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Localizedexcitationsin a discreteKlein—Gordonsystem
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Weanalyzetheorigin andfeaturesoflocalizedexcitationsin adiscreteKlein—Gordonsystem.We connectthepresenceof these
excitationswith theexistenceof localintegrabilityoftheoriginalN-degreeoffreedomsystem.Onthebasisofthisexplanationwe
makeseveralpredictionsabouttheexistenceandstabilityoftheseexcitations.

1. Introduction modelsthat correspondto discrete nonlinearsys-
tems.In thatcasethetranslationalsymmetryis bro-

Solitarywavesandsolitonsplay a significant role ken, andthusthe mathematicalpropertiesof non-
invariousphysicalproblems[1,21.Nonlinearforces linear localized excitations (NLE) like kinks or
actingon fields (continuumproblem)or interacting breathershaveto be reconsideredwith respectto
particles(discreteproblem)arenecessaryfor theex- discreteness.That hasbeena topic for a huge num-
istenceof solitons.A largevarietyof nonlinearcon- berof scientificpublications.Recentlya newclassof
tinuummodelsexhibitssoliton-like features.Forex- self-localizedmodesindiscretenonlinearlatticeshas
ample practically all Klein—Gordon systemswith beenintroducedand studiedby Takeno and co-
multiwell on-site potentialsexhibit single kink so- workers(seerefs. [3,4], andreferencestherein).The
lutions. Howeveronly for specialpotentials (like eigenfrequencyof thosemodesusuallywasfoundto
sine-Gordon)do thesekinks becomereal solitons, beabovethe upperphononbandedgefrequency.In
i.e. the correspondingsystembecomesintegrable. that casethe found modeshaveno counterpartsin
Besideskinks in the sine-Gordonsystem(sG) so- the correspondingcontinuum models.The shapes
calledbreathersarefoundtobeexactsolutions.These andfrequencyof thesemodeswerecalculatedusing
breatherscanbe viewed asbound statesof a kink the rotatingwave approximation(RWA) [51.
andan antikink. The importantdifferencebetween We wantto presenta carefulanalysisof nonlinear
kinks andbreathersis, that breathersare local ex- localizedexcitationsfor a discreteone-dimensional
citationsabovethe ground state having the same system.Thefrequencyof theNLEs canbeeitherbe-
symmetry as the ground state.Kinks (and anti- low or abovethe optical phononbandfrequencies.
kinks) are “links” betweendifferent equalground We will show that the existenceof thoseexcitations
states,sothat theselocalexcitationsdo nothavethe is due to the integrabiityof theoriginal N-degreeof
samesymmetryasanygroundstate.Kinksarethere- freedomsystemin partsofthephasespace(localin-
fore importantconcerningsecondorderphasetran- tegrability).Theexistenceof KAM-tori is shownus-
sitions,wheresymmetrybreakingtakesplace.How- ing FourieranalysisandPoincaréintersections.We
ever, dynamicalpropertiesof the abovementioned proposea perturbation-likescheme,which can be
systemsmaybeaffectedby thepresenceofbothkinks adoptedfor very discretesystemsas an easywayto
andbreathers. accountfor the main featuresof the NLE. Wefor-

A large number of physical applications have mulatestability conditionsof theNLE, which mainly
usethe integrability characterof the solutionsand

E-mail: flach@buphy.bu.edu. their couplingto small amplitudephonons.An im-
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portantfinding is anenergy thresholdfor the exis- wash=0.005.ThesystemsizewasN=3000.
tenceoftheNLE. Thisthresholddependson thede- Beforecomingtoexamplesof NLE, let usmention
greeofdiscretenessandcanbequalitativelyexplained the propertiesof (2.1) for small amplitudeoscilla-
within the above mentioned perturbation-like tionsaroundthe groundstate.A simplecalculation
scheme. yieldsthe following dispersionlaw for small ampli-

tudephonons,

2. Model and localized solutions. w~=w~+4Csin2(xq/N), (2.3)

whereq=0, 1, 2, ..., N—i is the wavenumber,Wq ~5
We study a d= 1 dimensionaldiscrete classical the frequencyof a phononwith wave vectorq and

modelgiven by the Hamiltonian ~ measuresthelower phononbandedge:a
0 =

N As (2.3) indicates,onemajordifferencebetweenthe
H ~ [~P,

2+ ~C( Qi — Q,_ 1)2+ V(Qi)] . (2.1) considereddiscretesystem(2.1) andits continuum
counterpart(C—4CX)) is the existenceof a finite up-

