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Abstract. Predictions of a mode-coupling approximation (Mca) are compared with
molecular dynamical simulations of one-dimensional &*-lattice systems with different
next-neighbour interaction strengths. In the long-time behaviour we find complete dis-
agreement for weak coupling, whereas some predictions of the MCA are qualitatively
verified in the strong-coupling case, indicating different sources for long-time correla-
tions (local phase space separation or soliton-like solutions of non-linear differential
equations).

Up to now it has been an open question whether or not the long-time behaviour of
the displacement-displacement correlation function S of perovskite crystals causing
a parrow central peak (CP) in the van Hove scattering function near structural phase
transitions (SPT) {1] can be described using a decoupling procedure in the relaxation
kernel of S. This decoupling method (factorization) leads to mode-coupling equations
for S, ie. the relaxation kernel becomes a power of S itself [2]. The approximation
will be defined as a mode-coupling approximation (MCA) due to the special character
of the resulting equations (see below).

The first step towards answering this question is to define a microscopically moti-
vated model. For many purposes it seems reasonable to choose the ®*-lattice model,
since most qualitative features of SPT of perowskites are reproduced by it [1] and
there exist ab initio calculations clearly demonstrating the multiwell character of the
lattice potential (of the high-symmetry phase) [3, 4].

Using the MCA, Aksenov et af [2] obtained long-time correlations (LTC) = S(t —
co) near the SPT of the ®*-model. Moreover they found a transition temperature
T, separating phases with and without LTC (T > T., T, = sPT temperature). This
additional transition is well understood within schematic models of liquid—glass tran-
sitions [5]. Gotze et al ([5] and references therein) solved the slow dynamics of such a
schematic model near the singularity point T, obtaining scaling laws and well-defined
relaxation properties (depending on the model analysed). Hence, it should to be very
interesting to investigate the applicability of the mode-coupling theory of liquid-glass
transitions to a lattice model describing a SPT.

The result may strongly depend on the interaction range. In [6] the one-
component ®*-lattice model was studied for infinite-range interactions. In this case
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the LTC appear due to phase space separation of this non-ergodic system for N — oo
(N integrals of motion, N is the number of unit cells). A comparison of these exact
results with a MCA yields good agreement (except for at low temperatures) for zero
decoupling times, ie. for static correlations, and complete disagreement for infinite
decoupling times (in which we are interested) [7, 8).

However, in the case of finite-range interaction it is an open question under
which conditions and for what reasons LTC may appear. In a great number of molec-
ular dynamics (MD) studies of the ¥*-model with next-neighbour interaction (NNI) the
long-time behaviour of the model was analysed ({9-14] and references therein). How-
ever, there has been no systematic study of the applicability of MCA. So our aim was
to obtain such information from MD simulations of d=1, 2-dimensional $4-systems
with NNL

In this letter we present results on one-dimensional systems. The lack of a
SPT in these systems (T, = 0, [15]) does not seem to be important since quasi-
one-dimensional systems exhibit a SPT and will also exhibit the properties discussed
below.

We mention here calculations [16] made in studying LTC caused by defects. Such
defects are also good candidates for producing the CP in perovskites. However, they
are not of central interest here.

We will briefly describe the model and the main results of MCA,and then give a
short explanation of our simulation technique and of the physical quantities calculated.
The main results are then presented and discussed.

We start by studying the scalar ®*-lattice model with NNI:

H=Y(Z x4 ixt 4 Lrex, - x, ) W
- ! 9 9 i 4 I 9 [} i=1 .

X, and F; are canonically conjugate particle displacements and momenta. Index !
runs over all unit cells. f is the harmonic interaction constant of nearest neighbours.
All variables are dimensionless (see [6]). This model exhibits a SPT of second order
at a temperature T, . For d = 1 one has, however, T, = 0 [1, 15].

The mode-coupling approach starts with the Laplace transform

O
5,(2) = %/; di €t (1) Im(z)>0 with A =Y ¥4, @)
!

of the displacement—displacement correlation function

S (1) = (X)() X,(0)) 3)

whete the brackets denote thermodynamic averaging for a canonical ensemble.
Using standard Green function equations of motion [17] one obtains

Sy (2) = (X2} [{z = (T/{X ) [z~ (1/T)My(2)]} 4)

where the structure of the relaxation kernel M, (z) can be found elsewhere [2, 7, 8].
Using simple factorization procedures within M, (z) one derives the ‘mode-coupling
approximation”:

My (1) = vS7,.(2). ®)
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The parameter - is usually assumed to be equal to 6 [2]. However, the scenario
described below remains qualitatively unchanged if - is varied (cf [7]).

