Flatbands – a romance with disorder and 2+3 dimensions*

WARWICK
THE UNIVERSITY OF WARWICK

Localization properties in disordered 2- and 3-dimensional Lieb lattices and their extensions

J Liu, C Danieli, J Zhong and RA Roemer

March 2021 / PCS IBS Daejeon

* with a nod to "Flatland – A Romance of Many Dimensions", Adwin Abbott, 1884

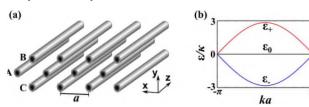
Flat band physics – the fate of compactly localized states (CLS)

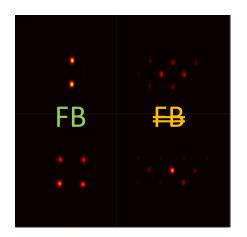
Flatband lattices—periodic media with at least one completely dispersionless Bloch band (*)

- Strictly localized states: B. Sutherland, "Localization of electronic wave functions due to local topology," Phys. Rev. B 34, 5208 (1986)
- Thm 2: large (magnetic) degeneracy for special topology (unsymmetric bipartite): E. H. Lieb, "Two theorems on the Hubbard model", Phys. Rev. Lett. 62, 1201 (1989) [Thm 1, uniqueness ...]
- Since then, much theoretical work from Mielke, Tasaki, Kohmoto, see D. Leykam, A. Andreanov, and S. Flach, Adv. Phys. X 3, 677 (2018) for a review
- Experiments?

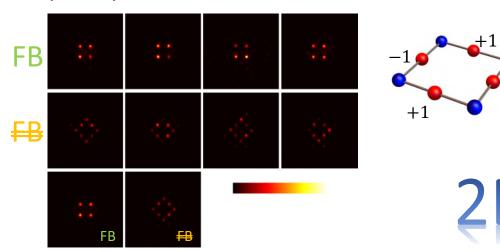
Two experiments with **photonic lattices**

S. Mukherjee and R. R.
 Thomson, Opt. Lett. 40, 5443 (2015).





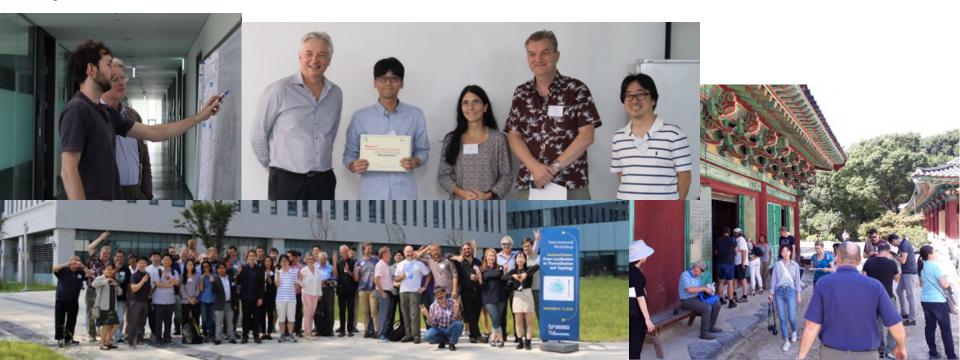
• S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, and R. R. Thomson, Phys. Rev. Lett. 114, 245504 (2015).



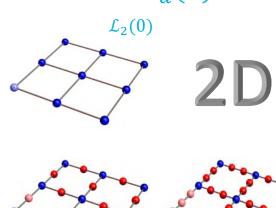
11th International Workshop on Disordered Systems: From Localization to Thermalization and Topology

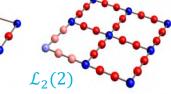
WARWICK
THE UNIVERSITY OF WARWICK

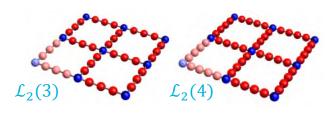
IBS Center for Theoretical Physics of Complex Systems, Daejeon, South Korea

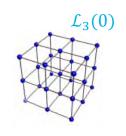


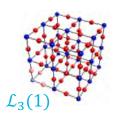
Lieb models $\mathcal{L}_d(n)$

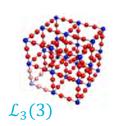


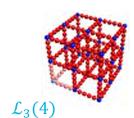




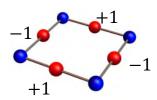








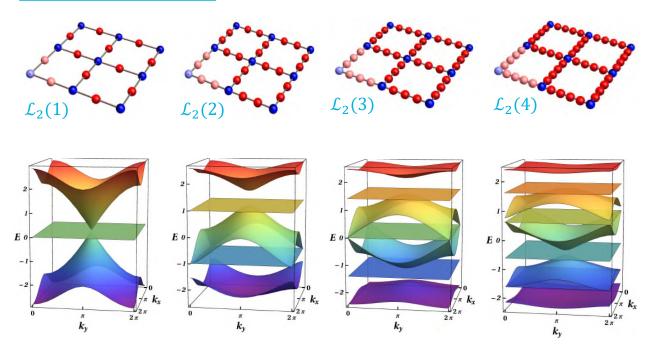
- Cubic systems with standard hub sites and additional rim sites
- The lighter shaded sites denote the unit cells.