P
1andQ~arecanonicallyconjugatedmomentumand perphononbandedge.Thisfact is responsiblefor

displacementof the lth particle,where/ marksthe thepossibilityofexcitingNLE with frequenciesabove
numberof the unit cell. C measuresthe interaction thephononbandin contrastto thecontinuumcase.
to the nearestneighbourparticles.All variablesare Howeverherewewill studyNLE with frequenciesin
dimensionless.The massof the particlesis equalto the gap. We will seethat althoughthe continuum
unity. N is the total numberof particles.The non- counterpartsdo exhibita gap,thenatureof theNLE
linearity is hiddenin the “on-site” potential V(x). in thediscretesystemis nottrivially connectedwith
Herewe choosethe Z~type potential, possibleNLE in the continuumsystem.

V( )—V ( )._4( 2_l)2 (22) Now let us show a typical exampleofNLE for aX — •~X X specialchoiceofthe interactionstrengthC=0.1.This

For conveniencewe restrict ourselvesto potential valuewasconsideredbecauseit correspondstoabal-
(2.2). It will be seenfrom the analysisthat in prim- ancebetweentheon-siteenergyof a particleandthe
ciple the methodscanbe applied to othersystems energyof the springsconnectingit to theneighbours
with analogousresults.EspeciallyNLE were found for energiesof theorderof thebarrierheightof V(x).
for Fenni—Pasta—Ulamsystems(wherethe nonlin- To characterizethe behaviourof the systemwe in-
ear local potential V(x) is replacedby nonlinear troducea local energyvariablee,,
springs) [6] and for hard quartic anharmonicity 2

V(x) =x
4 [3]. Higherdimensionalityd~2 should e,= ~P, + V(Q~)

alsobe no principal hurdle [4]. +~C[(Q
1—Q,_1)

2+(Q,—Q
1+1)

2]. (2.4)
Nonlinearlocalized excitationscanbe very easy

produced(if the systemallows for their existence) Obviously the sumover all local energiesgivesthe
by numericallychoosingan initial conditionwhich total conservedenergy.If NLEs are excited,the mi-
correspondsto a localizationofenergy.Herewesim- tial local energyburstshouldmainly staywithin the
ply positionedthewholesysteminto its groundstate NLE. Thus defining
andthendisplacedone (central)particleby a given
amountof displacement.Thenthe evolution of the e(2m±I) = ~ (2.5)
systemcanbe studiedby meansof moleculardy- —

namics.We usedalways periodicboundarycondi- andexcitingthelocal energyburstat latticesite1=0
tions.Sincesomeamountof theinitial energywill be by choosingapropervalueofm in (2.5)wewill con-
transformedinto travellingphonons(radiation),one trol thetimedependenceofe(2m+~ Here2m+ 1 de-
hasto takecareof the systemsizeto excludeeffects terminesthe sizeof the NLE. If this function does
ofreturn.Wehavedoneit by choosinga largeenough notdecayto zero (or decaysslowly enough),theex-
system.WeusedtheVerletalgorithm[7] for solving istenceof a NLE canbe confirmed.Theexpression
the Newtonianequationsof motion.The time step “slowly enough”hasto bespecifiedwith respectto
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by a coherentmotion of all involved particles.This
0.730 - 0 7 - motion is characterizedby one fundamentalfre-

0.6 quencyw1=2x/T1 (see,e.g.,ref. [4]),

0.725 Q1(t)=Q,(t+T1) . (3.1)
~0.3

0.2 Let us analyzethe stability of sucha solution with
0.1 respectto small amplitude phonons,which canbe

~ 0.720 0 ~ ~ • viewed as a characterizationof external (with re-
20 22 24 26 28 30 spectto the NLE) parametricresonances.

