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Localized excitations in a discrete Klein—-Gordon system
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We analyze the origin and features of localized excitations in a discrete Klein-Gordon system. We connect the presence of these
excitations with the existence of local integrability of the original N-degree of freedom system. On the basis of this explanation we
make several predictions about the existence and stability of these excitations.

1. Introduction

Solitary waves and solitons play a significant role
in various physical problems [1,2]. Nonlinear forces
acting on fields (continuum problem) or interacting
particles (discrete problem) are necessary for the ex-
istence of solitons. A large variety of nonlinear con-
tinuum models exhibits soliton-like features. For ex-
ample practically all Klein-Gordon systems with
multiwell on-site potentials exhibit single kink so-
lutions. However only for special potentials (like
sine-Gordon) do these kinks become real solitons,
i.e. the corresponding system becomes integrable.
Besides kinks in the sine-Gordon system (sG) so-
called breathers are found to be exact solutions. These
breathers can be viewed as bound states of a kink
and an antikink. The important difference between
kinks and breathers is, that breathers are local ex-
citations above the ground state having the same
symmetry as the ground state. Kinks (and anti-
kinks) are “links” between different equal ground
states, so that these local excitations do not have the
same symmetry as any ground state. Kinks are there-
fore important concerning second order phase tran-
sitions, where symmetry breaking takes place. How-
ever, dynamical properties of the above mentioned
systems may be affected by the presence of both kinks
and breathers.

A large number of physical applications have
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models that correspond to discrete nonlinear sys-
tems. In that case the translational symmetry is bro-
ken, and thus the mathematical properties of non-
linear localized excitations (NLE) like kinks or
breathers have to be reconsidered with respect to
discreteness. That has been a topic for a huge num-
ber of scientific publications. Recently a new class of
self-localized modes in discrete nonlinear lattices has
been introduced and studied by Takeno and co-
workers (see refs. [3,4], and references therein). The
eigenfrequency of those modes usually was found to
be above the upper phonon band edge frequency. In
that case the found modes have no counterparts in
the corresponding continuum models. The shapes
and frequency of these modes were calculated using
the rotating wave approximation (RWA) [5].

We want to present a careful analysis of nonlinear
localized excitations for a discrete one-dimensional
system. The frequency of the NLEs can be either be-
low or above the optical phonon band frequencies.
We will show that the existence of those excitations
is due to the integrability of the original N-degree of
freedom system in parts of the phase space (local in-
tegrability ). The existence of KAM-tori is shown us-
ing Fourier analysis and Poincaré intersections. We
propose a perturbation-like scheme, which can be
adopted for very discrete systems as an easy way to
account for the main features of the NLE. We for-
mulate stability conditions of the NLE, which mainly
use the integrability character of the solutions and
their coupling to small amplitude phonons. An im-
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portant finding is an energy threshold for the exis-
tence of the NLE. This threshold depends on the de-
gree of discreteness and can be qualitatively explained
within the above mentioned perturbation-like
scheme.

2. Model and localized solutions.

We study a d=1 dimensional discrete classical
model given by the Hamiltonian

H= 3 UPIHICQ-0)™V(@)].  (21)

P,and Q, are canonically conjugated momentum and
displacement of the /th particle, where / marks the
number of the unit cell. C measures the interaction
to the nearest neighbour particles. All variables are
dimensionless. The mass of the particles is equal to
unity. N is the total number of particles. The non-
linearity is hidden in the “on-site” potential V(x).
Here we choose the @* type potential,

V(x)=Ves(x)=§(x*=1)2. 2.2)

For convenience we restrict ourselves to potential
(2.2). It will be seen from the analysis that in prin-
ciple the methods can be applied to other systems
with analogous results. Especially NLE were found
for Fermi-Pasta-Ulam systems (where the nonlin-
ear local potential V(x) is replaced by nonlinear
springs) [6] and for hard quartic anharmonicity
V(x)=x* [3]. Higher dimensionality d>2 should
also be no principal hurdle [4].