Mao, Liu, Zhong, and RAR, Physica E **124**, 114340 (2020).

J. Liu, X. Mao, J. Zhong, and RAR, PRB 102, 174207 (2020).

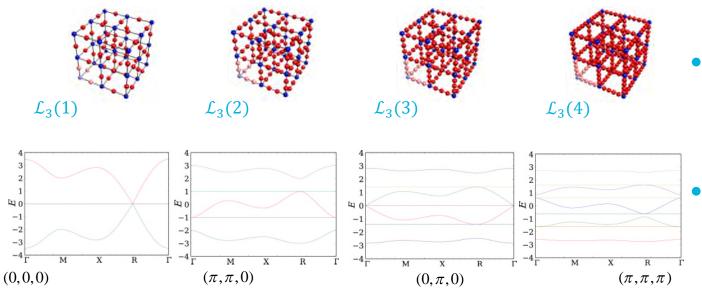
<u>Lieb model in 2D</u> and its extensions, the clean case



[also Da Zhang, Yiqi Zhang, Hua Zhong, Changbiao Li, Zhaoyang Zhang, Yanpeng Zhang, Milivoj R. Belić, "New edge-centered photonic square lattices with flat bands", Annals of Physics **382** (2017), 160-169]

- $\mathcal{L}_2(n)$ exhibits
 - n flat bands and
 - *n* + 1 dispersive bands
- Simple "square lattice" structure makes it straightforward to study
- Ideal test case for flat band physics

<u>Lieb model in 3D</u> and its extensions, the clean case



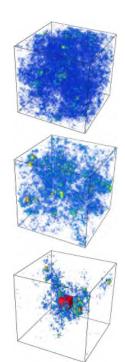
- $\mathcal{L}_3(n)$ exhibits
 - n flat bands and
 - *n* + 1 dispersive bands
- Simple "square lattice" structure makes it straightforward to study

$$H = \sum_{r} \frac{\varepsilon_r |r\rangle \langle r| - \sum_{\langle r \neq r'\rangle} t_{r,r'} |r\rangle \langle r'| \qquad \varepsilon_r \in \left[-\frac{W_2}{2}, \frac{W_2}{2}\right]$$

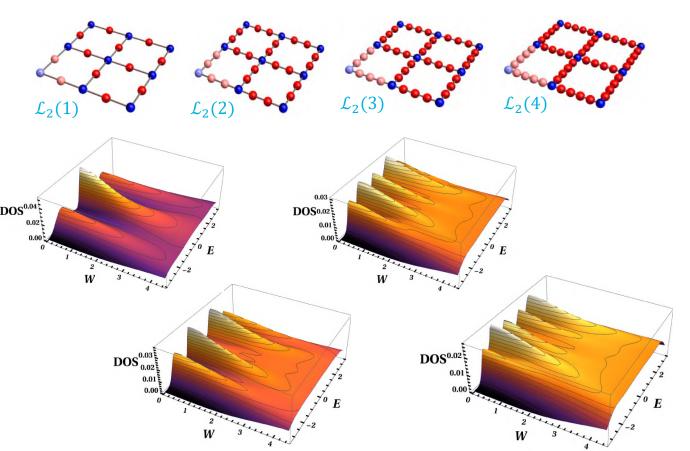
 Ideal test case for flat band physics in 3D

Question: what happens with [CLS-violating] disorder?

- 2D
 - X. Mao, J. Liu, J. Zhong, and R. A. Römer, Phys. E Low-Dimensional Syst. Nanostructures **124**, 114340 (2020).
- 3D
 - J. Liu, X. Mao, J. Zhong, and R. A. Römer, Phys. Rev. B 102, 174207 (2020).
 - 1. MIT, energy-disorder phase diagram and the critical disorder strengths
 - 2. No region of localized states around the flat band energies for small disorders
 - 3. no change in the critical properties of the MIT
- 3D with CLS-preserving disorder?
 - Topic of ongoing work, partial results below ...