0 715 14-25 Let us assumethat wefound an exactNLE solu-
tion Q~(t) with property(3.1). Tostudythestability

- - - - -------- — of sucha solution with respectto small amplitude

0.710 - - oscillations (phonons)we considera small devia-
I tion from this solutionQ,(t) +4~(t),insert this an-

101 102 i0~ satzin theoriginal equationsof motionandlinearize
TIME with respecttoA. Finally wetransformtheequations

Fig. 1. e(5)versus1og10(t) for Qo(t=0)=1.3456(dashedline). into q-spaceand find
Totalenergyof thesystem(solid line). Inset:Maximum values /

(full circles) ofe,fort~1000 with initial conditionas in fig. 1. ,~ +w
2A + ~ A ,I ~- ~

Solid line is aguideto theeye. a a ‘~‘ q’ \ N ““

thetypicalgroupvelocitiesof smallamplitudephon- + ~ ~ + ...) = 0, (3.2)
ons.Thissets thetime scaleweare interestedin, N a”

~Jw~+2C wherethe constantsa, are definedthroughthe de-
t>~m 2C (2.6) rivatives of the potentialat the groundstateposi-

tion. We introducea vector
In fig. 1 we showthetimedependenceofe(

5) for Q~0
(t=0)= —1, Q1,,0(t=0)=1.3456,Q,(t=0)=0.This A=’ ~ai’ ~q1~ ..‘ 1~1qp,~,AqN) (3.3)
choiceof initial conditioncorrespondsto a motion Thenwe canrewrite (3.2) as
of the central particleover bothwells of potential
(2.2). Clearly a NLE canbe detected.After a short A=M({Q~(t)})A. (3.4)
timeperiodof the orderof 100 nearlyconstantval- The matrix M hasseveralinterestingproperties.The
uesof e(5) are observed.The NLE seemsto be ex- traceof the matrix is zero.Thematrix is also peri-
tremelystable.To characterizethe energydistribu- odic in time with period T1= 2iu/w1. Let us intro-
tion within theNLE we plot the maximumvalues ducea mappingA

e?’~of the local energiese,in the insetin fig. 1. Es-
sentiallythreeparticlesare involved in the motion. A A (t) =4(t + T~). (3.5)
Weareconfrontedwith a ratherlocalizedexcitation. FollowingArnol’d [81,a solution4(t) isstable(with

periodT1) if the mappingA is stable.Sincethe ma-
trix M is linear, themappingA is volumepreserving

3. Stability analysis andthenecessaryconditionof stability of a solution

of (3.4) becomes
NLE solutionsin different systemswerestudied tr A I <2N (3 6)

usingrotatingwave approximation(RWA) [3]. We
leavea critical discussionof theapplicabilityofRWA SinceQ1(t) is a localizedsolution, its transformed
for a futurepaper,andconcentratein thissectionon counterpartQq(t) isfinite foreveryq, whereasa wave
one basic assumptionwithin the RWA concept. solutionwould be N timeslarger.Thus the 1 /N, 1 /
Namely, that the NLE solution canbe represented N