Nonlinear localized excitations can be very easy
produced (if the system allows for their existence)
by numerically choosing an initial condition which
corresponds to a localization of energy. Here we sim-
ply positioned the whole system into its ground state
and then displaced one (central) particle by a given
amount of displacement. Then the evolution of the
system can be studied by means of molecular dy-
namics. We used always periodic boundary condi-
tions. Since some amount of the initial energy will be
transformed into travelling phonons (radiation), one
has to take care of the system size to exclude effects
of return. We have done it by choosing a large enough
system. We used the Verlet algorithm [7] for solving
the Newtonian equations of motion. The time step
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was h=0.005. The system size was N=3000.

Before coming to examples of NLE, let us mention
the properties of (2.1) for small amplitude oscilla-
tions around the ground state. A simple calculation
yields the following dispersion law for small ampli-
tude phonons,

wl=wj+4Csin?(ng/N), (2.3)

where ¢g=0, 1, 2, ..., N—1 is the wave number, &, is
the frequency of a phonon with wave vector g and
w, measures the lower phonon band edge: w, =ﬁ.
As (2.3) indicates, one major difference between the
considered discrete system (2.1) and its continuum
counterpart (C—oo) is the existence of a finite up-
per phonon band edge. This fact is responsible for
the possibility of exciting NLE with frequencies above
the phonon band in contrast to the continuum case.
However here we will study NLE with frequencies in
the gap. We will see that although the continuum
counterparts do exhibit a gap, the nature of the NLE
in the discrete system is not trivially connected with
possible NLE in the continuum system.

Now let us show a typical example of NLE for a
special choice of the interaction strength C=0.1. This
value was considered because it corresponds to a bal-
ance between the on-site energy of a particle and the
energy of the springs connecting it to the neighbours
for energies of the order of the barrier height of V(x).
To characterize the behaviour of the system we in-
troduce a local energy variable ¢,

e=3P}+V(Q)
+HiCH(Q— Qi)+ (- Qi 1)?] . (2.4)

Obviously the sum over all local energies gives the
total conserved energy. If NLEs are excited, the ini-
tial local energy burst should mainly stay within the
NLE. Thus defining

eam+n= 2. & (2.5)

and exciting the local energy burst at lattice site /=0
by choosing a proper value of m in (2.5) we will con-
trol the time dependence of e(2,n+1,- Here 2m+-1 de-
termines the size of the NLE. If this function does
not decay to zero (or decays slowly enough), the ex-
istence of a NLE can be confirmed. The expression
“slowly enough” has to be specified with respect to
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Fig. 1. e(s) versus log,o(t) for Qp(t=0)=1.3456 (dashed line).
Total energy of the system (solid line). Inset: Maximum values
(full circles) of e, for £ 1000 with initial condition as in fig. 1.
Solid line is a guide to the eye.

the typical group velocities of small amplitude phon-
ons. This sets the time scale we are interested in,

o +2€ (2.6)

t>m 2C

In fig. 1 we show the time dependence of es, for O,.¢
(t=0)=—1, Qi_o(t=0)=1.3456, O,(t=0) =0. This
choice of initial condition corresponds to a motion
of the central particle over both wells of potential
(2.2). Clearly a NLE can be detected. After a short
time period of the order of 100 nearly constant val-
ues of es, are observed. The NLE seems to be ex-
tremely stable. To characterize the energy distribu-
tion within the NLE we plot the maximum values
e of the local energies ¢; in the inset in fig. 1. Es-
sentially three particles are involved in the motion.
We are confronted with a rather localized excitation.

3. Stability analysis

NLE solutions in different systems were studied
using rotating wave approximation (RWA) [3]. We
leave a critical discussion of the applicability of RWA
for a future paper, and concentrate in this section on
one basic assumption within the RWA concept.
Namely, that the NLE solution can be represented
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by a coherent motion of all involved particles. This
motion is characterized by one fundamental fre-
quency w,;=2n/T, (see, e.g., ref. [4]),

Q()=0,(t+Ty) . (3.1)

Let us analyze the stability of such a solution with
respect to small amplitude phonons, which can be
viewed as a characterization of external (with re-
spect to the NLE) parametric resonances.

