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Abstract. A model for the linear and quadratic coupling of an anharmonic optical
phonon branch producing a structural phase transition at T = Tp with a band of
free electrons has been treated within an extended Eliashberg theory. The quadratic
coupling causes a critical behaviour of Te(Tp) as Tc — To due to a renormalization
of the linear coupling constant by a non-vanishing lattice order parameter for T £
Ta. The parameter of the isotope effect o shows an unusual behaviour. Zero or
even negative values of o are obtained if the superconducting transition is near the
structural one.

1. Introduction

Up to now there has been no complete theoretical study on the influence of anhar-
monicity in the lattice potentials on the superconducting transition temperature T,
and the isctope effect for electron—phonon-interaction-driven superconductivity. Prob-
lems appear in defining and evaluating the elementary excitations of lattices which
are characterized by large thermal amplitudes of ionic vibrations and hence by strong
anharmonicity. The effect of anharmonicity can be discussed on the basis of the
following on-site potential for a local normal coordinate @ of some lattice mode:
V(@) = aQ? + bQ*. Two cases have to be considered.

If @ > 0 then the anharmonicity becomes significant only for high enough tem-
peratures that a/b < {Q? holds. Then the temperature dependence of the phonon
frequencies and of the phonon lifetime (see [1]) can cause a substantial temperature
dependence of the Eliashberg function. For low enough temperatures a perturbation
approach works. As was shown in [2] the excitation spectra and consequently the
superconducting properties will be changed only slightly compared with the case of
harmonic phonons. However, the effect of phonon scattering (line broadening} will
reduce T., as was demonstrated in [3]. If the parameter @ becomes negative we get
a double-well potential. In such a case the lattice system can exhibit a structural
phase transition (SPT) [4]. The influence of this on the superconductivity was anal-
ysed in [5]. There it was assumed that the sum of stabilizing long range forces exceeds
the local harmonic instability a. At the SPT point Tj, the excitation energies of the
lattice under consideration go to zero. This soft mode behaviour leads to a strong
correlation of 7, and Tj,. The maximum value of T is reached if the lattice is most
unstable, i.e. if the lattice parameters lead to a SPT temperature which is equal to T7..
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The second consequence of a soft mode is a strong variation of the isotope effect of T.
For a certain parameter range the isotope effect becomes very small or even negative.
Another interesting case was discussed several years ago in [6]. Here the motion in
the double-well potential is considered for the strong low-temperature quantum case
of coupled two-level systems. A remarkable increase of T, due to the large thermal
fluctuations of the lattice motion was found. The isotope effect for such a model was
investigated in (7] and positive or negative values depending on A were found.

As we are dealing with lattices showing large thermal amplitudes of ions due to
anharmonic motions it is certainly necessary to take into account electron-lattice
coupling not only linearly in the displacements but at least also quadratically. The
influence of non-linear coupling was already discussed in [3] and [8]. There are two
effects. For small fluctuations [3] it was shown that the coupling constant } is reduced
due to the Debye-Waller factor. For strong fluctuations, however, an increase of
T, was predicted by [8]. Considering certain modes such as the tilting mode in the
La,CuO, system, the electron-lattice coupling quadratic in the displacements plays
the central role, as the linear coupling term is absent for reasons of symmetry (see {9]).
A different approach to the effect of anharmonicity on superconductivity was discussed
in the series of papers [10], [11], [12]. A double-shell model, e.g. for the oxygen ions,
with coupled double-well potentials combines the ferroelectric instability due to an
anharmonic electron-phonon interaction with an electronic instability. As regards
dependence on the model parameters, either a transition into a ferrcelectric or into a
superconducting state can be described within a self-consistent phonon approximation.
The isotope effect of T, was found to be much smaller than for the BCS theory.

The aim of this paper is to reconsider the influence of modes which are of special
symmetry and connected with some kind of lattice instability. This will be done in
a schematic model (section 2). For this model the Eliashberg theory is developed
(section 3), the lattice properties including the two-phonon Green function are calcu-
lated (section 4) and the results are compared with previous ones without quadratic
coupling (section 5).