2, ... termsin (3.2) let the additive perturbation
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termsin thedifferentialequationsof (3.2) and(3.4) positionscannotbe explainedby multiples of one
becomevery small for large enoughN. Then, it is fundamentalfrequencyw1, assuggestedby theRWA
possibleto studythe stability of the mappingA ne- ansatz(3.1). However,all peakpositionscanbeex-
glectingthe perturbation.Since the mappingmatrix plainedas a linearcombinationof multiplesof two
in that casebecomesblock-diagonal,the sufficient frequencies— = 0.822 andw2= 1.34. Although it
conditionof stability of a solution of (3.4) reduces is impossibleto extendthe stability analysisof the
to previoussectionto an (assumed)localizedsolution

with two fundamentalfrequencies,wenote thatno

~ ~, n=0, 1,2 (3.7) oneof the visible peaksin fig. 2 overlapswith the
Wi 2 instability bandsdefinedby (3.7).
This stability conditionimplies the existenceof in- To understandthe appearanceof the secondfre-
stabilitybandson thefrequencyaxisof theNLE be- quencywe recall that theNLE is a threeparticleex-
causeof the finite dispersion.It tells nothingabout citation (cf. insetin fig. 1), andbecauseof thesym-
lifetimes of strictly speakingunstableNLE. Never- metryof the initial conditionwe are left with a two
thelessit canbeusedasa testwhetherthefoundNLE degreeof freedomproblem.Now it is a smallstepto
stability canbe explainedby condition (3.7). recognize,that we might be confrontedwith a kind

of integrabilityphenomenon.Indeed,fixing the rest
of the particlesat their ground statepositionsre-
ducesthedynamicalproblemto a two degreeoffree-4. The integrability concept
domsystem(reducedproblem),which might be in-
tegrablein partsof its phasespace,

To characterizeour NLE solution found numeri-
cally weperforma Fourieranalysisof the motionof ~ = — V~,4(Q0)—2C(Q0— Q±~), (4.1)
the central particle1=0 andthe nearestneighbours

Q~1=—V’~4(Q±1)—C(Q±1—Q0+1).(4.2)
1= ±1. Becauseof the symmetryof the initial con-
dition thetwo nearestneighboursmovein phase.In To show that this is indeedtrue, we solve numeri-
fig. 2 the Fouriertransformed(Fr) trajectoriesof cally the Newtonianequationsof motionof this re-
the central particle andof the nearestneighbours ducedproblemandperforma Poincaréintersection
(inset in fig. 2), respectively,are shown.Thepeak betweenthe trajectory and the subspace{Q0, Qo,

Q±1=—l,~÷~>0}. The result is shown in fig. 3a.
Clearlywefind theexistenceof integrablemotionon

300 - - _____________________~ 40 atorus.To be surethatwe areon theright track, we
perform the sameprocedurefor the 3000-degreeof

200 - rus intersectionin fig. 3b is nearlyindistinguishable
—~20 fromthetwo degreeof freedomresultin fig. 3a. Thus250 30 freedomsystemwith sameinitial conditions.Theto-

we arrive at two conclusions:(i) theNLE existence
-.~ 150 10 is a resultof (at leastlocal) integrabilityproperties

F-’

100 - . of theunderlyingmany-particlesystem;(ii) theNLE
canbereproducedwithin a reducedproblem,where

0 0.5 1.0 1.5 2.0 2.5 3.0 all particlesperformingsmallamplitudeoscillations
FREQUENCY

0 ‘ arefixed at their groundstatepositions,therebyre-ducingthe numberof relevantdegreesof freedom.
I I I I I

0 1 2 3 4 With theintegrabilitypropertyin mind, it is clear
FREQUENCY that therehaveto appeartwo frequencies.If the re-

Fig. 2. Fourier transformedFT[Q,(t~1000)1(w) with initial ducedproblemis integrable(in somepart of phase
conditionasin fig. 1 for 1=0. Inset:for 1= ±1(sameintensity space)thereshouldappeartwo actionsI,,, n = 1, 2,
unitsasinfig. 2). as functions of the original variables,so that the
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1.5 I I I whatwe observe.Beforeturningto approximatede-
a scriptionsof themotion understudy, let us mention

1 0 that the conclusionsfrom aboveimply anothercon-
sequence— namely,that an asymmetricNLE (with

