

IBS Conference on Flatbands 16 Aug 2021

Flatbands as an arena for superconducting and topological properties

Hideo Aoki Dept Physics, Univ Tokyo, Japan & AIST, Tsukuba, Japan

<u>Plan of the talk</u>

	Superconductivity (from repulsion)		Topological			
Equilibrium	✓ Flat-band SC		 Flat-band topological states 			
	🗸 Non-F	ermi liquid				
Non-equil	✓ Non-equil induced SC ?		 Floquet topological insulator 			
✓ Flat-band SC → topological SC ?						

2-band vs 1-band flat-band SC

 * Attractive model ← Suhl-Kondo mechanism for dispersive bands, but here we are talking about repulsion (spin-fl mediated pairing)
 * Flat band → highly-entangled interactions?

- * Flat band + dispersive band
 - \rightarrow higher Tc when flat band is incipient
 - (ie, close to, but away from, E_F)

<u>Topological when exactly 1/3 filled (ED result)</u>

t'/t=0

-π

(Kobayashi et al, PRB 2016)

Positioning flat bands in 2D for favouring SC

Usually, a flat band does not intersect the dispersive one

Can we have

(See also Hwang, Rhim & Yang, arXiv:2106.13057)

<u>Flat bands a la Lieb, MielKe, Tasaki are not just flat,</u> <u>but anomalous (no Wannier states exist) → very entangled</u>

Wannier spread for flat bands

- ✓ For topologically-trivial flat bands, see (Marzari & Vanderbilt: Maximally localized Wannier functions, PRB 1997; RMP 2012).
- ✓ For topological flat bands, see (Watanabe et al: Fragile topology, PNAS 2015; Nat Commun 2017).

In general, topological systems have no (spatially-localised) Wannier states i.e., no adiabatic route to the atomic limit.
 (Po, Vishwanath & Watanabe, Nat Commun 2017)
 * Historically, QHE systems have no Wannier as long known.

 ✓ "Quantum geomery" of flatband wavefunctions → Landau levels. (Rhim, Kim & Yan, Nature 2020; arXiv:2012.15132)

<u>Topological flat band \rightarrow can favour SC ?</u>

<u>A numerical result beyond mean-field</u>

Attractive Hubbard model with DMRG + ED (Mondaini et al, PRB 2018)

Creutz lattice

For Attractive Lieb lattice, see Julk, ..., Torma, PRL 2016: Huhtinen & Torma, PRB 2021.

 \rightarrow Repulsive Hubbard model ? --- an open question

<u>2-band vs 1-band flat-band SC</u>

<u>SC for repulsive U with FLEX+DMFT</u>

(Sayyad et al, PRB 2020)

Spin susceptibility χ_s

(Sayyad et al, PRB 2020)

Usually, SC from el-el repulsion works much better in 2D than in 3D

Flat-band SC has totally different dim-dep

<u>Plan of the talk</u>

	Superconductivity	Topological
Equilibrium	✓ Flat-band SC	✓ Flat-band topological states
	Non-Fermi liquid	
Non-equil		 Floquet topological insulator

Fermi liquids: Im $\Sigma(\omega) \sim \omega^2$ (real axis) \rightarrow Im $\Sigma(i\omega) \sim i\omega$ (Matsubara axis) (Werner et al , PRL 2008: PRB 2016 on a cuprate model)

<u>Plan of the talk</u>

	Superconductivity	Topological
Equilibrium	✓ Flat-band SC	Flat-band topological states
	Non-Fermi liquid	No-go theorem (finite-range hopping → no topological flat bands, Chen et al, JPA 2014), so we have to put in spin-orbit, etc
Non-equil		 Floquet topological insulator

Metal-organic framework (MOF) systems

(Yamada et al, PRB (R) 2016, a collaboration with MIT chemistry)

	Superconductivity	Topological				
Equilibrium	✓ Flat-band SC	✓ Flat-band topological states				
	✓ Non-Fermi liquid					
		A totally different way to make the system topological				
Non-equil		 Floquet topological insulator 				
		i = 0				
	ordinary bands (e.g. g	raphene) → Flat bands				

Floquet topological insulator

(Oka & Aoki, PRB 2009)

Light-induced anomalous Hall effect

<u>Quantum anomalous Hall effect (QHE in B=0)</u>

Flat-band Floquet topological insulators

(Mikami, ..., Aoki, PRB 2016)

<u>Non-equilibrium phase diagram:</u>

(Mikami et al, PRB 2016)

Another flat band: Kagome + CPL

(Mikami et al, PRB 2016)

<u>Flat-band (eg Kagome) Floquet topological \rightarrow Chern # behaves wildly</u>

(Mikami et al, PRB 2016)

Wannier spread for flat bands

✓ For topologically-trivial flat bands, see

Marzari & Vanderbilt: Maximally localized generalized Wannier functions, PRB 1997; RMP 2012.

