

Lifetime of flatband states Clemens Gneiting

in collaboration with

Z. Li and F. Nori

IBS conference *Flatbands: symmetries, disorder, interactions and thermalization*, 19. August 2021

(Brief) introduction to flatbands

Quantitative treatment: Disorder-dressed quantum evolution

Disorder-induced decay in the cross-stitch model

Flatbands

- increased sensitivity to interaction and disorder
- feature compact localized states
- rich interplay with topology, symmetries, geometry

this talk is about: interplay of flatbands and disorder

this talk is not about ..

- construction/identification of flatbands
- symmetry or topology
- interactions (we assume a single-particle picture)
- here: one-dimensional lattices (generalizations to higher dimensions conceivable)

(cf. many talks in this conference)

(In)stability of flatband states in the presence of disorder: generic decay mechanism

(In)stability of flatband states in the presence of disorder

 $|\psi_t(j)|^2$

(In)stability of flatband states in the presence of disorder

Intersecting dispersive band

 Dephasing-mediated momentum broadening couples state to the dispersive band

The backcoupling effectively diffuses the flatband state

Would like to have a dynamical description of what happens (for arbitrary initial states)

(In)stability of flatband states in the presence of disorder

e.g., S. Flach et al, Europhys. Lett. 105, 30001 (2014)

The cross-stitch lattice

Real-space Hamiltonian:

$$\hat{H} = -J\sum_{j\in\mathbb{Z}} \left\{ (|j\rangle\langle j+1| + |j\rangle\langle j-1|) \otimes (\mathbb{I}_2 + |\mathbf{a}\rangle\langle \mathbf{b}| + |\mathbf{b}\rangle\langle \mathbf{a}|) + t_{\mathbf{a}\mathbf{b}}|j\rangle\langle j| \otimes (|\mathbf{a}\rangle\langle \mathbf{b}| + |\mathbf{b}\rangle\langle \mathbf{a}|) \right\}$$

Momentum-space Hamiltonian:

$$\hat{H} = -J(4\cos[\hat{p}a/\hbar] + t_{\rm ab})|d\rangle\langle d| + t_{\rm ab}J|f\rangle\langle f$$

- $|d\rangle = (|a\rangle + |b\rangle)/\sqrt{2}$...dispersive band
- $|f
 angle = (|a
 angle |b
 angle)/\sqrt{2}$...flat band

- $t_{
 m ab}$ controls the position of the flatband
- one flatband and one (intersecting) dispersive band

Seek time-dependent evolution that includes disorder average

Quantitative treatment: disorder-dressed quantum evolution

The double-slit experiment

 Interference pattern delicate interplay of phases accumulated along different paths

The double-slit experiment with disorder

The double-slit experiment with disorder

Disorder potential distorts phase relations, interference pattern is lost

The disorder-averaged double-slit experiment

The disorder-averaged double-slit experiment

Disorder average recovers interference pattern, but with reduced visibility

14

CG, F. Anger, A. Buchleitner, *PRA* 93, 032139 (2016)

The disorder-averaged double-slit experiment

This resembles the decoherence effect of an observing environment (obtaining which-way information)

15

CG, F. Anger, A. Buchleitner, *PRA* 93, 032139 (2016) C. Kropf, CG, A. Buchleitner, *PRX* 6, 031023 (2016)

Quantum master equations

$$\partial_t \rho = -\frac{i}{\hbar} [\hat{H}, \rho] + \sum_{k=1}^N \gamma_k \mathcal{L}(\hat{L}_k, \rho)$$

 $\mathcal{L}(\hat{L},\rho)\equiv\hat{L}\rho\hat{L}^{\dagger}-\frac{1}{2}\hat{L}^{\dagger}\hat{L}\rho-\frac{1}{2}\rho\hat{L}^{\dagger}\hat{L}$...Lindblad form

usually used to describe open quantum systems (damping, decoherence)

- Lindblad form preserves Hermiticity, trace and positivity (if the rates are time-dependent, one has to be careful) of the state
- ullet Lindblad/jump operators \hat{L}_k describe incoherent part of dynamics
- for us: trace over environment is replaced by average over disorder realizations; while each realization evolves unitarily, the dynamics of the disorder-averaged state exhibits incoherent contributions (i.e., state is in general mixed)
- disorder effect in general induces non-Markovian evolution (time-dependent Lindblad operators, "negative rates"), which can give rise to coherence revivals