The equations (4) and (5) can now be solved self-consistently. Using the results
of a corresponding schematic F,-model [5] one can reach the following conclusions.

(1) There can exist non-vanishing long-time correlations
Ly, = Jlim Sy (2). (6)
(2) If they exist then there exists some temperature T such that for
T > Ts an =0 (7)
TST, Ly#0.
(3) The dependence on Ly (T) is discontinuous at T:
Lp(T—T;-0)#0. 3)
- (4) Near T, (T < Ty) the dependence on L;.(T) is given by

Lp(T) — Lp(T) ~ [T = T. %)

(5) Near T, (|T' - T,|/T, < 1) one obtains 8- and a-relaxation properties of S
(see {5]). The relaxation process we are interested in (L,,) freezes in at T, ie. its
time scale

ty, ~ to/[(T — T) [ T,)H/241/% o
diverges as T}, is reached (7, is the relevant microscopic time scale and a >0, 6> 0

are model parameters).

The numerical solution derived in [2] under some additional assumptions agrees
with 1-4 whereas property 5 was not under study for model (1).

We now discuss the molecular dynamics technique. In order to obtain ther-
modynamic properties of model {1)—especially the time dependence of correlation
function (3)—we performed MD simulations foliowing [11]. The Langevin equations
with Gauss-distributed stochastic forces F;(t)

X\(t) = ~8H[8X, - TP, + F(?) (11)

/F,(t)Fk(t +7) dt = 2TT6,,6(r) (12)

are solved numerically. The friction constant F' must obey the inequality
characteristic microscopic time < 1/T" < simulation period.
We used a Verlet algorithm [11] and the parameters
time iteration step, At =0.05 I'=10"3

13
probability of a random pulse = 0.05 (13)
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The equations of motion were solved under periodic boundary conditions. The system
sizes under study were N =100, 500, 2000, 4000. S

The Fourier transformation of X;(t) is obtained using a fast Fourier transform
[18]. We obtain Sj(w;) at 10* w,-points, A smoothing of the spectra does not
change the area below S(w). The final resolution of a low-frequency excitation in
w-space is 2 x 1072 Since the LTC in (6) can be described as the integral over the
corresponding 6(w)-peak in S{w), we define L in our computer simulations as the
integrated intensity of the central peak component (if it exists and is clearly separated
from the dynamical part of the spectrum) of S(w):

L= /; L Sp(w). (14)

Each run was started with Gauss-distributed momenta P, ((1/N)3, P2 = T) and
zero displacements. The first simulation period T,, = 2000 was used to reach
equilibrium with a large I',, = 0.03. The subsequent simulation time 7, = 9830.4
with parameters (13) was used to obtain the time evolution of our system. During this
time 7, the deviation from equilibrium was checked by calculating the difference of
the the integrated averaged squared momentum and the MD temperature 7° occurring
in (12).

To obtain the Fourier spectrum of the correlation function S;(t) we use the
discrete Wiener-Khincin theorem [18]:

T./At~1 .
Splwy) = X (w)? X{wg) = At E e~CGmi/Tk At X \(At 5)
=0
(15)
_ 2=k . 17T 17,
W = T 'k-——zm,n.,"‘l,o,l,...,zAt—1.

s

Besides (14) we aiso calculated the following thermodynamic quantities: the mean
square displacements (X7), the mean cluster length {I) (mean length of chain parts
with equal sign of particle displacements), the mean constant sign time (r) of one
particle displacement and the FWHM (full width at half maximum) of the central peak
component in Sj(w).

We tested our simulation technique by using different potentials, e.g. harmonic
systems, and found no disagreement with exact results. The main argument supporting
our method js, however, the simulation of a system with infinite-range interaction
and vanishing interaction strength (because of the use of reduced variables, this
corresponds to simply letting f = 0 in (1)). For such systems exact results for
(X#) and L are known [6], The data are compared in figure 1. They show perfect
agreement for {X?) and good (deviations < 10 per ceat) agreement for L. Thus we
expect all our numerical procedures to be applicable to the more interesting case of
NNL

We first discuss the qualitative features of the S(w)-spectra for different ranges
of T and f. For weak coupling f < 1 the spectra exhibit a well defined central peak
component and a resonant part (figure 2(a)). This holds for all temperatures except
for at the high-T limit. The height of the CP decreases drastically with increasing T’
whereas the FWHM depends only slightly on T. For coupling constants f > 1 the
low-T limit of S(w) looks similar to the weakly coupled case. However, an increase
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Figure . {X7} (2) and L (b) versus temperature  Figare 2. Su(w)-specira for typical cases. (x)
for f=0. Stars-—mD result; solid line—exact result  T'=07, f=01. (b) 7=09, f=4. () T=09,
from [6]. F=04.

