Flat bands and the geometry of Bloch wave functions

Jun-Won Rhim(임준원) Physics Department, Ajou University

Berry connection

Berry curvature

$$\mathcal{A}_n(\boldsymbol{R}) = i \langle n(\boldsymbol{R}) | \frac{\partial}{\partial \boldsymbol{R}} | n(\boldsymbol{R}) \rangle$$

$\boldsymbol{\Omega}_n(\boldsymbol{R}) = \boldsymbol{\nabla}_{\boldsymbol{R}} \times \mathcal{A}_n(\boldsymbol{R})$

Di Xiao, Ming-Che Chang, and Qian Niu, Rev. Mod. Phys. 82, 1959 (2010)

Era of Berry curvature

Semiclassical equations of motion

$$\frac{k}{\partial k} - \frac{e}{\hbar} E \times \Omega_n(k)$$

Era of Berry curvature

Anomalous
$$\boldsymbol{v}_n(\boldsymbol{k}) = \frac{\partial \varepsilon_n(\boldsymbol{k})}{\hbar \partial \boldsymbol{k}} - \frac{e}{\hbar} \boldsymbol{E} \times \boldsymbol{\Omega}_n(\boldsymbol{k})$$

- Quantum Hall effect
- Anomalous Hall effect

•

Valley Hall effect

Semiclassical equations of motion

Anomalous
$$\boldsymbol{v}_n(\boldsymbol{k}) = \frac{\partial \varepsilon_n(\boldsymbol{k})}{\hbar \partial \boldsymbol{k}} - \frac{e}{\hbar} \boldsymbol{E} \times \boldsymbol{\Omega}_n(\boldsymbol{k})$$

- Quantum Hall effect -
- Anomalous Hall effect

•

• Valley Hall effect

Semiclassical equations of motion

$$\sigma_{xy} = \frac{e^2}{\hbar} \int_{\rm BZ} \frac{d^2k}{(2\pi)^2} \Omega_{k_x k_y}$$

Chern number

Di Xiao, Ming-Che Chang, and Qian Niu, Rev. Mod. Phys. 82, 1959 (2010)

Anomalous
$$\boldsymbol{v}_n(\boldsymbol{k}) = \frac{\partial \varepsilon_n(\boldsymbol{k})}{\hbar \partial \boldsymbol{k}} - \frac{e}{\hbar} \boldsymbol{E} \times \boldsymbol{\Omega}_n(\boldsymbol{k})$$
 velocity

- Quantum Hall effect -
- Anomalous Hall effect
- Valley Hall effect

Semiclassical equations of motion

$$\sigma_{xy} = \frac{e^2}{\hbar} \int_{\mathrm{BZ}} \frac{d^2k}{(2\pi)^2} \Omega_{k_x k_y}$$

Chern number

Topological analysis of solid state systems

Di Xiao, Ming-Che Chang, and Qian Niu, Rev. Mod. Phys. 82, 1959 (2010)

Era of Berry curvature

Era of Berry curvature

Jun-Won Rhim, Jan Behrends, and Jens H. Bardarson, Phys. Rev. B 95, 035421 (2017)

$$\sum_{i=1}^{M} \int_{0}^{G_{\perp}} dk_{\perp} \left\langle u_{n\mathbf{k}} \left| \frac{\partial}{\partial k_{\perp}} \right| u_{n\mathbf{k}} \right\rangle$$

1-D bulk-boundary correspondence

R. D. King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651(R) (1993)

Berry curvature

$\boldsymbol{\Omega}_n(\boldsymbol{R}) = \boldsymbol{\nabla}_{\boldsymbol{R}} \times \mathcal{A}_n(\boldsymbol{R})$

The Quantum Phase, Five Years After

M. V. Berry

H.H.Wills Physics Laboratory Tyndall Avenue, Bristol BS8 1TL, U.K.

