9 . (E:-) (E—
i - P )
:@/ =) 'd
L Q (E:.) (B
é—;j e[e | e
T O —1T—@




Quantum fluctuations

o ? Periodic boundary condition
@ will cancel the charges
e .
@97_ at the boundaries
@ S One can show that this
- leads to another ground
E 1 state that satisfies the
e | © constraint.




Quantum fluctuations

o—|—o0—1 9
e @ 9/‘\9
e ————¢
¢ V" s ®
2" (E..) @;z%—
® ) Vo ¢
T T
@ e
P Gl o
%—gj efe|eTe
@ T—@—T @

We can keep doing this
and generate all the
degenerate ground states

Periodic boundary condition
will cancel the charges
at the boundaries

One can show that this
leads to another ground
state that satisfies the
constraint.



Quantum fluctuations

=g o
@ () G/LGB

e () >

N (o (o ©
T

° ) (ot Y N
T T

() @
- Eo e (E

%—;3 e[eo | e e
I e

We can keep doing this
and generate all the
degenerate ground states

Periodic boundary condition
will cancel the charges
at the boundaries

One can show that this
leads to another ground
state that satisfies the
constraint.

This is similar to quantum Hall
states, where moving
quasiparticles and annihilating
them leads to a degenerate
ground state



Ground state degeneracy

L, |L,|L,|volume|perimeter GSD |constraints
111 1 3 85 1
21111 2 4 1,333 3
3111 3 5 25,405 5
41111 4 6 535,333 7
51111 5 7 11,982,925 9
6|11 6 8 278,766,133 11
21211 4 5 10,213 16
3121 6 6 116,653 24
41211 8 7 1,664,533 32
3131 9 7 889, 525 36
5121 10 8 27,510,973 40
4131 12 8 9,103,453 48
21212 8 § 49, 541 32
3122 12 7 392, 365 48
4 | 2| 2 16 8 4,201, 589 64
3132 18 8 2,258, 486 72
512 2 20 9 55,3006, 813 80
4 13 |2 24 9 18,470,173 96
31313 27 9 9,912,253 108
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111 1 3 85 1
21111 2 4 1,333 3
3111 3 5 25,405 5
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GSD is different for

the same volume
or perimeter



Ground state degeneracy

L, |L,|L,|volume|perimeter GSD |constraints
TT1]1] 1 3 85 1
211 [1] 2 4 1,333 3
31111 3 5 25. 405 5
41111 4 6 535, 333 7
51101 5 7 11,982,925 9
6|1]1| 6 8 278,766, 133 11
21211 4 5 10, 213 16
31211 6 6 116, 653 24
41211 8 7 1,664,533 32
313[1| 9 7 889, 525 36
51201 10 8 27,510,973 40
41311 12 8 9,103,453 48
2122 8 6 49,541 32
31212 7 392. 365 48
41212 (16 8 4,201,589 64
31312 @ 8 2,258, 486 72
51212 ' 9 55, 306, 813 80
4132 24 9 18,470,173 96
313(3] 27 9 9,912,253 108

For a fixed
perimeter, a larger

volume gives
smaller GSD



Ground state degeneracy

L, |L,|L,|volume|perimeter GSD |constraints
111 1 3 85 1
21111 2 4 1,333 3
3111 3 5 25,405 5
4011 @ 6 535,333 7
51111 7 11,982,925 9
611 6 8 278,766,133 11
2121 @ 5 10,213] 16
31211 §! 116,653 24
41211 8 7 1,664,533 32
31311 9 7 889, 525 36
51211 10 8 27,510,973 40
413 1|1 12 8 9,103,453 48
21212 8 § 49, 541 32
31212 12 7 392, 365 48
4 | 2| 2 16 8 4,201, 589 64
31312 18 8 2,258, 486 72
51212 20 9 55, 306, 813 80
4 13| 2 24 9 18,470,173 96
31313 27 9 9,912, 253 108

For a fixed volume,
a larger perimeter
gives larger GSD
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Ground state degeneracy

(i) Ly > 2 and L; = Ly = 1 GSD monotonically increases with L;

(ii) Ly, L; > 2 and Ly =1

(iii) L; > 2 for all + = z,y, 2
GSD does not monotonically increases with volume or perimeter
GSD is larger for larger perimeters for a given volume

The number of times the membrane operators can
be applied depends on the humber of planes

For FCC, there are 2L, number of planes in each 7 direction

The total number of planes is 2(L, + L, + L)
GSD is smaller for larger volumes for a given perimeter
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Ground state degeneracy

(i) Ly > 2 and L; = Ly = 1 GSD monotonically increases with L;

(ii) Ly, L; > 2 and Ly =1

(iii) L; > 2 for all + = z,y, 2
GSD does not monotonically increases with volume or perimeter
GSD is larger for larger perimeters for a given volume

The number of times the membrane operators can
be applied depends on the humber of planes

For FCC, there are 2L, number of planes in each 7 direction

The total number of planes is 2(L, + L, + L)
GSD is smaller for larger volumes for a given perimeter

The number of constraints increases with volume 4L,L,L,

GSD is non-extensive with volume and depends on the geometry
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The charges are created in three dimensional space
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the system does not come back to the ground state
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Quantum glassiness

Thisis like H = £E* + iBQ Here t <apT,, is

— 2
2 the coefficient of

1 t L
fuoc (tap.T,) the perturbation

“The speed of light”
c~ 1/ x (t/a,B,TH)Lz/2 — 0 in the thermodynamic limit

It will take a long time to tunnel between different ground states

Lchar ™~ toe(L2/2) In(ap,7, /1)

Similar to Chamon, Nankishore, ...



Summary

Fractonic quantum ground state in a quantum spin model
with two-spin exchange interactions on the breathing
pyrochlore lattice

Gapped “charge” excitations can only move as a cluster at
the edge of the membrane objects

Sub-extensive GSD depends on the lattice geometry - can
be generated by expanding and wrapping the membranes
around the 3-torus

In this model, the “photons’ are “localized”

A realistic model for the fractonic quantum phases !