✓ For topological flat bands, see

Watanabe et al: Fragile topology, PNAS 2015: Nat Commun 2017.

In general, topological systems have no (spatially-localised) Wannier states i.e., no adiabatic route to the atomic limit.

- (Po, Vishwanath & Watanabe, nat commun 2017)
- * Historically, QHE systems have no Wannier as long known.

✓ Floquet topological insulators have Wannier states? (Nakagawa, ..., Oka, PRB 2020) Floquet-Bloch states → Fourier tr → "Topological obstruction" (spatial- and temporal-localised Wannier = absent)

i.e., Driven system —(adiabatic deformation)—

→ undriven insulator

<u>"Optical imprinting:</u> <u>Spatially-periodic CPL illuminated on 2D materials</u> <u>> in situ control of Floquet topological insulators</u>

(Kim, ..., Aoki & Hafezi, PRR 2020)

Topological phase diag

square \rightarrow hexagonal (loss of reflection symm) \rightarrow complex hopping as in Haldane's model

(Kim, ···, Aoki & Hafezi, PRR 2020)

General experimental feasibility of Floquet topological states (Can we have intense enough laser for sizeable topological gaps?)

Summary Flat bands do indeed harbour unique opportunities					
	Superconductivity	Topological			
Equilibrium	✓ Flat-band SC	✓ Flat-band topological states			
	🗸 Non-Fermi liquid 🔶	non-Fermi liquid SC ?			
Long-range & nonlocal interactions enhanced in flat bands ?					
Non-equil	✓ Non-equil induced SC ?	 Floquet topological insulator 			
Open questions Image: Comparison of the second					

		T-rever	sal Particl	le-hole Chiral	Spa <i>d</i> = 1	tial dime d =2	nsion d = 3
Standard (Wigner-Dyson)	A (unitary)	—Θ ² — Χ	— <u>Н</u> 2— х	х х		Z	IQHE
	AI (orthogonal)	+1	х	Х		Kane-I	Melē, QSHE
	All (symplectic)	-1	x	x		Z_2	Z_2 Z_2TI
Chiral	AIII (chiral unitary)	x	x	1	Z		Z
	BDI (chiral orthogonal)	+1	+1	1	(Z)	SSH <u>,</u> Cre	eut <u>z</u>
	CII (chiral symplectic)	-1	-1	1	Z		Z ₂
BdG (SC)	D (p-wave SC)	х	+1	х	Z ₂	Z	p+ip SC, v=5,-2 FQHE topological SC
	C (d-wave SC)	Х	-1	Х		(Z)	l+id_SC
	DIII (p-wave TRS SC)	- 1	+1	1	Z ₂	Z ₂	(Z) ³ He-B
	CI (d-wave TRS SC)	+1	- 1	1			Z

(Altland-Zirnbauer 1997; Schnyder-Ryu-Furusaki-Ludwig 2008; Hasan-Kane, RMP 2010)

 $V_{\text{group}} = 0$ at a point: van Hove sing. \rightarrow topological SC (d+id, etc) (Liu et al, PRL 2018)

(Sayyad et al, PRB 2020)

<u>Superconductivity in bilayer graphene</u>

(Cao…, Jarillo-Herrero, nature 2018)

doi:10.1038/nature26160

Unconventional superconductivity in magic-angle graphene superlattices

Yuan Cao¹, Valla Fatemi¹, Shiang Fang², Kenji Watanabe³, Takashi Taniguchi³, Efthim

ARTICLE

Nonzero Chern #s in twisted bilayer graphene

(Zhang et al, PRB 2019)

<u>Non-Fermi liquid SC in Hatsugai-Kohmoto model</u>

Keita Kobayashi, Masahiko Okumura, Masahiko Machida Japan Atomic Energy Agency

Zohar Nussinov Washington Univ Motoharu Kitatani TU Wien Takashi Oka, Sota Kitamura MPI Dresden (now at Univ Tokyo) Naoto Tsuji Riken (now at Univ Tokyo)

Abolhassan Vaezi, Edwin Huang Stanford

Mohammad-Sadegh Vaezi Pasargad Institute

Sharareh Sayyad Univ Tokyo

UNIVERSITY OF MARYLAND

Stanford

University

Takahiro Mikami, Univ Tokyo, Kenji Yasuda Univ Tokyo, now at MIT Shintaro Takayoshi MPI Dresden

Hwanmun Kim, MIARYLAND Argonne Hossein Dehghani, Mohammad Hafezi Univ Maryland Ivar Martin Argonne National Lab