0 5 respecttothecentralparticle)shouldbepossibletoo,
• i.e. that the two nearestneighboursperform out of

phasemotions,evenwithdifferentamplitudes.That
Qo 0 would mean,that in the languageof actionswe lift

a degeneracyby choosingasymmetricinitial condi-
05 tions andhaveto expect threeinsteadof two fun-

damentalfrequencies,i.e. thefrequency~2 splits into
—1.0 two frequenciesW

2~ (03. To checkthis statementwe

performeda simulationwith an asymmetricinitial
20 —15 —i 0 —05 ~ o~ 110 15 condition,which differs from theprevioussymmet-

ric initial condition by additionally choosing
Q1 (1=0) = —0.7�—1. Indeedwe find (i) that the

local asymmetryis conservedthroughoutthe evo-
1.5 b I I I I I lution of the system,andasthe Fourierspectrumof

the central particle motion and the two nearest
1.0 ~—-~ neighboursmotions shows,we now find threefre-

/ ~-- quencies:w~=0.83,W2= 1.32and (03=1.35.
0.5 Next wewant to discussapproximationschemes

- to accountfor thebasicfeaturesof the aboveNLE.
0 Since we are dealing with a NLE such that

8Q0>>&Q±1where Q~=— l+~Q~,a starting point

—0.5 couldbe to considerthe equationof motion for the
- - - - - -~ centralparticleneglectingthe small amplitudefluc-

—1.0 “.. - ~--~ tuationsof the nearestneighbours.We arriveat the

effectiveoneparticleproblem
—1.5 I I I I I

—2.0 —1.5 —1.0 —0.5 0 0.5 1.0 1.5 — dVeff 4 4
Q

Fig. 3. Poincaréintersectionbetweenthetrajectoryandthesub- where the effective potential Veff is given by the
space{Qo, Qo,Q±1= —1, Q~~>0) with sameinitial conditionas expression
in fig. 1. (a)Reducedthreeparticleproblem(seetext); (b) full
problem(N=3000). ~ff(X)= V(x)+C(x+l)

2. (4.5)

Hamiltonian of the reducedproblem can be cx- Usingtheamplitudeof the centralparticleasan in-
pressedthroughthe two actionvariablesonly, and putparameter,onecan solveeqs.(4.4), (4.5) with
theseactionsbecomeintegralsof motion (see,e.g., respectto thefundamentalfrequencyw~.To account
ref. [9]). Thecorrespondingtwo frequencies forthesecondfrequencylet usconsidertheequation

ofmotionfor thenearestneighbourusing~Q
1>~‘8Q2,

i9H
(4.3) dV

01, 8Q1=———— —2CôQ1+CQ0. (4.6)
dQi Qi=g+8Qi

determinethemotionof systemon thesurfaceofthe
torus.Obviouslyall linearcombinationsof multiples This equationdescribesa driven nonlinearoscilla-
of thesefrequenciesappearin theFourier spectrum tor, whereCQ0 is thedriving term.If theamplitude
oftheoriginal particledisplacements.That isexactly of the nearestneighbouris small enough,the non-
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linearity comingfrom V(Q1) canbe approximately I I I

1.0handledby replacing the original anharmonicpo-
tentialby aharmoniconewithamplitude-dependent
frequency.Nevertheless,wearestill confrontedwith 0.8

a complicatedproblem,sincethe driving termis not
a harmonicfunction. Thus if we assumethat the

0.6
driving term in (4.6) is a harmonicfunction with
frequencyw~,wecansolve the equationof motion
for Q~.Usingthe full amplitudeofthe nearestneigh- 0.4
bour asan input parameter,one cansolve for the
secondfrequency~ 0.2

To checkourscheme,weusethesimulationresult
for P~andQ0(t=0)=1.3456.Thesimulationyields _________________________________
w~=0.822,(02=1.34. The approximationscheme o~ooi 10

gives w~=0.82,~2= 1.31. Theseresultsshouldnot ENERGY

be overestimated— in our opinion they only show, Fig. 5. Energydependenceof thenormalizedentropyc. For the
that the integrabilityconceptis correct,andthecx- solidline theabscissais theNLE energyscale;for thedashedline

istenceof more than one fundamentalfrequency theabscissais theinitial energyscale.