Lieb model in 2D and its extensions, the disordered DOS



- $\mathcal{L}_2(n)$ exhibits
 - n flat bands and
 - n + 1 dispersive bands
- Flat bands immediately broaden
- At W ≈ 2, only the usual broad
 Anderson band remains

Lieb models and the transfer matrix (TM) method

Schrödinger equation

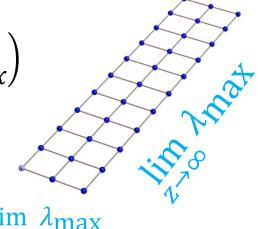
$$\psi_{z+1}(x) = \left(\frac{\boldsymbol{\varepsilon}_{x,z} \mathbb{I} - E \mathbb{I}}{\boldsymbol{t}_{z+1}} - \frac{\boldsymbol{t}_x}{\boldsymbol{t}_{z+1}}\right) \psi_z(x) - \frac{\boldsymbol{t}_z}{\boldsymbol{t}_{z=1}} \psi_{z-1}(x)$$

TM equation

$$\begin{pmatrix} \psi_{z+1}(x) \\ \psi_{z}(x) \end{pmatrix} = \begin{bmatrix} \left(\frac{\boldsymbol{\varepsilon}_{x,z} \mathbb{I} - E \mathbb{I}}{\boldsymbol{t}_{z+1}} - \frac{\boldsymbol{t}_{x}}{\boldsymbol{t}_{z+1}} \right) & -\frac{\boldsymbol{t}_{z}}{\boldsymbol{t}_{z=1}} \\ 1 & 0 \end{bmatrix} \begin{pmatrix} \psi_{z}(x) \\ \psi_{z-1}(x) \end{pmatrix}$$

Localization length

$$\lambda_{\max} = \min[\text{EV } \boldsymbol{\tau}^T (\boldsymbol{T}_z \boldsymbol{T}_{z-1} \cdots \boldsymbol{T}_1)]^{-1/2M}$$



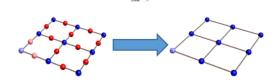
Lieb models and the transfer matrix (TM) method

$$\mathcal{L}_2(1)$$
:

$$\begin{pmatrix} B \\ c+1 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} A \\ x \end{pmatrix} \end{pmatrix}$$

$$\mathcal{L}_{2}(1): \qquad \begin{pmatrix} \psi_{x+1}^{B} \\ \psi_{x}^{A} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \frac{\epsilon_{x,y}-E}{t} - \frac{t}{\epsilon_{x,y-1}-E} - \frac{t}{\epsilon_{x,y+1}-E} \end{pmatrix} \mathbf{1}_{M} - \frac{\mathbf{t}_{y}}{\epsilon_{x,y-1}-E} - \frac{\mathbf{t}_{y}^{\dagger}}{\epsilon_{x,y+1}-E} & -\mathbf{1}_{M} \\ \mathbf{1}_{M} & \mathbf{0}_{M} \end{pmatrix} = \begin{pmatrix} \psi_{x}^{A} \\ \psi_{x-1}^{B} \end{pmatrix}$$

Renormalization:



$$L_3(1)$$
:

$$\begin{pmatrix} \Psi_{z+1}^{B} \\ \Psi_{z}^{A} \end{pmatrix} = \mathbf{T}_{A \to D} \begin{pmatrix} \Psi_{z}^{A} \\ \Psi_{z-1}^{D} \end{pmatrix} \\
= \begin{pmatrix} \mathcal{E} \mathbf{1}_{M^{2}} - \frac{1}{\epsilon_{z,x-1,y}-E} \mathbf{t}_{x-} - \frac{1}{\epsilon_{z,x+1,y}-E} \mathbf{t}_{x+} - \frac{1}{\epsilon_{z,x,y-1}-E} \mathbf{t}_{y-} - \frac{1}{\epsilon_{z,x,y+1}-E} \mathbf{t}_{y+} & -\mathbf{1}_{M^{2}} \\
\mathbf{1}_{M^{2}} & \mathbf{0}_{M^{2}} \end{pmatrix} \begin{pmatrix} \Psi_{z}^{A} \\ \Psi_{z-1}^{D} \end{pmatrix},$$

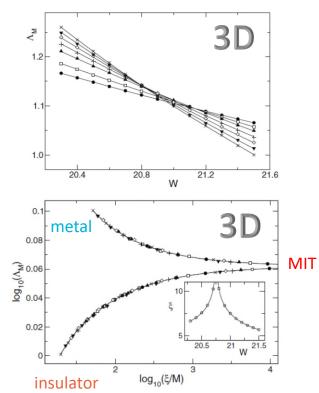
$$\mathcal{E} = \frac{\epsilon_{z,x,y} - E}{t} - \frac{t}{\epsilon_{z,x-1,y} - E} - \frac{t}{\epsilon_{z,x+1,y} - E} - \frac{t}{\epsilon_{z,x,y-1} - E} - \frac{t}{\epsilon_{z,x,y+1} - E},$$

Finite-size scaling of reduced localization lengths $\Lambda_M = {}^{\lambda_M}\!/_{M}$