Disorder-dressed evolution equations ho_1 –

• Quantum map:
$$\overline{\rho}(t) = \int d\varepsilon \, p_{\varepsilon} e^{-\frac{i}{\hbar}\hat{H}_{\varepsilon}t} \rho_0 e^{\frac{i}{\hbar}\hat{H}_{\varepsilon}t}$$

Coupled disorder channels:

 $\rho_{\varepsilon} = \overline{\rho} + \Delta \rho_{\varepsilon} \qquad \hat{H}_{\varepsilon} = \overline{\overline{H}} + \hat{V}_{\varepsilon}$

Perturbative limit:

$$\begin{aligned} \partial_t \overline{\rho}(t) &= -\frac{\mathrm{i}}{\hbar} [\hat{H}_{\mathrm{eff}}(t), \overline{\rho}(t)] \\ &+ \sum_{\alpha \in \{\pm 1\}} \frac{2\alpha}{\hbar^2} \int \mathrm{d}\varepsilon \, p_\varepsilon \int_0^t \mathrm{d}t' \mathcal{L} \big(\hat{L}_{\varepsilon,t'}^{(\alpha)}, \overline{\rho}(t) \big). \end{aligned} \qquad \begin{aligned} H_{\mathrm{eff}}(t) &= \overline{H} - \frac{\mathrm{i}}{2\hbar} \int \mathrm{d}\varepsilon \, p_\varepsilon \int_0^t \mathrm{d}t' \, [\hat{V}_\varepsilon, \hat{\tilde{V}}_\varepsilon(t')] \\ \hat{L}_{\varepsilon,t}^{(\alpha)} &= \frac{1}{2} \big(\hat{V}_\varepsilon + \alpha \, \hat{\tilde{V}}_\varepsilon(t) \big), \\ \hat{\tilde{V}}_\varepsilon(t) &= \overline{U}(t) \hat{V}_\varepsilon \overline{U}(t)^{\dagger} \end{aligned}$$

 ρ_0

Applicable under weak disorder and up to finite times

 General: applicable to arbitrary systems and disorder characteristics

CG, F. Nori, *PRA* 96, 022135 (2017) CG, *PRB* 101, 214203 (2020)

 ρ_m

 $\Delta \rho_m$

 $\overline{\rho}$

Example: Topologically protected transport

$$\int \mathrm{d}\varepsilon \, p_{\varepsilon} \, V_{\varepsilon}(x) V_{\varepsilon}(x') \equiv C(x - x') = \int_{-\infty}^{\infty} \mathrm{d}q \, e^{\frac{i}{\hbar}q(x - x')} G(q)$$

Example: Topologically protected transport

• Master equation
$$\partial_t \overline{\rho}(t) = -\frac{i}{\hbar} [v\hat{p}, \overline{\rho}(t)] + \int_{-\infty}^{\infty} dq \, \frac{2tG(q)}{\hbar^2} \operatorname{sinc}\left[\frac{qvt}{\hbar}\right] \left\{ e^{\frac{i}{\hbar}q\hat{x}} \overline{\rho}(t) e^{-\frac{i}{\hbar}q\hat{x}} - \overline{\rho}(t) \right\}$$

19

• Solution
$$\langle x|\overline{\rho}(t)|x'\rangle = \langle x - vt|\rho_0|x' - vt\rangle \exp\left[-\overline{F}_t(x - x')\right]$$

 $\overline{F}_t(x) = \frac{t^2}{\hbar^2} \int dq \, G(q) \operatorname{sinc}^2\left[\frac{qvt}{2\hbar}\right] \left\{1 - \cos\left[\frac{qx}{\hbar}\right]\right\}$

bounded momentum broadening:

$$\langle (\Delta \hat{p})^2 \rangle(t) = \langle (\Delta \hat{p})^2 \rangle_0 + \frac{4}{v^2} \int_{-\infty}^{\infty} dq \ G(q) \ \sin^2 \left[\frac{qvt}{2\hbar} \right]$$

CG, F. Nori, PRL 119, 176802 (2017)