Commun. Math. Phys. 76, 289–301 (1980)

Riemannian Structure on Manifolds of Quantum States

J. P. Provost and G. Vallee

Physique Théorique, Université de Nice***

$ds^2 = 1 - |\langle u_n(\mathbf{k})|u_n(\mathbf{k} + d\mathbf{k})\rangle|^2$

$$= \left(\Re \left[\left\langle \partial_{k_i} u_n \middle| \partial_{k_j} u_n \right\rangle \right] - \left\langle \partial_{k_i} u_n \middle| u_n \right\rangle \left\langle u_n \middle| \partial_{k_j} u_n \right\rangle \right) dk_i dk_j$$

 $= g_{ij}^n dk_i dk_j$

Quantum distance $s^2 = 1 - 1$

$ds^2 = 1 - |\langle u_n(\mathbf{k})|u_n(\mathbf{k} + d\mathbf{k})\rangle|^2$

$$= \left(\Re \left[\left\langle \partial_{k_i} u_n \right| \partial_{k_j} \right] \right]$$
$$= g_{ij}^n dk_i dk_j$$
Quantum

$$|\langle v_{\mathbf{k}}|v_{\mathbf{k}'}\rangle|^2$$

$$|u_n\rangle] - \langle \partial_{k_i} u_n |u_n\rangle \langle u_n |\partial_{k_j} u_n\rangle \rangle dk_i dk_j$$

metric

in a planar micro cavity. Nature 578, 381 (2020)

$$S_{\mu\nu}(\omega) = -2\pi\omega^2 \int_{BZ} \frac{d^d \mathbf{k}}{\Omega_{BZ}} \delta[\omega - \varepsilon_2(\mathbf{k}) + \varepsilon_1(\mathbf{k})] Q^1_{\mu}$$

Current noise

Research on quantum metric

Flat bands might be an ideal platform to study the quantum metric and quantum distance.

Group velocity ➡ 0 Effective mass ➡ ∞

Interactions become important. (K«U)

Many-body ground states can be induced easily.

• Ferromagnetism

(H. Tasaki, PRL 69 1608)

- Superconductivity

In[.]

- Wigner crystal

Many-body ground states can be induced easily.

Y. Cao et al, Nature **556** 43 (2018) R. Bistritzer and A. H. MacDonald, Proc. Natl Acad. Sci. USA 108, 12233 (2011)

Fast Track Communications

IOP Publishing

Journal of Physics A: Mathematical and Theoretical

doi:10.1088/1751-8113/47/15/152001

J. Phys. A: Math. Theor. 47 (2014) 152001 (12pp)

Fast Track Communications

The impossibility of exactly flat non-trivial Chern bands in strictly local periodic tight binding models

Li Chen¹, Tahereh Mazaheri¹, Alexander Seidel¹ and Xiang Tang²

¹ Department of Physics, Washington University, St. Louis, MO 63130, USA

² Department of Mathematics, Washington University, St. Louis, MO 63130, USA

Article | Published: 05 August 2020

Quantum distance and anomalous Landau levels of flat bands

Jun-Won Rhim, Kyoo Kim & Bohm-Jung Yang 🖂

Nature **584**, 59–63(2020) Cite this article

 $\gamma = i \oint_C \langle v_{\mathbf{k}} | \partial_{\mathbf{k}} | v_{\mathbf{k}} \rangle = \mp 2\pi$

In many cases, flat bands are topologically trivial

Quantum distance or quantum metric could be crucial in flat bands

The unnormalized eigenvector of the flat band becomes zero at k*.

without any common factor between vector components

*k** : band crossing point

Non-contractible loop states (NLSs)

Kagome lattice on a torus (periodic boundary condition)

Photonic lattice (a) Femtosecond laser writing 20x NA 0.35 sample translation b)

The first observation of the real-space topology in flat bands

J. Ma, **JWR**, et al, PRL **124** 183901 (2020)

The normalized eigenvector of the flat band can be discontinuous at k*.