• $\Lambda_M = f\left(\frac{M}{\xi}\right)$ depends on energy and disorder only through the localization length for the infinite system via

$$\xi(E,W)$$

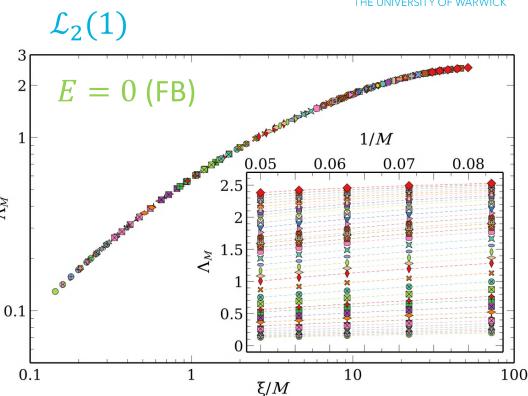
- Hence data for various E and W should fall onto the same curve $f\left(\frac{M}{\xi}\right)$
 - -> the $\lambda_M(E, W)$ scale!
- Divergence of $\xi(E_c, W)$ or $\xi(E, W_c)$ indicates MIT



Localization lengths in 2D

WARWICK
THE UNIVERSITY OF WARWICK

- Increasing disorders W=1,1.01,...,10 leads to reduced $\Lambda_M=\lambda_M/M$ values, i.e. more localization
- Increasing system widths M = 10, 12, ..., 20 leads to reduced Λ_M values, i.e. more localization
- Finite-size scaling gives single scaling curve with localized branch only

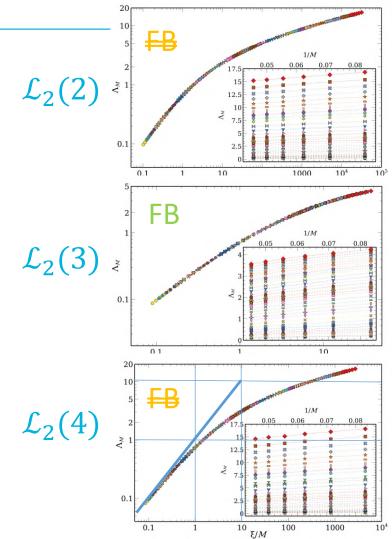


E=0Localization lengths in 2D $\xi/_M \cong \Lambda_M = \lambda/_M$ for large W!10 E=0 $\mathcal{L}_2(3)$ 1/MFB 0.05 0.06 0.07 0.08 2.5 0.1 0.5 0.1 10 100 ξ/M 10 E/M 100 1000

$$E=0$$

$$^{\xi}/_{M}\cong \Lambda_{M}={}^{\lambda}/_{M}$$
 for large $W!$

- Flat bands **localize differently** from dispersive bands:
 - At FB energies, the localization lengths λ are much smaller than for dispersive bands (DB) at the same disorder values
 - At FB energies, the scaling behaviour for $\Lambda_M = \frac{\lambda}{M}$ does not yet follow $\xi/M \cong \Lambda_M$ for disorders up to W = 10.



Localization lengths in 2D

• 1D: $\xi = {}^{105}/_{W^2}$

[Edwards+Thouless, JPC 5, 807 (1972)]

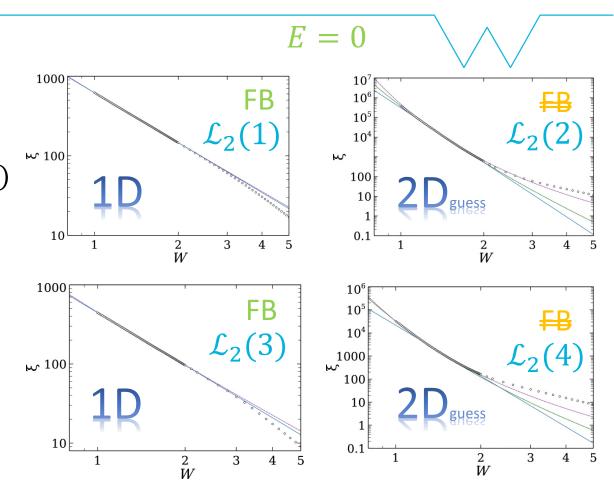
• 2D: $\xi = aW^{-\alpha}\exp(\beta W^{-\gamma})$

[Kramer+MacKinnon, Rep Prog Phys 56, 1469 (1993)]