Example: Topologically protected transport

• Master equation
$$\partial_t \overline{\rho}(t) = -\frac{i}{\hbar} [v\hat{p}, \overline{\rho}(t)] + \int_{-\infty}^{\infty} dq \, \frac{2tG(q)}{\hbar^2} \operatorname{sinc}\left[\frac{qvt}{\hbar}\right] \left\{ e^{\frac{i}{\hbar}q\hat{x}} \overline{\rho}(t) e^{-\frac{i}{\hbar}q\hat{x}} - \overline{\rho}(t) \right\}$$

• Solution
$$\langle x|\overline{\rho}(t)|x'\rangle = \langle x - vt|\rho_0|x' - vt\rangle \exp\left[-\overline{F}_t(x - x')\right]$$

Disorder-induced dephasing measured by state purity $r = \text{Tr}[\overline{\rho}^2]$

Parabolic wave guide

 $\hat{H}_{\varepsilon} = \frac{\hat{p}^2}{2m} + \hat{V}_{\varepsilon}(\hat{x})$

 Backscattering and ongoing purity decay

CG, F. Nori, PRA 93, 032139 (2016)

Propagation along wave guide

Disorder-robust entanglement transport

 $\hat{H}_{\varepsilon} = v\hat{p}_1 + v\hat{p}_2 + V_{\varepsilon}(\hat{x}_1) + V_{\varepsilon}(\hat{x}_2)$

Identified disorder-prone and disorder-robust classes of entangled states

CG, D. Leykam, F. Nori, PRL 122, 066601 (2019)

Dirac particle

 $\hat{H}_{\varepsilon} = v\hat{p}\sigma_z + m_{\varepsilon}(\hat{x})v^2\sigma_x$

Two entangled edge particles

Propagation exposed to mass fluctuations

Disorder in the cross-stitch model

 $\hat{H} = -J(4\cos[\hat{p}a/\hbar] + t_{\rm ab})|d\rangle\langle d| + t_{\rm ab}J|f\rangle\langle f|$

• on-site disorder potential $\hat{H}_{\varepsilon} = \hat{H} + \hat{V}_{\varepsilon}$ with $\hat{V}_{\varepsilon} = \hat{V}^{a}_{\varepsilon}(\hat{x}) \otimes |a\rangle \langle a| + \hat{V}^{b}_{\varepsilon}(\hat{x}) \otimes |b\rangle \langle b|$

 $\textbf{matrix-valued correlation function} \quad C_{\sigma\sigma'}(x-x') = \int d\varepsilon \, p_{\varepsilon} \, V_{\varepsilon}^{\sigma}(x) V_{\varepsilon}^{\sigma'}(x') = \int_{-\infty}^{\infty} dq \, e^{\frac{i}{\hbar}q(x-x')} G_{\sigma\sigma'}(q)$

interband coupling vanishes with perfectly correlated sublattice potentials $\hat{V}_{\varepsilon} = \hat{V}_{\varepsilon}^{+}(\hat{x}) \otimes \mathbb{I}_{2} + \hat{V}_{\varepsilon}^{-}(\hat{x}) \otimes (|\mathbf{f}\rangle\langle \mathbf{d}| + |\mathbf{d}\rangle\langle \mathbf{f}|)$ with $\hat{V}_{\varepsilon}^{\pm}(\hat{x}) = \frac{1}{2}[\hat{V}_{\varepsilon}^{a}(\hat{x}) \pm \hat{V}_{\varepsilon}^{b}(\hat{x})]$ intraband correlations: $\tilde{G}_{0}(q) = \frac{1}{2}[G_{aa}(q) + G_{ab}(q)]$ interband correlations: $\tilde{G}_{1}(q) = \frac{1}{4}[G_{aa}(q) - G_{ab}(q)]$

Single-intersection approximation:

$$\hat{H} = -J(4\cos[\hat{p}a/\hbar] + t_{ab})|d\rangle\langle d| + t_{ab}J|f\rangle\langle f|$$
$$\approx v(\hat{p} - p_1) \otimes |d\rangle\langle d|$$