characterizingthe NLE is natural.
The abovedescribedapproximationschemecan concludethatthereexistsanenergythresholdfor the

alsosuccessfullybe usedto accountqualitativelyfor creationof a NLE, as well as a secondinstability
stability propertiesof the NLE. For that we plot in window at largerenergies,or in otherwords,the cx-
fig. 4 theenergydependenceof the fundamentalfre- citationspectrumof theNLE hastwo gaps.To check
quencyof theeffectivepotential(4.5). We observe, this conclusion,we calculatethe normalizedlocal
that for energiessmallerthansomethresholdvalue energy distribution functions Pt= er~/~1ep~for
the frequencylies alwaysin the phononband.The differentinitial energiese.Thenwecalculatethecor-
sameeffect appearsfor an energywindow at larger respondingnormalizedentropyaof thesedistribu-
energyvalues.Usingthestability condition(3.7) we tions

(4.7)1.50 From definition (4.7) we haveO’cza<1. Delocali-1.25 -- zation occursif a= 1 andmaximumlocalizationifa= 0. Thenwe plot in fig. 5 the energydependence1.00 - of a.The solid curve in fig. 5 representsthe depen-
~LLLLLI~L~L ln(denceof a on the energyof the NLE, whereasthec~) 0.75

dashedcurve showsthe dependenceof aon the ini-
tial energy.We clearly observethe two gapsin the0.50 -

excitationspectrumof the NLE. Thedifferencebe-
0.25 tweenbothcurvesindicatestheamountofenergylost

by initial radiation.
0-

I I I I I I I

—0.5 0 0.5 1.0 1.5 2.0 2.5 3.0
(E0 25) 5. Discussion

Fig. 4. Energydependenceof thefundamentalfrequencyw1 for
theeffectivepotential (4.5) (solid line); dashedlines indicate Theintegrabiityconceptsketchedaboveis notre-
thepositionofthephononband(2.3). strictedto the ~“ model. It is alsonot restrictedto
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the dimensionalityof the system.It providesa sim- tinuumlimit C—fco withfrequenciesbelowthelower
ple understandingof the phenomenonof localiza- phonon band edge frequency.However it is well
tion in termsofregularmotion.Themain reasonfor known,thatsomemodelslike thesine-Gordonmodel
theoccurrenceof NLEsisthenonlinearityof thesys- allow for exactbreathersolutionsin thecontinuum
tem,which expressesitselfby an energydependence limit [111. The reasonfor that shouldbe the van-
of oscillationfrequenciesoftheparticles.In thatsense ishing of the prefactorsof the resonanttermsin the
the existenceof a NLE can be viewedas a conse- perturbationexpansionfor suchnongenericintegra-
quenceof (nearly) zero energy transferbetween ble continuummodels.
coupledoscillatorswith different frequencies.Here Finally we wantto emphasize,thatwe havefound
we find acommonfeaturewithwell-knownlocalized rather interestingobjectsfrom the point of view of
excitationsin harmonicsystemswith massdefects nonlinearmotion. The NLEs appearto behavelike
(see,e.g.,ref. [10]). Theenergydependenceof the threeparticle excitationsweakly coupledto phon-
frequenciesin nonlinear systemscan be partially ons.Becauseof the weakcouplingwe expectto find
matchedto anenergydependenceof particlemasses. adiabatictuningof the energyof the NLE as well as
Thus when we choose an initial condition with of its actionsand frequencies.Togetherwith the ex-
stronglyvaryingenergieswe end up with a solution istenceof severalinternaldegreesof freedomthis can
closetoa correspondingharmonicsystemwith mass be an interestingobject for unusualenergyrelaxa-
defect. tion in complexsystems.

Thesuccessof the approximationschemeencour-
agesus to proceedto the predictionof theexistence
of NLEs in othersystems.For example,that (2.1) Acknowledgement
with
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