The random quantum comb:

From compact localized states to many-body scars

PRR 2, 043267 (2020)

Giuseppe De Tomasi

IBS Conference 20/08/2021

Diffusion in classical system

-25 L

 \mathbf{SO}

вÐ

 $_{\rm OO}$

$$\Delta X^2(t) \sim Dt$$

Diffusion

Anderson Localization

Noninteracting fermions subject to a random potential can be localized!

P. W. Anderson, Phys. Rev. 109, 1492

Subdiffusion in the Random Comb Model

$$p(\ell) \sim \ell^{-(1+\gamma)}$$

Fat tails distribution

The random quantum comb

(tight-binding model)

O. Hart, GDT and C. Castelnovo, PRR 2, 043267 (2020)

Localization properties

 $-t_2\psi_{x,\ell_x-1} = E\psi_{x,\ell_x}$

$$-t_1\psi_{x-1,0} - t_1\psi_{x+1,0} - t_2\psi_{x,1} = E\psi_{x,0}$$
 (backbone)
$$-t_2\psi_{x,0} - t_2\psi_{x,2} = E\psi_{x,1}$$

(Offshoots)

$$-t_1\psi_{x-1,0} - t_1\psi_{x+1,0} = [E + W_{\epsilon}(\ell_x)]\psi_{x,0}$$

$$W_{\epsilon}(\ell_x) = -\frac{t_2}{\epsilon + \sqrt{\epsilon^2 - 1} \left[1 + 2\left(\left(\frac{\epsilon + \sqrt{\epsilon^2 - 1}}{\epsilon - \sqrt{\epsilon^2 - 1}}\right)^{\ell_x} - 1\right)^{-1}\right]},$$

$$\epsilon \equiv E/2t_2$$

Effective Schrödinger equations on the backbone with "fractional" timederivative.

Transfer matrix

$$\begin{pmatrix} \psi_{x+1,0} \\ \psi_{x,0} \end{pmatrix} = T_x(E)T_{x-1}(E)\cdots T_1(E) \begin{pmatrix} \psi_{1,0} \\ \psi_{0,0} \end{pmatrix}$$
$$T_x(E) = \begin{pmatrix} -[E+W_{\epsilon}(\ell_x)]/t_1 & -1 \\ 1 & 0 \end{pmatrix}$$

H. Furstenberg, Trans. Amer. Math. Soc. 108, 377 (1963),I. Y. Gol'dshtein et al., Funct. Anal. Appl. 11, 1 (1977)

 $\psi_x \sim e^{-x/\xi_{\rm loc}}$

Compact Localized States

Fractional Schrödinger Equation

$$\hat{H}_{0} = \sum_{x,k_{y}} E(k_{y}) \hat{a}_{x,k_{y}}^{\dagger} \hat{a}_{x,k_{y}} + \sum_{x,x'} h_{x,x'} \hat{c}_{x,0}^{\dagger} \hat{c}_{x',0}$$

Offshoots

Backbone

$$\hat{H}_{0} |\psi\rangle = i\partial_{t} |\psi\rangle$$

$$\downarrow$$

$$\downarrow$$

$$i^{\alpha}\partial_{t}^{\alpha}\psi = \mathcal{H}\psi$$

$$\alpha = 1/2$$

$$E(k_{y}) = k_{y}^{2}/2m$$

Continuum limit

What about interactions ?

Can generic isolated quantum many-body systems undergoing to reversible unitary time evolution thermalize?

R. Nandkishore, D. A. Huse, Annu. Rev. Vol. 6: 15-38 (2015),

D. Basko et al., Annals of Physics 321, 1126 (2006)

+ many more

Many-Body Scars

H. Bernien et al., Nature 551, 579-584 (2017)

C. Turner et al., Nature Physics 14, 745–749 (2018)

Violates the ETH

Embedded in a sea of thermal states

Many-Body Scars

$$\hat{H} = \hat{H}_0 + V\hat{H}_{\rm int}$$

$$\hat{H}_{\text{int}} = \sum_{x} \hat{n}_{x,0} \hat{n}_{x+1,0}$$

(Interactions only on the Backbone)

Level Spacing Statistics

Flat Bands

Non-Integrable

$$\hat{H} = \hat{H}_0 + V\hat{H}_{\text{int}}$$
$$\hat{H}_{\text{int}} = \sum_x \hat{n}_{x,0}\hat{n}_{x+1,0}$$

(Interactions only on the Backbone)

$$|\psi_{\rm cl}\rangle = \prod_{n,s} \hat{\eta}_s^{\dagger}(E_n^{\rm cl})|0\rangle$$

(Slater Determinant with CLS)

$$\hat{H}_{\rm int} \left| \psi_{\rm cl} \right\rangle = 0$$

Exact Eigenstates

$$\begin{array}{c} & \left(\frac{2L}{3}\\ \frac{L}{3}\right) \sim 2^{2L/3} / \sqrt{\pi L/3} \\ & N = L/3 \end{array}$$

Low Entanglement (Area law)

Dynamical Probes

$$|\psi_{\text{N\acute{e}el}}\rangle = \prod_{x=1}^{L/3} \hat{c}^{\dagger}_{3x-2,0}|0\rangle$$

$$\mathcal{R}(t) = |\langle \psi_{\text{N\'eel}} | e^{-i\hat{H}t} | \psi_{\text{N\'eel}} \rangle|^2$$

Oliver Hart Cambridge

Claudio Castelnovo Cambridge

Conclusion

O. Hart, GDT and C. Castelnovo, PRR 2, 043267 (2020)