# An Overview Of The SYK Model And Its Relatives

#### **Dario Rosa**

#### Based on: many works, just few of them are mine

**IBS conference on Flatbands**, August 16 - 20 2021





### **Motivation: few numbers**

**Slogan:** SYK model has received **huge** attention in the last years

How huge? Which numbers are we talking about?

- Kitaev, Apr. 2015: two talks at Santa Barbara (no paper on them)
   ``A simple model of quantum holography''
- Maldacena and Stanford, Apr. 2016: paper on Kitaev's talk
   ``Remarks on the Sachdev-Ye-Kitaev model'', Phys. Rev. D

### **Motivation: few numbers**

**Slogan:** SYK model has received **huge** attention in the last years

How huge? Which numbers are we talking about?

- Kitaev, Apr. 2015: two talks at Santa Barbara (no paper on them)
   ``A simple model of quantum holography''
- Maldacena and Stanford, Apr. 2016: paper on Kitaev's talk
   ``Remarks on the Sachdev-Ye-Kitaev model'', Phys. Rev. D

#### **Around 1200 citations by now!**

#### OUTLINE

- Quantum chaos in many-body systems: early and late time scales
- **SYK model**: strongly chaotic but yet a solvable model
- Experimental setups: **flatbands** at work
- Adding structure to SYK: generalizations
  - $\circ$  <code>Mass-deformed</code> model  $\rightarrow$  Fock space localization
  - $\circ~\mbox{Finite distance model} \rightarrow \mbox{Solvable, genuine, MBL?}$
  - $\circ\,$  SYK on  ${\it graphs} \rightarrow {\it sparse}$  SYK, small-world SYK ...

#### Quantum chaos in many-body systems

• System with N degrees of freedom, **many-body** Hamiltonian,  $\hat{\mathcal{H}}$  $\Rightarrow pprox e^N$  energy levels, **mean level spacing**:  $\Delta pprox e^{-N}$ 

**Non-equilibrium dynamics:** prepare a state  $|\psi\rangle$  and let it evolve.

**RMT universality at late times:** [Bohigas, Giannoni, Schmit, 1984]

At late times, dynamics is described by random matrix theory (RMT). Thouless time:  $au_{
m Th}pprox 1/\Deltapprox e^N$ 

 $\Rightarrow$  **spectral correlations**: Finite N studies work well (ED)

Early-time chaos: [Larkin, Ovchinnikov, 1969; Kitaev '14; Maldacena, Shenker, Stanford, '15]

Spreading of local operators ⇒ OTOCs

$$(\hat{V},\,\hat{W}) ext{ local} o \langle [\hat{V}(t),\hat{W}(0)]^2 
angle = F(t)$$

• F(t) has **exponential** behavior for chaotic systems:

$$F(t) \propto e^{\lambda_L t} ext{ for } O(1) < t < O(\log N)$$

**Problem at finite** N: small time window at finite N.

Almost impossible via ED. **Analytic models** required  $\Rightarrow$  **SYK** enters

#### Few words on SYK [Kitaev, '15; Maldacena and Stanford, '16; ... ]

 $0\text{-}\mathrm{dimensional}\ \mathrm{model}\ \mathrm{of}\ N$  Majorana fermions

$$\hat{\gamma}^i,\;i=1,\ldots,N \quad ext{s.t. } \left\{\hat{\gamma}^i,\hat{\gamma}^j
ight\}=\delta^{i,j}$$

All-to-all, q-body Hamiltonian, with Gaussian disorder

$$\hat{\mathcal{H}}^{(q)} = \sum J_{i_1 \ldots i_q} \, \hat{\gamma}^{i_1} \cdots \hat{\gamma}^{i_q} \;,\; \langle J^2_{i_1 \ldots i_q} 
angle \propto rac{1}{N^{q-1}}$$

 $\mathbf{q} \geq \mathbf{4}$ : no hopping term  $\Rightarrow$  **strongly interacting**, our focus now

 $\mathbf{q} = \mathbf{2}$ : random mass term, integrable dynamics

### SYK solvability: $N \to \infty$ limit

- T=1/eta , averaged over  $J_{ijkl}$  (q=4), **2-point function** 

$$G( au) \equiv rac{1}{N} \sum_i \overline{\langle \hat{\gamma}^i( au) \hat{\gamma}^i(0) 
angle}_eta$$



 $\Rightarrow$  Compact **SD equations**:

$$G(\omega)^{-1} = -i\omega - \Sigma(\omega) \quad \Sigma( au) = J^2 G( au)^3$$

Higher point functions: [Kitaev '15; Maldacena, Stanford, '16; Gross, Rosenhaus, '17]

- Melonic dominance extends to all-point functions:
  - OTOC is a **4-point function**:



•  $\lambda_L$  saturates the **MSS bound** [Maldacena, Shenker, Stanford, '15]  $\Rightarrow$  Fastest scrambling

### **Experimental proposals**

- Key features and challenges:
  - $\circ \ 0\text{-dimensional}, \textbf{no momentum} \Rightarrow \textbf{flatbands} \text{ at work!}$
  - Random couplings, all-to-all
- Main proposals:
  - Interface topological insulator/superconductor [Pikulin, Franz, '17]
  - Graphene flake in a magnetic field [Chan et al., '18]
  - Digital quantum simulation [García-Álvarez et al., '17]
  - Few more [Chew et al., '17; Danshita et al., '17]

#### **Optical lattice platform for the Sachdev-Ye-Kitaev model**

Chenan Wei i and Tigran A. Sedrakyan Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

- A more familiar setup:  $\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{H}}_{\mathrm{imp}} + \hat{\mathcal{H}}_{\mathrm{int}}$ 
  - $\hat{\mathcal{H}}_0$  : tight-binding on **kagome** lattice with flux  $\Rightarrow$  **flatband**
  - $\hat{\mathcal{H}}_{imp} = u \sum_{r_m} a_{r_m}^{\dagger} a_{r_m}$ : random impurities on few sites •  $\hat{\mathcal{H}}_{int}$ : quartic interaction term

N particles on the flatband feel a low-temperature SYK-like physics

### Adding structure to SYK: generalizations

• SYK is **highly chaotic** and **solvable**: a **boring model**: everything thermalize very fast!

Can we add more structure and keep solvability? Less chaos?

- The answer is **positive**: many **generalizations** have been developed over the years
- Impossible to give a complete overview
   ⇒ I will describe some of them guided by my personal taste

#### Mass deformed SYK [García-García et al., '17; DR et al. '18]

$$\hat{\mathcal{H}}(\kappa) = \hat{\mathcal{H}}^{(4)} + \kappa \, \hat{\mathcal{H}}^{(2)}, \quad \kappa \equiv ext{mass parameter}$$

- Two terms with **opposite** behaviors
- Mass deformation controlled by  $\kappa$
- Chaos/integrability transition with  $\kappa$
- ETH/MBL transition? but no notion of space in the model, where is localization taking place?



### Fock space localization [Altland et al., '20]

• SYK mapped to N/2 spinless fermions:  $(\hat{\gamma}^{2i}, \hat{\gamma}^{2i-1}) \Rightarrow (\hat{c}^i, \hat{c}^{\dagger i})$ 

- In occupation number representation:  $\hat{\mathcal{H}}^{(2)}$  on-site energy
- $\hat{\mathcal{H}}^{(4)}$  hopping. Distance given by Hamming distance, h(|n
  angle,|m
  angle)

$$|n
angle, |m
angle ext{ connected if } h(|n
angle, |m
angle) \leq 4$$

- MBL scheme: competition between hopping and disorder
- MBL in Fock space. Some  ${\bf analytical\ results}$  at large N

## Mobility edge?

Does the mass deformed SYK model exhibit a mobility edge?

critical mass, κ<sub>c</sub>, looks
 energy-dependent

[DR et al., '18]

• Further numerical and analytical results necessary



### Adding space into SYK [García-García and Tezuka, '18]

- Several possibilities  $\Rightarrow$  several models
- Most straightforward: **sharp cutoff** distance, D

 ${\ } \bullet {\ }$  Chaos/integrable transition by varying D

#### Is this transition an ETH/MBL transition? [WIP with Dillip Nandy]

### SYK on graphs [Susskind, Swingle, Xu '20; García-García, Verbaarschot, DR, Jia, '20]

• All-to-all  $\Rightarrow$  complete hypergraphs  $\forall \ \hat{\gamma}_i \approx N^{q-1}$  couplings, demanding!

#### **Reduce connectivity keeping physics?**

• Sparse SYK:

Random, **regular**, hypergraph  $orall \, \hat{\gamma}_i o kq$  hyperedges only

- $\circ\,$  Quantum chaos for kpprox O(1)
- Regularity simplifies the **solvability**





#### New questions come out: [WIP with several collaborators]

- Hypergraph induced **ETH/MBL** transition?
- Which geometric features are crucial for the SYK physics?
   Hint: mean diameter of the hypergraph is the most prominent What about other features?
- Other sparse graph generating techniques (e.g. Watts-Strogats)
   Small-world SYK models
   Still columbia?
  - Still solvable?

### **Conclusions & Outlook**

- SYK model: **strongly interacting** but solvable model.
  - Many **generalizations**: exotic physics laboratory
- Flatbands are the realm of **strong interactions**:
  - They should be the perfect arena to realize SYK models  $\Rightarrow$  a single proposal for the **standard** SYK model exists.

#### **Can we use flatband setups to engineer SYK-like models?**