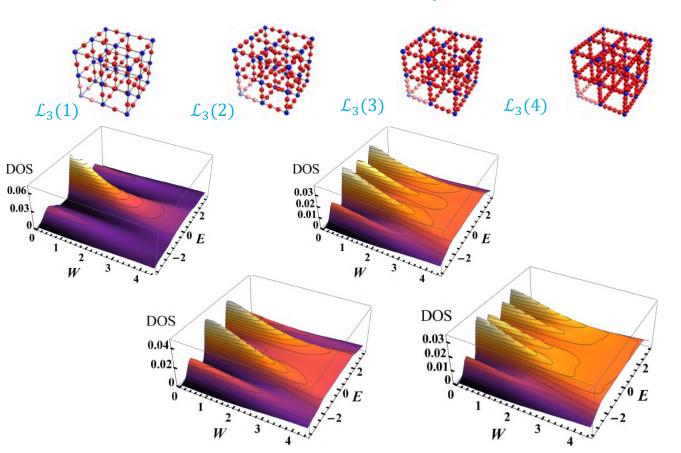
• 2D guess:

$$\xi = aW^{-2}\exp(\beta W^{-\gamma})$$

- -> clear differences in localization properties for FB and DB states/energies
- FB states are more (compactly?) localized for weak disorder

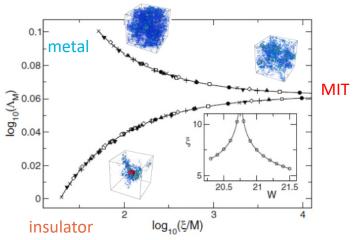


Lieb model in 3D and its extensions, the disordered case

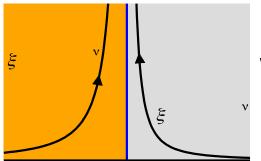


- $\mathcal{L}_3(n)$ exhibits
 - n flat bands and
 - n + 1 dispersive bands
- Flat bands immediately broaden
- At W ≈ 2, only the usual broad
 Anderson band remains

The 3D Anderson model with disorder



Divergent localization length

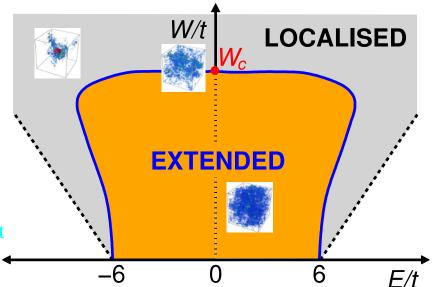


$$\xi \sim |X - X_c|^{-v}$$

with $X = E$ or W

v = critical exponent

Phase diagram in 3D

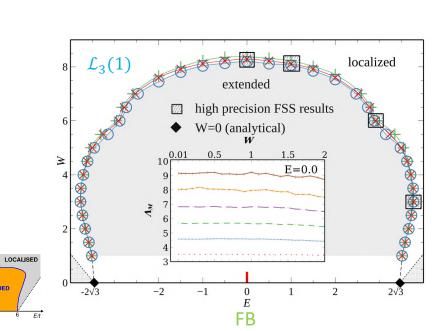


Disorderd and extended Lieb models in 3D (J Liu, Monday talk)

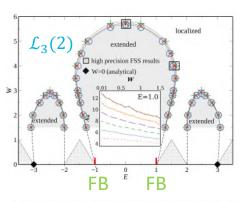
- Phase boundaries determined from scaling behavior with small $M^2 = 6^2, 8^2, 10^2 = 36, 64, 100$ (1%)
- High-precision checks up to $M^2 = 20^2 = 400$ (0.1%)

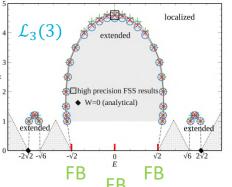
EXTENDED

- Disjoint "lakes" of extended states for small $W \lesssim 1$
- FB energies do not seem to lead to more localization when W → 0



