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Unfolding the title

Title:
Finetuning localization in interacting flatband networks

Fine-tuning:
process in which parameters of a model are adjusted (very precisely) in order to obtain
certain phenomena, or fit with certain observations

Our aim:
Tailor classes of interacting flatband networks (i.e. fine-tune flatband networks and/or
interaction terms) in order to obtain certain localization phenomena



Flatband Networks

Features

1 translation invariant lattices which admit at least one dispersionless band Ej(k) = Const

2 flat band eigenstates are spatially compact - dubbed Compact Localized States (CLS)

Eigenvalue problem with ψn = (ψn,1, . . . , ψn,ν) and ν number of sites for unit-cell

Eψn = −H0ψn − H1ψn+1 − H1
†ψn−1

Examples of flatband lattices with nearest-neighbor hopping

EPL 105, 30001 (2014)



Perturbing flatband networks

1D flatband lattice defined via the matrixes H0,H1 (H0 is Hermitian)

Eψn = −H0ψn − H1ψn+1 − H1
†ψn−1

Adding perturbations

Eψn = −H0ψn − H1ψn+1 − H1
†ψn−1 + P(ψ, γ, µ....)

Typical outcomes:

1 compact localized states are lost

2 flat band disappears (sometimes with the whole band structure)

Then: check what’s happening ....



Finding (and generating) flatband networks

Question: how to get flatband networks?

Eψn = −H0ψn − H1ψn+1 − H1
†ψn−1

In general: for generic H0,H1 all ν bands are dispersive, and all the eigenstates are extended

Then: the entrees of the matrixes H0,H1 have to be carefully selected (fine-tuned)

(Some) Methods:
- line-graph theory

A. Mielke, J.Phys.A 24,3311 (1991)

- local cell construction
H. Tasaki, PRL 69,1608 (1992)

- "origami rules" in decorated lattices
R.G. Dias et.al., Sci. Rep. 5,16852 (2015)

- repetitions of mini arrays
L. Morales-Inostroza et.al., PRA 94, 043831(2016)

- local symmetries
M. Röntgen et.al., PRB 97, 035161 (2018)

- ... many more ...

See: Adv.Phys.X 3, 1473052 (2018)



Generating flatband networks – PRB 95, 115135 (2017)

Generator scheme (sketch)
- eigenvalue problem for 1D networks

Eψn = −H0ψn − H1ψn+1 − H1
†ψn−1

- parametrize a compact state (CLS) of size U{
ψn 6= 0 1 ≤ n ≤ U

ψn = 0 n < 1 && n > U

- solve an "inverse problem" to compute H0,H1



Generating flatband networks

An example: 1D, ν = 2 bands, U = 2 size
- parametrized CLS for 0 ≤ ϕ, θ, γ, δ ≤ π

ψ1 =

(
cosϕ

e iγ sinϕ

)
ψ2 =

(
cos θ

e iδ sin θ

)
- blend in the eigenvalue problem

Eψn = −H0ψn − H1ψn+1 − H1
†ψn−1

- resulting matrixes

H0 =

(
0 0
0 1

)
, H1 = α

(
cos θ cosϕ e iγ cos θ sinϕ

e iδ sin θ cosϕ e i(δ−γ) sin θ sinϕ

)
- details in PRB 95, 115135 (2017)

NO 
FB

NO 
FB

Upshot: there exist parametric families of flatband lattices!

For more: PRB 99 125129 (2019); PRB 103, 165116 (2021); PRB 104, 035115 (2021)



Flatband networks
Generated 1D ν = 2 flatband networks for 0 ≤ ϕ, θ, γ, δ ≤ π

Eψn = −H0ψn − H1ψn+1 − H1
†ψn−1 , H1 = α

(
cos θ cosϕ e iγ cos θ sinϕ

e iδ sin θ cosϕ e i(δ−γ) sin θ sinϕ

)
Hierarchy of fine-tuning

1 in general all ν bands are dispersive.
All the single particle eigenstates are extended