of T leads to an additional coalescence of both parts of the spectrum (figure 2(b)).
For high enough T the CP component disappears in all cases (figure 2(c)). Varying
the interaction strength f for constant temperature, the FWHM shows a maximum
at some intermediate value of f and vanishes for vanishing f (this corresponds to
the infinite-interaction case) but surprisingly also for high enough f. Except the
mean cluster length, all other thermodynamic quantities also exhibit 2 maximum (or
minimum) at the same intermediate value of f. This suggests different origins for
the LTC in the case f — 0 (phase space separation) and in the strongly coupled case
f > 1 (non-linear dynamic behaviour).
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Figure 3. {X?) versus temperature for different  Figure 4. L(T) for f=0.1 and f=4, Squares—
coupling strengths f. 'Triangles—N =500; stars—  N=100; stars—N=500; triangles—N =2000 (the
N=2000. lines are only guides for the cye).
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The mean square displacements as functions of T are shown ir figure 3. For weak
coupling we obtain nearly the same T-dependence including a minimum at T = 0.2
as in the case of infinite-range interaction (¢f figure 1). With increasing coupling
strength the minimum becomes deeper and shifts to higher temperatures in contrast
to what is found in the infinite-range interaction case [6].

The calculated integral cp intensities of S(w) (according to (14)) are shown in
figure 4. For weak coupling, f <« 1, the L(T)-curve is similar to the infinite-range
interaction result (figure 1), indicating that also for finite, but weak NNI1 the MCA is
unable to explain the temperature dependence of the long-time correlations [7] (no
plateau in L(T) — no indication of T ). Increasing the coupling strength changes the
situation, however. First of all the curvature of L(T) seems to change its sign. Thus
one should expect an L({T)-dependence with some plateau. We are unable, however,
to determine L(T) at arbitrarily high temperatures due to the above-mentioned
coalescence of both the CP and the resonant parts of S(w) with increasing 7.
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Figure 5. Inverse mean constant sign time 1/(r}  Figure 6. Inverse mean cluster length 1/{l} ver-
versus temperature for different coupling strengths  sus temperature for different coupling strengths f.
f. THangles—N =2000; stars— N =4000. Triangles— N =2000; stars— N =4000.

To decide whether or not some predictions of MCA become true for strong cou-
pling, we plot the inverse mean constant sign time 1/(r) and the inverse mean
cluster length 1/{l) as functions of T (figures 5, 6). We clearly see that for strong
coupling there exists a crossover temperature separating temperature regions with
different T-dependences of () and {{}. The dependences on 1/{l) and 1/{r} in
the crossover region are smooth and a fictitious break in the plots occurs only due
to the chosen scale of the ordinate. For decreasing coupling this crossover region
shifts to lower temperatures. It is interesting to notice that no crossover is seen in the
T'-dependence of the mean square displacements and thus of the local susceptibilities.
No N-dependence of our results was found. Moreover we caiculated distributions
of cluster lengths and constant sign times for N=100, ..., 4000 and found identical
distribution functions. Thus size effects can be excluded.

Now let us discuss the results. In the case of weak NNI a 1D $?-system behaves
similarly to a @*-model with infinite-range interaction not only with respect to the
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mean square displacements ({(X?} = fj:’ S(w) dw) but also with respect to the
integrated CP intensity. Thus we conclude, in the same manner as in [7], that in this
case MCA does not work for large times in (5) and predictions of Mca fail.

The strong-coupling case exhibits new features: first the L{T)-dependence
changes its curvature thus making a sharper crossover to small L-values with in-
creasing temperature possible. Secondly we see a crossover in the temperature de-
pendences of {I} and (). This observed crossover temperature is definitely below the
temperature range in which the L({T')-crossover is expected. This is not surprising in
MCA: assuming the existence of T, one expects cv-relaxation processes for T' > T,
at large times [5] (see property 5, abovc) This slow «-dynamics is not resolved in
the CP by our technique. Thus an evaluation of the L{T)-curves obtained by our
simulation method should, indeed, yield values for T, that are too high . To avoid
this overestimation one should study the extreme ]ong -time behaviour of S(1).

Summarizing, we conclude that LTC appear in a 1D $4-model due to phase space
separation for weak NNI coupling while they seem to have a different origin (e.g.
soliton-like solutions of the continuum limit [19]) in the case of strong coupling.
Consequently MCA predictions fail in the weak-coupling case while they seem to be
more relevant in the strong-coupling case.
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