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Motivation and overarching question

Taken from S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, and A. S. Desyatnikov, “Detangling
flat bands into Fano lattices”, EPL 105, 30001 (2014).

Which role do (local) symmetries play for compact localized states
(CLSs) and flat bands?
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Preliminary remark

In the past talks, many different systems were introduced: Magnons,
interacting electrons, non-interacting electrons, . . . .
The concepts presented in this talk are system-independent, since we
operate on the level of matrices (and not of the operator).
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An easily understood example: The diamond chain
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The global reflection P commutes with the Hamiltonian H of the lattice.
Thus, the eigenstates of H can be chosen to have definite parity under P.

If w denotes one of the white sites, then each negative parity eigenstate
|Φ〉 fulfills

〈w |Φ〉 = 〈w |P2|Φ〉 = −〈w |Φ〉 ⇒ 〈w |Φ〉 = 0 . (1)

Thus, the negative parity eigenstate vanishes on all white sites!
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From global to local symmetries
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From global to local symmetries

(There would a video on this slide; See the YouTube talk.)
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The 1D pyrochlore lattice

Taken from S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, and A. S. Desyatnikov, “Detangling
flat bands into Fano lattices”, EPL 105, 30001 (2014).
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Flat bands through local symmetries

Utilizing the equitable partition theorem (EPT)1 from graph theory.

1W. Barrett, A. Francis, and B. Webb, “Equitable decompositions of graphs with symmetries”,
Linear Algebra Its Appl. 513, 409–434 (2017). 14

https://doi.org/10.1016/j.laa.2016.10.017


Motivation Local symmetries Latent symmetries

Generalizations and further information

M. Röntgen, C. V. Morfonios, and P. Schmelcher, “Compact
localized states and flat bands from local symmetry partitioning”,
Phys. Rev. B 97, 035161 (2018)
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Parity without symmetry? A simple example

u

v

Reflection symmetry Latent symmetry

u
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v

There is no reflection symmetry for the right system. Yet, all eigenstates
have definite parity on u and v .
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Making the latent symmetry visible

u

v

Latent symmetries can be made visible through the so-called isospectral
reduction2 (ISR)

RS(H,E ) = HSS + HSS

(
E I − HSS

)−1
HSS

which is equivalent to an effective Hamiltonian obtained through
subsystem partitioning.

Latent symmetry of two sites ⇒ Local parity!

2D. Smith and B. Webb, “Hidden symmetries in real and theoretical networks”, Physica A 514,
855–867 (2019). 18

https://doi.org/10.1016/j.physa.2018.09.131
https://doi.org/10.1016/j.physa.2018.09.131


Motivation Local symmetries Latent symmetries

From latent symmetries to CLS
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Pure permutation

Not pure permutation

Reflection symmetry

Latent symmetry

Due to the latent symmetry of u and v , there exists an orthogonal matrix
Q with eigenvalues ±1 which commutes with H. Q squares to one.
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From latent symmetries to CLS
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Due to the latent symmetry of u and v , all eigenstates have definite
parity on them. For the present system, Q acts as the identity on each
white site w , so that the negative parity eigenstate |Φ〉 fulfills

〈w |Φ〉 = 〈w |Q2|Φ〉 = −〈w |Φ〉 ⇒ 〈w |Φ〉 = 0 . (2)

Thus, |Φ〉 is compactly localized!

But why does Q act as the identity on the white sites???
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Latent symmetries and singlets
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When u, v are latently symmetric, then the eigenstates have definite
parity on these two sites, and the following are equivalent

The matrix Q acts as the identity on w .(
Hk

)
u,w

=
(
Hk

)
v ,w
∀ k .

In our nomenclature, the white sites are “singlets”.
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Walks: A convenient interpretation of matrix powers

For3 a Hamiltonian with matrix elements 0 and 1: The matrix element(
Hk

)
i,j

gives the number of different walks of length k from i to j .

1 2 1

1 3 1

2

2

1 2 3 2

2 1

3

4

1 2 1

1 3 1
1 2

Taken from C. V. Morfonios, M. Pyzh, M. Röntgen, and P. Schmelcher, “Cospectrality preserving
graph modifications and eigenvector properties via walk equivalence of vertices”, Linear Algebra
and its Applications 624, 53–86 (2021).

Thus, a singlet w has the same “distance” from the latently symmetric
sites u, v , as is expressed by its defining equation(

Hk
)
u,w

=
(
Hk

)
v ,w
∀ k . (3)

3Note: This has been known in spectral graph theory for a long time! 22
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More on latent symmetries

Two sites u, v are latently symmetric if and only if4(
Hk

)
u,u

=
(
Hk

)
v ,v
∀ k . (4)

Equivalently, the eigenvalue spectra of H \ u and H \ v can be shown to
be equal. The sites u and v are said to be cospectral.

v

uu

v

4M. Kempton, J. Sinkovic, D. Smith, and B. Webb, “Characterizing cospectral vertices via
isospectral reduction”, Linear Algebra Its Appl. 594, 226–248 (2020). 23

https://doi.org/10.1016/j.laa.2020.02.020
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More on latent symmetries

Each reflection symmetry is a latent symmetry, but the reverse is not
true. ⇒ Latent symmetry is a broader concept!

When a Hamiltonian features non-abelian latent symmetries, then it
necessarily features degenerate eigenvalues4.

4M. Röntgen, M. Pyzh, C. V. Morfonios, N. E. Palaiodimopoulos, F. K. Diakonos, and
P. Schmelcher, “Latent Symmetry Induced Degeneracies”, Phys. Rev. Lett. 126, 180601 (2021).24

https://doi.org/10.1103/PhysRevLett.126.180601
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Ingredients for the design of CLSs through latent
symmetries

Connecting subnetworks to singlets creates new singlets, and does not
break reflection symmetry/latent symmetry.

u

v

u

v
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Ingredients for the design of CLSs through latent
symmetries

The simplest possible scheme:
1 Pick a network with latent symmetries (there are plenty!).
2 If necessary, equip this network with singlets (the procedure for this

step is based, again, on an analysis of the matrix powers of H).
3 Use the network as a unit cell; connect different unit cells via

singlets.
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Ingredients for the design of CLSs through latent
symmetries

C. V. Morfonios, M. Röntgen, M. Pyzh, and P. Schmelcher, “Flat bands by latent symmetry”,
Phys. Rev. B 104, 035105 (2021)
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Ingredients for the design of CLSs through latent
symmetries
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C. V. Morfonios, M. Röntgen, M. Pyzh, and P. Schmelcher, “Flat bands by latent symmetry”,
Phys. Rev. B 104, 035105 (2021)
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Further information

Applications to flat bands: C. V. Morfonios, M. Röntgen,
M. Pyzh, and P. Schmelcher, “Flat bands by latent symmetry”,
Phys. Rev. B 104, 035105 (2021)

Underlying mathematical theory: C. V. Morfonios, M. Pyzh,
M. Röntgen, and P. Schmelcher, “Cospectrality preserving graph
modifications and eigenvector properties via walk equivalence of
vertices”, Linear Algebra and its Applications 624, 53–86 (2021)
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Outlook

Can we also link other CLSs/flat bands to (latent) symmetries?
U(n > 1)?

Taken from S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, and A. S. Desyatnikov,
“Detangling flat bands into Fano lattices”, EPL 105, 30001 (2014).

Generalization to other latent permutation symmetries.
30
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Thank you for your attention!
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