2 fine-tuning of H0,H1 yields at least one dispersionless
band Ej(k) = Const.
Coexistence of extended eigenstates (dispersive bands)
and compact eigenstates (flat band)

3 additional fine-tuning of H0,H1 yields (for example)

(a) lattices with specific types of CLS
(b) lattices with specific hopping profiles

NO 
FB

NO 
FB

W. Maimaiti et.al., PRB 95, 115135 (2017)



Impact of the interaction on flatband networks

We studied

the impact of classical nonlinearity

the impact of quantum two-body interaction

In particular, we focused on the case of all band flat networks

Let’s begin with the nonlinear case

iψ̇n = −H0ψn − H1ψn+1 − H1
†ψn−1 + γF(ψn)ψn

Question: what is the impact of nonlinearity in all-flat-band networks?

- nonlinear symmetry breaking of Aharonov-Bohm cages
G. Gligoric et.al., PRA A 99, 013826 (2019)

- nonlinear dynamics of Aharonov-Bohm cages
M. Di Liberto et.al., PRA 100, 043829 (2019).



All bands flat networks

Detangling: in one-dimension, every all band flat lattice can be rotated in decoupled local
units via unit-cells redefinitions (local unitary transformations)

Example: ν = 2 all band flat lattice

iψ̇n = −H0ψn − H1ψn+1 − H†1ψn−1, e.g. Creutz H0 =

(
0 0
0 0

)
, H1 =

(
1 1
−1 −1

)
U1 T U T U2

U1 = (
z1 w1

−w*1 z*1 ) U2 = (
z2 w2

−w*2 z*2 )
Then:

- Caging: compact excitations remain localized in compact sub-regions of the network
- Generator: obtained by inverting the detangling

CD, A. Andreanov, T. Mithun, S. Flach, PRB 104, 085131 (2021)



Nonlinear caging?

In general: nonlinearity induces coupling between the detangled components, it destroys
caging and induce transport

Example: ν = 2 flatband lattice EFB = ±2 with Kerr nonlinearity
U1 T U T U2

U2 = (
z2 w2

−w*2 z*2 )U1 = (
z1 w1

−w*1 z*1 )
Nonlinearity

H1 =
∑
n,i

|ψn,i |4 ⇒ H1 =
∑

na,mb;kc,ld

Vna,mb;kc,ldφ
∗
n,aφ

∗
m,bφk,cφl,d .

Unless – fine tuning H0,H1 – i.e. setting |z1|2 = |w1|2, for any z2,w2 – avoids transport

CD, A. Andreanov, T. Mithun, S. Flach, PRB 104, 085131 (2021)



Fine-tuned nonlinear caging
1D ν = 2 examples – both with z2 = 1√

2
= w2

Fine-tuning condition – |z1|2 = |w1|2
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CD, A. Andreanov, T. Mithun, S. Flach, PRB 104, 085131 (2021)



From classical to quantum

Then: from nonlinear dynamics, we moved to study the dynamics of interacting particles

- extended states of two interacting particles in all-band-flat rhombic lattice
J. Vidal et.al., PRL 85, 3906 (2000)

- number parity operators in certain interacting all-band-flat lattices
M.Tovmasyan et.al., PRB 98, 134513 (2018)

Case: Hamiltonian H = H0 +H1

- 1D all band flat lattice – Ĉn = (ĉn,1, . . . , ĉn,ν), Ĉ †n = (ĉ†n,1, . . . , ĉ
†
n,ν)

H0 =
∑
n

[
1
2
Ĉ †Tn H0Ĉn + Ĉ †Tn H1Ĉn+1 + h.c.