Single-intersection approximation:

$$\hat{H} = -J(4\cos[\hat{p}a/\hbar] + t_{ab})|d\rangle\langle d| + t_{ab}J|f\rangle\langle f|$$
$$\approx v(\hat{p} - p_1) \otimes |d\rangle\langle d|$$

$$\begin{aligned} & \bullet \text{ Coupled evolution equations:} \\ \partial_t \overline{\rho}_{\rm f} = \frac{2t}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_0(q) \{ e^{iq\hat{x}/\hbar} \overline{\rho}_{\rm f} e^{-iq\hat{x}/\hbar} - \overline{\rho}_{\rm f} \} \\ & \overline{\rho}_{\rm d} = \langle {\rm f} | \overline{\rho} | {\rm f} \rangle \\ & \overline{\rho}_{\rm d} = \langle {\rm d} | \overline{\rho} | {\rm d} \rangle \\ & - \frac{2}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_1(q) \int_0^t dt' \{ e^{ivt'q/\hbar} e^{-ivt'(\hat{p}-p_1)/\hbar} \overline{\rho}_{\rm f} \\ & - e^{iq\hat{x}/\hbar} \overline{\rho}_{\rm d} e^{-ivt'(\hat{p}-p_1)/\hbar} e^{-iq\hat{x}/\hbar} + h.c. \} \\ \partial_t \overline{\rho}_{\rm d} = -\frac{i}{\hbar} [v\hat{p}, \overline{\rho}_{\rm d}] + \frac{2t}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_0(q) {\rm sinc} [\frac{vtq}{\hbar}] \{ e^{iq\hat{x}/\hbar} \overline{\rho}_{\rm d} e^{-iq\hat{x}/\hbar} - \overline{\rho}_{\rm d} \} \\ & - \frac{2}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_1(q) \int_0^t dt' \{ e^{ivt'(\hat{p}-p_1)/\hbar} \overline{\rho}_{\rm d} \\ & - \frac{2}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_1(q) \int_0^t dt' \{ e^{ivt'(\hat{p}-p_1)/\hbar} \overline{\rho}_{\rm d} \\ & 25 - e^{iq\hat{x}/\hbar} \overline{\rho}_{\rm f} e^{-iq\hat{x}/\hbar} e^{ivt'(\hat{p}-p_1)/\hbar} + h.c. \} \end{aligned}$$

Single-intersection approximation:

$$\hat{H} = -J(4\cos[\hat{p}a/\hbar] + t_{ab})|d\rangle\langle d| + t_{ab}J|f\rangle\langle f|$$
$$\approx v(\hat{p} - p_1) \otimes |d\rangle\langle d|$$

$$\begin{split} \partial_t \overline{\rho_{\rm f}} &\approx \frac{2t}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_0(q) \big\{ e^{iq\hat{x}/\hbar} \overline{\rho_{\rm f}} e^{-iq\hat{x}/\hbar} - \overline{\rho_{\rm f}} \big\} \\ &- \frac{2}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_1(q) \int_0^t dt' \Big\{ e^{ivt'q/\hbar} e^{-ivt'(\hat{p}-p_1)/\hbar} \overline{\rho_{\rm f}} \\ &- e^{iq\hat{x}/\hbar} \overline{\rho_{\rm d}} e^{-ivt'(\hat{p}-p_1)/\hbar} e^{-iq\hat{x}/\hbar} + h.c. \Big\} \end{split}$$

 $\overline{\rho}_{\rm d}\approx 0$

 initial state resides in the flatband, backcoupling from the dispersive band negligible

$$\hat{H} = v(\hat{p} - p_1) \otimes |\mathbf{d}\rangle \langle \mathbf{d}|$$

Decay into the dispersive band: perfectly anticorrelated sublattice potentials, $\tilde{G}_0(q) = 0$

$$\partial_t \overline{\rho}_{\rm f} \approx \frac{2t}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_0(q) \left\{ e^{iq\hat{x}/\hbar} \overline{\rho}_{\rm f} e^{-iq\hat{x}/\hbar} - \overline{\rho}_{\rm f} \right\} \\ - \frac{2}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_1(q) \int_0^t dt' \left\{ e^{ivt'q/\hbar} e^{-ivt'(\hat{p}-p_1)/\hbar} \overline{\rho}_{\rm f} + h.c. \right\}$$

$$\overline{\rho}_{\rm f}(p) = \overline{\rho}_{\rm f,0}(p) e^{-\overline{\Gamma}_t(p-p_1)} \quad \text{with} \quad \overline{\Gamma}_t(p) = \frac{2}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_1(q) t^2 {\rm sinc}^2 \left[\frac{vt(q-p)}{2\hbar}\right]$$