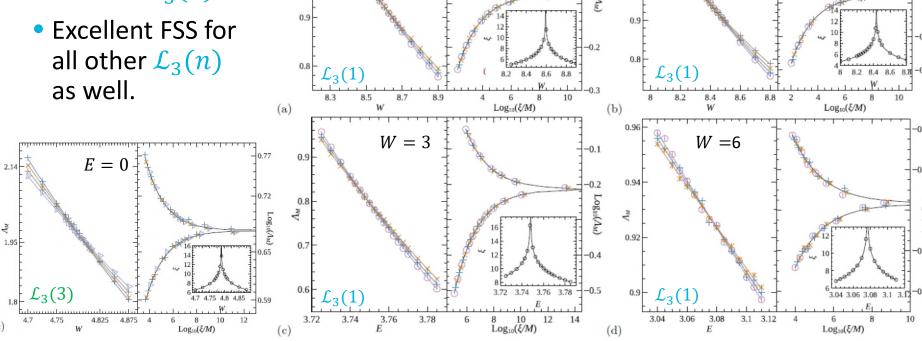
WARWICK THE LINIVERSITY OF WARWICK



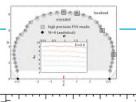


FSS for the disordered extended Lieb models in 3D

• Excellent FSS for all E and W value in $\mathcal{L}_3(1)$



E=0

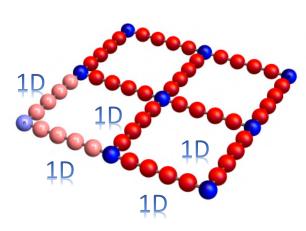


E = 0

						$\mathcal{L}_3(1)$				
	ΔM	\boldsymbol{E}	δW	n_r	m_r	W_c	$CI(W_c)$	ν	$CI(\nu)$	p
	16-20	0	8.25-8.9	3	1	8.594	[8.585,8.604]	1.57	[1.49,1.65]	0.15
Critical properties	16-20	0	8.25-8.9	2	2	8.598	[8.586,8.610]	1.55	[1.46,1.63]	0.08
Critical properties	16-20	0	8.25-8.9	3	2	8.595	[8.582,8.607]	1.57	[1.48,1.66]	0.13
والمنا المواسطة والمراكب	Averages:					8.596(4)		(1.56(3)		
of extended Lieb	ΔM	\boldsymbol{E}	δW	n_r	m_r	W_c	$CI(W_c)$	ν	$CI(\nu)$	p
	14-20	1	8.0-8.8	3	1	8.435	[8.429,8.441]	1.60	[1.54,1.65]	0.18
models in 3D	14-20	1	8.0-8.8	2	2	8.439	[8.432,8.447]	1.57	[1.53,1.62]	0.19
	14-20	1	8.0-8.8	2	3	8.438	[8.431,8.446]	1.57	[1.53,1.62]	0.21
	Averages:					8.437(3)		1.58(2)		
S	ΔM	W	δE	n_r	m_r	E_c	$CI(E_c)$	ν	$CI(\nu)$	p
• $\xi \sim X - X_c ^{-v}$ with	16-20	3	3.725-3.785	2	1	3.748	[3.747,3.749]	1.75	[1.68, 1.82]	0.88
$S \mid M \mid M \mid C \mid$	16-20	3	3.725-3.785	2	2	3.748	[3.747,3.749]	1.76	[1.67, 1.84]	0.86
X = E or W	16-20	3	3.725-3.785	3	1	3.748	[3.747,3.749]	1.75	[1.68, 1.82]	0.86
$\Lambda - E \cup V$	Averages:					3.748(1)		1.75(3)		
	ΔM	W	δE	n_r	m_r	E_c	$CI(E_c)$	ν	$CI(\nu)$	p
• $\nu = 1.59 + 0.1$	16-20	6	3.04-3.11	1	1	3.077	[3.070,3.083]	1.54	[1.08, 2.01]	0.14
$\overline{}$ $V = 1.39 \pm 0.1$	16-20	6	3.04-3.11	2	1	3.076	[3.069,3.082]	1.54	[1.09, 1.99]	0.24
	16-20	6	3.04-3.11	2	2	3.077	[3.069,3.084]	1.54	[1.07,2.00]	0.21
	Averages:					3.077(3)		1.54(14)		
[]						$\mathcal{L}_3(2)$				
	ΔM	E	δW	n_r	m_r	W_c	$CI(W_c)$	ν	CI(v)	p
1.8 - W=3	12.14.18	0	5.85-6.05	2	2	5.964	[5.958,5.969]	1.75	[1.57,1.92]	0.08
l	12,14,18	0	5.85-6.05	2	3	5.965	[5.959,5.970]	1.70	[1.51,1.89]	0.08
. W=6	12,14,18	0	5.85-6.05	3	2	5.963	[5.956,5.971]	1.75	[1.57,1.92]	0.07
E=0	Averages:				_	5.964(3)	[e.se-je.s. 1]	1.73(6)	[,]	
E=0 E=1	ΔM	W	δE	n_r	m_r	E_c	$CI(W_c)$	V	CI(v)	p
1.59 E=0	10,12,14	4	1.6–1.8	2	1	1.704	[1.701,1.708]	1.55	[1.43,1.68]	0.18
	10,12,14	4	1.6-1.8	1	3	1.705	[1.701,1.709]	1.56	[1.43,1.70]	0.1
	10,12,14	4	1.6-1.8	2	2	1.703	[1.700,1.707]	1.53	[1.40,1.66]	0.2
- W=4	Averages:	-	1.0-1.0	-	-	1.704(2)	[1.700,1.707]	1.55(5)	[1,40,1,00]	0.2
1.4	Tive lage of							1100(0)		
			211/			$\mathcal{L}_3(3)$	CIAWA		CICA	
]	ΔM	E	δW	n_r	m_r	W_c	CI(W _c)	V	CI(v)	<i>p</i>
1	12-18	0	4.7-4.875	2	1	4.79	[4.786,4.794]	1.63	[1.48,1.78]	0.49
	12–18	0	4.7-4.875	1	2	4.791	[4.786,4.795]	1.63	[1.48,1.78]	0.47
$L_3(1)$ $L_3(2)$ $L_3(3)$	12–18	U	4.7-4.875	2	2	4.791	[4.786,4.795]	1.63	[1.48,1.78]	0.47
	Averages:					4.790(2)		1.63(5)		

Conclusions 1: Extended and disordered Lieb models in 2 and 3D

- At FB energies, localization behavior can be different (2D); phase diagrams (3D) do not develop regions of localized states down to W=0.01
- FB states change phase diagrams and localization length values, but universal properties remain unchanged!
- Rim sites in Lieb model act as additional 1D localizers, 1D localization is strong (un-avoidable), hence Lieb models, even more so extensions, lead to stronger localization (W_c (Lieb) $< W_c$ (Anderson))
- BORING?