2. The model and Eliashberg theory for linear and quadratic coupling

As we are interested in discussing the general features of the influence of anharmonicity
on the superconductivity we will treat a schematic model and do not claim to describe
any specific experimental situation in high-T,, materials. However, for numerical esti-
mations we use parameters typical for high-T,, superconductors. The model has the
following form:

H= Hel + JHrinl’. + Hlattice (21)
where H, describes a simple band in Wannier representation:
He] = Zt,-jc;t,cja. (2.2)
ijo

Hiatgice stands for the lattice subsystem containing only one vibration branch causing
a 5PT:

2
2 A, B 1
Hlatt.ice = E : (21;1 - Exzz + _4"3:1) + 4_ E :Cij(mi - mj)z' (23)
i
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For the interaction of the lattice vibrations with the electron band we take into account
linear and quadratic coupling in a simple form:

H,, = Zp:r,- cte, + qu? cte;. (2.4)

For a convenient treatment the Hamiltonian (2.1} was rewritten in the Nambu
matrix formalism (see e.g. [13])

H= Zt:‘j(ci *rye;)+ ZP-’L’:'(C;' Frac:) + qu,? {e; Yr3¢;) + Hipseice (2.5)
ij i i
where ¢; *, ¢; are electron vector operators:

c.

o ] ¢t = [c;'ica-l]. (2.6)
il

The 7;(i =0, 1, 2, 3) are the Pauli matrices. The one-electron matrix Green function

«ciT [C}!—T ] «Cn chl» } (2.7)

fetlehy defled

(with {A()|B(t"))} = —1O(t — t'){[A(z), B(t)]}, {-..) indicating thermodynamical
averaging, and A(f) Heisenberg representation of the operator A} is calculated with
the equation of motion method. This leads to an equation G = G, + G, PG, where
the zeroth-order GF is given by

Giy(w) = (esle; ¥ = [

A;(‘*‘) = (wrp —~ €73) 7" € =ty + Filzs) + o(ul)

u; = z; — {z;) P =p+ 2¢{z;) 1= {z;}. (2.8)

The renormalization of the linear electron-phonon coupling constant p in (2.8) due
to non-vanishing static displacements becomes significant if the lattice undergoes a
SPT, since {z;) is temperature dependent (see section 3 and figure 2). In the case of
vanishing electron-phonon coupling (isolated lattice) two solutions with {z;} = £|{z;}|
can appear at the SPT. Switching on the electron-phonon coupling, the eigenvalues
€, of the Hamiltonian (2.1) exhibit the symmetry ¢, (z;} = ¢,(~%;) in a perturbation
approach if the high-symmetry phase is assumed. However, this symmetry is broken if
the SPT is reached and ¢ # 0 is assumed, since different p (see (2.8)) lead to different
reductions of the ¢, within the conventional perturbation approach, i.e. larger  cause
lower ¢,,. Thus larger f-values are favoured.
For the polarization operator P the following expression is valid:

}3,.J- (wy=173 (ﬁz((c,-u,'[c;!' u ) + ¢* ((c,-éuﬂcfc?uf)}) T3 buf = uf — (uf). (2.9)

The Dyson equation G = éo + C?OM' G provides the relation between £ and the mass
operator M of the electron GF:

M= P(1+ PGyt = P, {2.10}
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The superscript ‘irr’ denotes the irreducible part (with respect to Gn) of the GF under
consideration. Decoupling electron and phonon variables in M an expression can be
found which coincides with the corresponding formula in the usual Eliashberg theory
with the only difference that beside the one-phonon GF Df; )(w) = {u;]u,)} we have
the two-phonon GF DE?)(w) = {{uf{u?)). Consequently the apparatus of the Eliashberg

theory has been applied in the usual manner. For the Eliashberg function a2 F{w) we
get:

a?F(w) = ﬁ—fg (52 );ImDE)(w) +q Zhjlmoﬁf)(w)) (2.11)

where N(Ep) is the electron density of states at the Fermi energy Er. To calculate
T, we use a standard interpolation formula derived by Krezin [14]:

0.25R0Y

Vet —1

where the electron—phonon coupling constant A and the averaged phonon frequency
§} are given by:

kT,

c

(2.12)

A -_-[: dw o F (w) fw " (2.13)

2_1 (% 2
Q =73 dw o” F{w)w. (2.14)
—o00

3. Treatment of the anharmonic lattice

The lattice Hamiltonian H\,;,;.. describes a system with a SPT of both displacive and
order-disorder type depending on the ratio A/Cy where Cp = 37, C;; is the inte-
grated interaction strength (see e.g. [15]). Here we are interested in a parameter range
(A/Cy < 1) where a so-called soft mode behaviour occurs, i.e. where an optical phonon
frequency w, (T} tends to zero for a certain wave vector g, as the SPT temperature T
is reached (w, (T = T,) = 0} [4]. For T < Tj, an order parameter # is involved. 7 is
connected with static displacements of the ions {z,}:

(z;) = ne®e R, 3.1)

R; is the position vector of the ith elementary cell. For sake of simplicity we assume
long range interaction forces C;; = Cy/N (N = number of elementary cells) and hence
q. = 0. This assumption does not change the general features of the phonon system
which are essential for our consideration namely a soft mode behaviour and a SPT. To
treat the anharmonicity «% in H\,,,,.. we use the standard Green function technique.
The thermodynamical averages are carried out with Hy,,,;.. only, i.e. the features of the
phonon system are calculated neglecting the electron-phonon interaction as is usually
done in the framework of the Eliashberg theory [13]. To evaluate the phonon Green
function D(l)(w) we use the self-consistent phonon approximation for the decoupling
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of correlation functions of higher order which works well if A/Cj; < 1 (see [15]), i.e. in
the parameter range of interest. This leads to the following coupled set of equations:

[

W)= —
Dy (w) = o o) (3.2)
mwl = A%+ Cy - € (3.3)
A? = —A +3B{u?) + 3B7” (3.4)
n(~1+7"+30f) =0 (3.5)
h 1 hw
N — Y —3 .
{(ufd SN S coth (2kT) . (3.6)

The temperature of the SPT, T}, is given by

kT = ¥ . 3.7
0 2,/m coth™! (4@-—_—2 "'A) @7

3Bh

Within the same order of approximation (self-consistent phonons, i.e. non-interacting
quasiparticles with temperature dependent energy) the two-phonon GF can be ex-
pressed in terms of the one-phonon GF:

D) = (U2 = — —eﬁw‘lf ~i (42 (1)0s?
DPw) = (i) = 5= [T [we uin)

2 _efP
=2 [ 60 udu; )
2 [, . =¢—1mDPE) mb} -5
= —f deodw - = ]
w2 w-E T _ | BE-3) _ 1

(3.8)

With the dispersion relation chosen above and inserting (3.2) and (3.6) we obtain

(D) = ) o
Dt:' (W)= m(w? — 4wi) (3.9)
with
wi = A4 C,. (3.10}

4, Numerical results and discussion

With the information gained in the preceding section the Eliashberg function (cf. equa-
tion (2.11)) is given

() = S (50— ) = 6+ ) + 47 (60— ) 80+ 2]
(41)
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Inserting this result into (2.13), (2.14) gives

N(E)
r= 280G 4 e (42)
02 = TEd 2 4 agrputy) (4.3)

Because of the T-dependence of wy and {u?) (see equations (3.6), {3.10)) A and
become T-dependent ((4.2), (4.3)). To determine 7, one has to solve (3.3), (3.5)
(3.6), (2.12) self-consistently.

In order to get reasonable values for the model parameters A, B, C, and m
we consider the tetragonal-orthorhombic SPT in La,__Sr,CuO,. This SPT is caused
by the softening of the tilting mode (rigid rotations of CuQg_ octahedra) at the
X point of the Brillouin zone {16]. A microscopical model for this SPT was given
in {17}, [18]. Plakida [19] transformed this model into a ¢*-model (2.3). The Sr-
doping = was expected to influence mainly the harmonic instability 4 due to changes
of the ionic charges at La(Sr) positions and the appearance of free charge carriers [17],
[18]. Since for 2 = 0 Ty(La,Cu0,) = 530 K is measured [20] the high-temperature
limit of equation (3.7) can be considered: T, ~ A. From the experimental result
Ty ~ {1 —4z) [20] it follows that A = Ay(l — 4z). An estimation of the model
parameters was given in [5], [17] using neutron scattering results:

2
i nf" ~ 60 meV? %‘l ~0.09 A2 (4.4)
Gy
A, ~ 2.44 m & 2.6M gy en- (4.5)

The electron density of states was assumed as N(Eg) =-1 eV~! [21]. Note that
generally z can be considered as a control parameter for shifting the SPT temperature
T and thereby the correlations between T, and T, can be studied.
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- Figure 1. Right-hand side of {2.12) as function ~ Figure 2. Lattice order parameter n(T) for x =
of temperature for (a) purely linear coupling (p = 0.1 (comresponds to Tp = 301 K).