momentum-dependent decay into dispersive band (for finite correlation length); suppressed if flatband state is detuned from the intersection

$$|v|t \gg \ell \rightarrow \overline{\Gamma}_t(p) = \frac{4\pi t}{\hbar |v|} \tilde{G}_1(p)$$

$$\hat{H} = v(\hat{p} - p_1) \otimes |\mathbf{d}\rangle \langle \mathbf{d}|$$

Disorder-induced dephasing:

perfectly correlated sublattice potentials, $\tilde{G}_1(q) = 0$

$$\begin{split} \partial_t \overline{\rho}_{\mathbf{f}} &= \frac{2t}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_0(q) \big\{ e^{iq\hat{x}/\hbar} \overline{\rho}_{\mathbf{f}} e^{-iq\hat{x}/\hbar} - \overline{\rho}_{\mathbf{f}} \big\} \\ &- \frac{2}{\hbar^2} \int_{-\infty}^{\infty} dq \, \tilde{G}_1(q) \int_0^t dt' \big\{ e^{ivt'q/\hbar} e^{-ivt'(\hat{p}-p_1)/\hbar} \overline{\rho}_{\mathbf{f}} \\ &- e^{iq\hat{x}/\hbar} \overline{\rho}_{\mathbf{d}} e^{-ivt'(\hat{p}-p_1)/\hbar} e^{-iq\hat{x}/\hbar} + h.c. \big\} \end{split}$$

disorder-induced dephasing

$$\langle x|\overline{\rho}_{\rm f}(t)|x'\rangle = \langle x|\overline{\rho}_{{\rm f},0}|x'\rangle e^{-\overline{F}_t(x-x')} \quad \text{with} \quad \overline{F}_t(x) = \frac{t^2}{\hbar^2} \int_{-\infty}^{\infty} dq \,\tilde{G}_0(q) \Big\{1 - \cos\big[\frac{qx}{\hbar}\big]\Big\}$$

 $\langle (\Delta \hat{p})^2 \rangle(t) = \langle (\Delta \hat{p})^2 \rangle_0 + \frac{t^2}{\hbar^2} \int_{-\infty}^{\infty} dq \, q^2 \tilde{G}_0(q)$ dephasing-induced momentum broadening

Disorder-induced lifetime of flatband states, detuning from the intersection controls "lifetime" (delayed decay into dispersive band)

 $\tau \lesssim \frac{(p_0 - p_1)\ell}{\sqrt{C_0(1 + \delta)}}$
 $\tau \lesssim \frac{(p_0 - p_1)\ell}{\sqrt{C_0(1 + \delta)}}$
 $\tau \lesssim \frac{(p_0 - p_1)\ell}{\sqrt{C_0(1 + \delta)}}$

Compared with numerically exact ensemble average

CG, Z. Li, F. Nori, PRB 98, 134203 (2018)

 Backcoupling from dispersive band into flatband diffuses the flatband state symmetrically or directionally ("disorder *de*localizes")

Conclusions

Identified mechanism for the destabilization and diffusion of flatband states, where disorder "delocalizes" flatband states, mediated through coupling into dispersive bands

- Dynamical description is based on the general formalism of disorder-dressed quantum evolution, where disorder is treated as incoherent modification of the dynamics (disorder acts as an "environment", while the system remains unchanged)
- Analysis based on one-dimensional lattices and flatband intersecting with dispersive band (cross-stitch lattice), but other generic cases (higher dimensions, touching parabolic band etc.) are also conceivable
- Interplay between topology and disorder?

Thank you very much for your attention!

Collaborators

Tenzan Araki (ETH)robust optimal controlZixi Li (Univ. Chicago)Zhou Li (Guangzhou)Franco Nori (RIKEN)

Daniel Leykam (NUS) Jungyun Han (IBS)

Hong-Bin Chen (Tainan Univ.) Yueh-Nan Chen (Tainan Univ.)

nonclassicality measure for open system dynamics

Felix Anger (Freiburg Univ.) Chahan Kropf (Freiburg Univ.) Andreas Buchleitner (Freiburg Univ.)