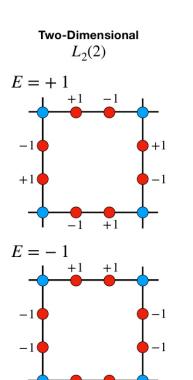
And then what!

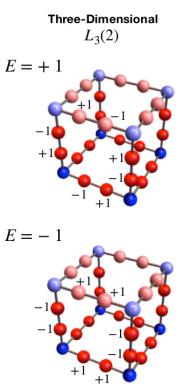
11th International Workshop on Disordered Systems: From Localization to Thermalization and Topology

IBS Center for Theoretical Physics of Complex Systems, Daejeon, South Korea

Carlo Danieli, referee for PRB:

"Make special disorder at hub sites only, no disorder at rim sites -> CLS will survive!"

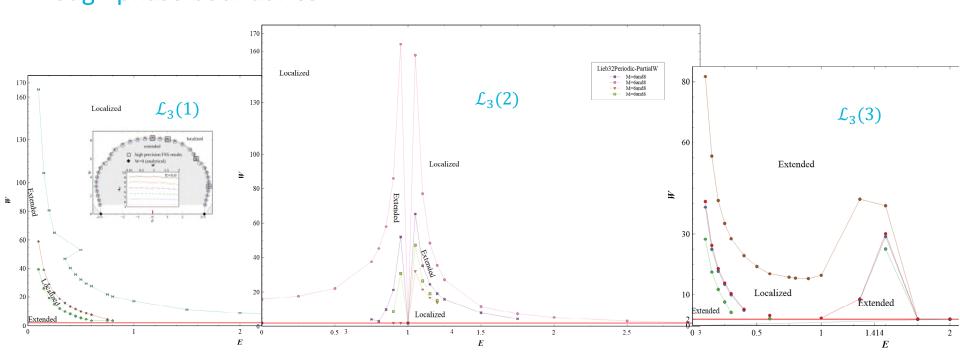




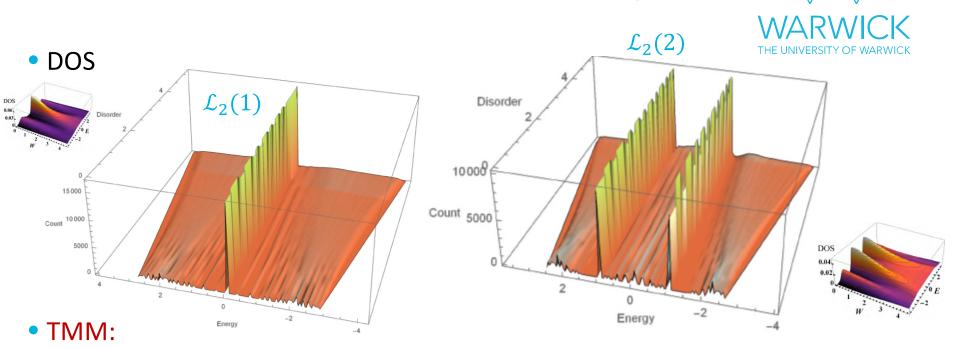
TMM, again ... but ... wait ...

 Again, we look for crossings as small M to establish rough phase boundaries

- Disorder on hub sites
- No disorder on rim sites



Extended Lieb models in 2 and 3D with CLS-preserving disorder



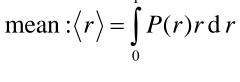
- much harder since effectively less disorder on renormalized sites, hence harder to converge
- How to compute modified phase diagrams for CLS-preserving disorder?