1 eV A=1}; (b) linear + quadratic coupling (p =
1eV A-l,g=0.5eV A-2),
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The features of the above discussed model in the case ¢ = 0 (only linear electron-
phonon coupling) were given in [5], where a p-value of 1 eV A~! was used. Here
we want to study additional effects of quadratic coupling (g # 0). In a first step of
solving our system of equations we determined F(T') for £ = 0.1 and g = 0.5 eV A-2
where F(T) is the right-hand side of (2.12) as a function of temperature (figure 1).
For comparison we show our recent results for ¢ = 0 (cf. [5]). The main influence
of quadratic electron-phonon coupling in this parameter range is mediated by the
renormalization of the linear term p due to the appearance of an order parameter
7(T) (figure 2). While for ¢ = 0 we got a maximum in F(T) at 7}, due to the
softening of the phonon frequency w, at the SPT, now the rapid increasing of 5 below
Ty (n ~ (Tp — T)*/?) causes a drastic enlargement of F(T) below T,. However, in
the high-symmetry phase (7 = 0) the bare additional influence of quadratic electron-
phonon coupling (see (4.2), (4.3)) is negligibly small. This fact holds for ¢-values up
to 10 eV A-2,

Figure 3. Superconducting transition temperature T: as function of the control
parameter z, which shifts the SPT temperature, for different quadratic coupling
strengths g (in eV A—2).

Now let us calculate T,(z) by solving the self-consistent equation T = F(T"). The
results are shown in figure 3. With increasing ¢ the maximum in 7.(z) shifts from the
z-value where T, = Ty(g = 0) toz = 0 (¢ > 1 eV A~2). The critical behaviour of T,,(x)
for z — = is due to the fact that at z_ the SPT appears and the critical behaviour of
7(z) leads to a similar one of f(x) (see (2.8)). Thus for ¢ = 0.5 eV A~2 a dependence
can be reproduced where T (z} is nearly constant in the low-symmetry phase (7 # 0)
and rapidly decreases as the high-symmetry phase (3 = 0) is reached. The parameter
of the isotope effect @ = d(InT,)/ d(Inm) exhibits suprising features within our model.
To calculate the dependence of & on x for the above model parameters we determined
T, for O and for the O'® oxygen isotope mass and then o according to the relation

_ AT, _m(0)
*= T{0%) Am
AT, = T (0'%) - T.(0"®) Am = m(0'®) — m(0®). 4.7

(46)
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Figure 4. The parameter of the isotape effect o as a function of the control param-
eter = for ¢ = 0(0},g = 0.5eV A~?{A) and g = 1 eV A2 (u).
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Figure 5. Shift of T: due to isotope mass change, p = 1eV A~! g = 0.5V A~2,

The a(z)-dependence is shown in figure 4. For ¢ = (o(z) shows a steplike decrease
(T, = Tp) while a(z) is nearly independent of z for z < z, and z > z.. The value of o is
nearly the same as for BOS superconductors: 0.43 < o £ 0.5. With increasing ¢ strong
deviations from the ¢ = 0 case appear near 2 if # < #,. o decreases drastically for
¢ — z, and even reaches negative values for strong enough quadratic coupling. This
behaviour is a consequence of the dependence of T, on z ( see figure 5). For slightly
enlarged isotope mass the T (x}-curve shifts downward and to higher z-values.

Let us discuss the results. The main effect of quadratic electron-phonon interaction
on T, comes through the renormalization of the linear coupling term p due to non-
vanishing static ion displacements. Such temperature dependent displacements occur
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if the lattice undergoes a SPT. That means that the expansion of the electron hopping
matrix elements in powers of the lattice displacements around the equilibrium positions
of the ions lead to a temperature dependent linear electron-phonon matrix element p.
Thus one has to be careful to use o F(w)-data from experiments done at higher
temperatures {e.g. room temperature) than T, or even T since the possible existence
of a SPT can change the electron-phonon coupling crucially due to an increasing order
parameter with lowering temperature. Especially in the case of high-temperature
superconductors (T, > 100 K) it seems to be possible that SPT at lower temperatures,
i.e. in the superconducting state, can appear and cause a temperature dependent
renormalization of the electron—phonon coupling. Then the temperature dependence
of the superconducting gap and the eritical magnetic field is changed and the ratio
2A/kT, becomes larger than the BCs-value.

5. Summary

In the present work we treated a simple model which describes free electrons coupled to
anharmonic lattice vibrations linear and quadratic in the displacements. The lattice
undergoes a structural phase transition at T, with 2 soft mode behaviour. While
with purely linear coupling the superconducting transition temperature T(Tp) has its
maximum if T, = Ty, non-vanishing quadratic coupling causes a critical behaviour of
T.(T,) as T, — Ty. This is due to a strong renormalization of the linear coupling
constant by the existence of an order parameter for T' < Tp. At the same time the
isotope effect rapidly decreases as T, — T, and even zero or negative values are
obtained.
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