]
- Hubbard interaction – H1 =

∑
n,i ĉ

†
n,i ĉ
†
n,i ĉn,i ĉn,i



... beginning with 2 interacting particles
1D ν = 2 examples – both with z2 = 1√

2
= w2

Fine-tuning condition – |z1|2 = |w1|2
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CD, A. Andreanov, T. Mithun, S. Flach, PRB 104, 085132 (2021)



Detangling the interacting problem

Hubbard interaction

̂a†
n ̂a†

n ̂an ̂an + b̂†
nb̂†

nb̂nb̂n

U1 T U T U2

an

f p

f p
f p n n n+ 1n− 1

̂p†
n+1 ̂p†

n+1 ̂fn
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f p

f p
f p n n n+ 1n− 1

̂p†
n+1 ̂p†

n+1 ̂fn
̂fn + ̂p†

n+1 ̂pn+1 ̂pn+1 ̂f †
n + h.c. + …

bn

Fine-tuned case Non fine-tuned case

Consequences (for fine-tuned ABF lattices):
transport of paired bosons (no exact quantum caging!)
number parity operators – oddness/evenness nr. of bosons per unit-cell is preserved
M.Tovmasyan et.al., Phys. Rev. B 98, 134513 (2018)

single bosons in neighboring cell form renormalized many-body CLS (quantum scars?)
O. Hart et.al., PRR 2, 043267 (2020)
Y. Kuno et.al., PRB 102, 241115(R) (2020)

CD, A. Andreanov, T. Mithun, S. Flach, PRB 104, 085132 (2021)



What about quantum caging?

Upshot:
ABF lattices + Hubbard interaction ⇒ no strict caging
J. Vidal et.al., PRL 85, 3906 (2000)
M.Tovmasyan et.al., PRB 98, 134513 (2018)

f p

f p
f p n n n+ 1n− 1

̂pn ̂pn
̂f †
n

̂f †
n + ̂p†

n ̂pn ̂pn
̂f †
n−1 + … + h.c.

bn

an

Question(s):
– can caging of interacting particles be enforced?
– in other words ... can we neglect particle/charge transport in interacting ABF networks by
using the fine-tuning?



Many-Body Flatband Localization

(An) Answer: there exists density-density interactions H1 invariant under unitary
transformations

Example: ν = 2 all band flat lattice

Interaction Hamiltonian Ĥint

H1 =
∑
κ

[
â†κâ
†
κâκâκ + b̂†κb̂

†
κb̂κb̂κ + 2â†κâκb̂

†
κb̂κ
]

=
∑
κ

[
n̂a,κ + n̂b,κ − 1

][
n̂a,κ + n̂b,κ

]
Unitary rotation - |z1|2 + |w1|2 = 1

U1 :

{
ĉκ = z1âκ + w1b̂κ

d̂κ = −w∗1 âκ + z∗1 b̂κ

CD, A. Andreanov, S. Flach, PRB 102, 041116(R) (2020)



Many-Body Flatband Localization

Another example (for spinless fermions)
Y. Kuno et.al., NJP 22, 013032 (2020)

Invariant interaction

H1 =
∑
κ

[
n̂a,κ + n̂b,κ

][
n̂a,κ+1 + n̂b,κ+1

]
Properties:

any number of bands
any dimension
it holds for different many-body statistics (e.g. bosons, fermions)
support the breaking of translation invariance (e.g. correlated disorder)
for any interaction strength
posses a extensive number of local integrals of motion
but ... what about heat transport?
Ihor’s talk: Percolation Transitions in Interacting Many-Body Flatband Systems
arXiv:2106.01664 (2021)

CD, A. Andreanov, S. Flach, PRB 102, 041116(R) (2020)



Conclusions
Take home messages:

flatband lattices exist in parametric families
PRB 95, 115135 (2017) ... and many more ...

this allows hierarchies of fine-tuning

fine tuning flatband networks allows to tame perturbations (interaction terms)

fine tuned all-band-flat lattices
- with Kerr nonlinearity allows exact caging

PRB 104, 085131 (2021)

- with Hubbard interaction yield interaction dependent many-body CLS
PRB 104, 085132 (2021)

fine-tuned interaction in all-band-flat lattices yields many-body flatband localization
PRB 102, 041116(R) (2020)
arXiv:2106.01664 (2021)

Other works:

flatband-induced disorder-free localization
arXiv:2104.11055 (2021)

compact breather generator
arXiv:2104.11458 (2021)