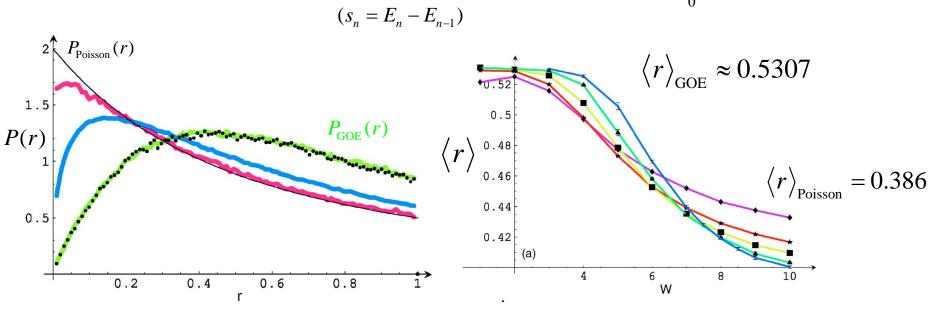
Energy-level statistics without unfolding

V. Oganesyan and D. A. Huse, Phys. Rev. B **75**, (2007):

$$0 \le r_n = \min\{s_n, s_{n-1}\} / \max\{s_n, s_{n-1}\} \le 1$$

$$(s_n = E_n - E_{n-1})$$

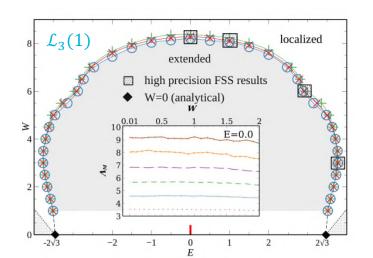




Does it work? Testing for the full disorder, equal on hub and rim

• TMM:

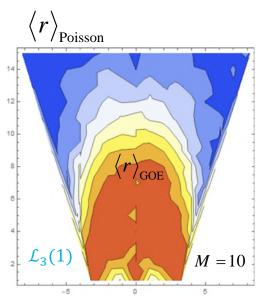
• Phase boundaries determined from scaling behavior with small $M^2 = 6^2, 8^2, 10^2 = 36, 64, 100 (1\%)$

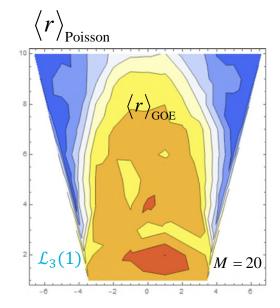


Sparse-diagonalization

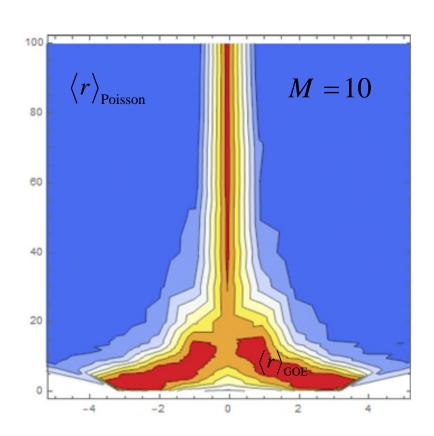
 Phase boundaries determined from <r> for M=10, 20, i.e. sites

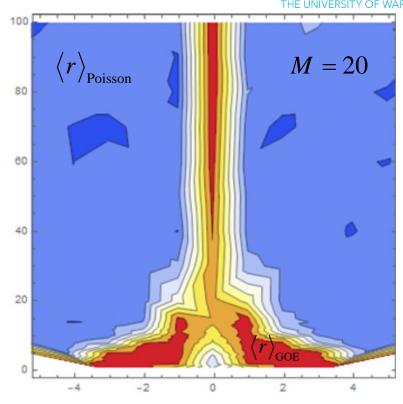
$$N = (3*10)^3 = 27000, (3*20)^3 = 216000$$



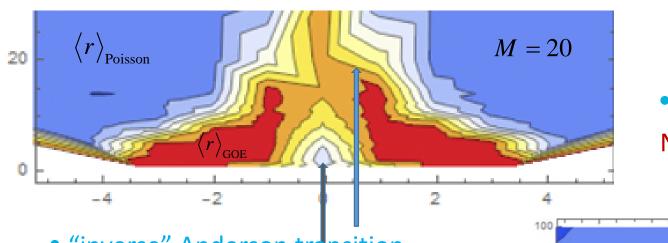


3D Lieb model with CLS-preserving disorder, 1st results



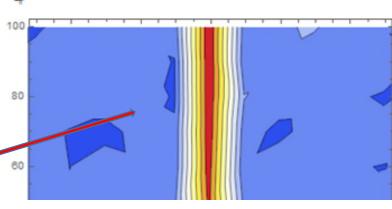


3D Lieb model with CLS-preserving disorder, 1st results



BORING?No more!

- "inverse" Anderson transition
- CLS states stop delocalization at FB energy E=0!?
- Why do CLS appear to show <r>
 values for GOE? Superposition of CLS?



Conclusions 2: Extended and disordered Lieb models in 2 and 3D

- At FB energies, localization behavior can be different (2D); phase diagrams (3D) do not develop regions of localized states down to W = 0.01
- FB states change phase diagrams and localization length values, expect universal properties to remain unchanged!
- Rim sites in Lieb models act as additional 1D localizers
- CLS-preserving disorder is weaker (in terms of critical disorder larger) and stronger (in terms of inverse Anderson transition) – much more work needed
- Someone to discover these (extended) systems in a material.