Singular flat band with a discontinuity

Singular flat band *with a discontinuity*

$$d^{2} = 1 - |\langle v_{\mathbf{k}} | v_{\mathbf{k}'} \rangle|^{2}$$
$$\Rightarrow d_{\max} \neq 0$$

Singular flat band with a discontinuity

$$d^{2} = 1 - |\langle v_{\mathbf{k}} | v_{\mathbf{k}'} \rangle|^{2}$$

$$d^{2} = 1 - |\langle v_{\mathbf{k}} | v_{\mathbf{k}'} \rangle|^{2}$$

$$d^{2} = 1 - |\langle v_{\mathbf{k}} | v_{\mathbf{k}'} \rangle|^{2}$$

• Discontinuous singular flat band is characterized by the nonzero d_{max} .

d_{max} represents the strength of the singularity. *d_{max}* quantifies the strength of the inter-band coupling.

Singular flat band with a discontinuity

$$d^{2} = 1 - |\langle v_{\mathbf{k}} | v_{\mathbf{k}'} \rangle|^{2}$$

$$d^{2} = 1 - |\langle v_{\mathbf{k}} | v_{\mathbf{k}'} \rangle|^{2}$$

$$d^{2} = 1 - |\langle v_{\mathbf{k}} | v_{\mathbf{k}'} \rangle|^{2}$$

• Discontinuous singular flat band is characterized by the nonzero d_{max} .

• d_{max} represents the strength of the singularity.

• d_{max} quantifies the strength of the inter-band coupling.

• *d_{max}* manifests itself as the pseudospin canting structure

How to measure *d_{max}*?

L. Onsager, Philos. Mag. 43, 1006 (1952) J.-N. Fuchs et al SciPost Phys. 4, 24 (2018) **JWR**, K. Kim, and B.-J. Yang, Nature **584** 59 (2020)

Landau level spreading characterized by the quantum distance

$$S_0(\epsilon) = \frac{2\pi eB}{\hbar} \left(n + \frac{1}{2} - \frac{\gamma_{\epsilon,B}}{2\pi} \right)$$

k

Contradicting to the conventional semiclassical idea

Topological bands can develop in-gap Landau levels

Biao Lian, Fang Xie, and B. Andrei Bernevig, Phys. Rev. B 102, 041402(R) (2020)

$$F\left(u_n(m{k}), u_m(m{k}')
ight)$$
 = $F\left(u_n(m{k}), u_m(m{k}+dm{k})
ight)$

$$-|\langle v_{\mathbf{k}}|v_{\mathbf{k}'}\rangle|^2$$

 $ds^2 = g_{ij}^n dk_i dk_j$

$= |\langle u_n(oldsymbol{k})|u_m(oldsymbol{k}') angle|^2,$

Fidelity

Quantum

distance

 $l(\boldsymbol{k})) = \chi_{ij}^{nm}(\boldsymbol{k}) dk_i dk_j.$

Fidelity tensor

Generic system

System with chiral symmetry

System with space-time-inversion symmetry

Collaborators

Prof. <u>Bohm-Jung Yang</u> Seoul National Univ.

Yoonseok Hwang Seoul National Univ.

Prof. Zhigang Chen Nankai Univ. & San Francisco State Univ.

- wavefunctions irrelevant to the topology.
- phase.)
- Singular flat band's d_{max} manifests as the anomalous Landau level spreading.
- connection.

Summary

• Flat band systems are ideal platform to study various geometric properties of Bloch

• Band-crossing of a flat band, where the Bloch eigenvector is discontinuous, is characterized by d_{max} . (Graphene's band-crossing is characterized by the Berry

• An isolated flat band can have Landau level spreading even though it is topologically trivial. This phenomenon is described by the cross-gap Berry

[1] **JWR** and B.-J. Yang, **PRB** 99, 045107 (2019)

[2] J. Ma*, **JWR***, et al, **PRL** 124 183901 (2020)

[3] **JWR**, K. Kim, and B.-J. Yang, *Nature* 584 59 (2020)

[4] Y. Hwang, **JWR**, and B.-J. Yang, arXiv:2012.15132 (2020)