Let us assume that we found an exact NLE solu-
tion Q;(t) with property (3.1). To study the stability
of such a solution with respect to small amplitude
oscillations (phonons) we consider a small devia-
tion from this solution Q,(¢t)+4,(t), insert this an-
satz in the original equations of motion and linearize
with respect to 4. Finally we transform the equations
into g-space and find

" 2a
dtwid,+ Y 4, (—N‘ Qi-o
&

3,

+37 §Qq,,Qq_q,_q,,+...)=0, 3.2)
where the constants «; are defined through the de-
rivatives of the potential at the ground state posi-
tion. We introduce a vector

4= (Aqn A.qn ey Aqm Z’(IN) (33)
Then we can rewrite (3.2) as

A=M({Q,(1)})4. (3.4)

The matrix M has several interesting properties. The
trace of the matrix is zero. The matrix is also peri-
odic in time with period T,=2n/w,. Let us intro-
duce a mapping 4

AA(t)=A4(t+T,) . (3.5)

Following Arnol’d [8], a solution 4(¢) is stable (with
period 7) if the mapping 4 is stable. Since the ma-
trix M is linear, the mapping A4 is volume preserving
and the necessary condition of stability of a solution
of (3.4) becomes

jtrd| <2N. (3.6)

Since Q;(¢) is a localized solution, its transformed
counterpart Q,(¢) is finite for every g, whereas a wave
solution would be N times larger. Thus the 1/N, 1/
N2, .. terms in (3.2) let the additive perturbation
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terms in the differential equations of (3.2) and (3.4)
become very small for large enough N. Then, it is
possible to study the stability of the mapping 4 ne-
glecting the perturbation. Since the mapping matrix
in that case becomes block-diagonal, the sufficient
condition of stability of a solution of (3.4) reduces
to

@ 1

o Egs n=012 (3.7)

This stability condition implies the existence of in-
stability bands on the frequency axis of the NLE be-
cause of the finite dispersion. It tells nothing about
lifetimes of strictly speaking unstable NLE. Never-
theless it can be used as a test whether the found NLE
stability can be explained by condition (3.7).

4. The integrability concept

To characterize our NLE solution found numeri-
cally we perform a Fourier analysis of the motion of
the central particle /=0 and the nearest neighbours
I= 1 1. Because of the symmetry of the initial con-
dition the two nearest neighbours move in phase. In
fig. 2 the Fourier transformed (FT) trajectories of
the central particle and of the nearest neighbours
(inset in fig. 2), respectively, are shown. The peak
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Fig. 2. Fourier transformed FT[Q,(¢>1000)](w) with initial
condition as in fig. 1 for /=0. Inset: for /= 1 (same intensity
units as in fig. 2).
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positions cannot be explained by multiples of one
fundamental frequency w,, as suggested by the RWA
ansatz (3.1). However, all peak positions can be ex-
plained as a linear combination of multiples of two
frequencies — w,=0.822 and w,=1.34. Although it
is impossible to extend the stability analysis of the
previous section to an (assumed) localized solution
with two fundamental frequencies, we note that no
one of the visible peaks in fig. 2 overlaps with the

-instability bands defined by (3.7).

To understand the appearance of the second fre-
quency we recall that the NLE is a three particle ex-
citation (cf. inset in fig. 1), and because of the sym-
metry of the initial condition we are left with a two
degree of freedom problem. Now it is a small step to
recognize, that we might be confronted with a kind
of integrability phenomenon. Indeed, fixing the rest
of the particles at their ground state positions re-
duces the dynamical problem to a two degree of free-
dom system (reduced problem), which might be in-
tegrable in parts of its phase space,

Oo=—V'54(Q0) —2C(Qo— Q1) (4.1)

Qr1=—Vos(Q:+1)—C(Q+1—Co +1) . (4.2)

To show that this is indeed true, we solve numeri-
cally the Newtonian equations of motion of this re-
duced problem and perform a Poincaré intersection
between the trajectory and the subspace {Qo, Qo,
Qii=-1, Qi,>0}. The result is shown in fig. 3a.
Clearly we find the existence of integrable motion on
a torus. To be sure that we are on the right track, we
perform the same procedure for the 3000-degree of
freedom system with same initial conditions. The to-
rus intersection in fig. 3b is nearly indistinguishable
from the two degree of freedom result in fig. 3a. Thus
we arrive at two conclusions: (i) the NLE existence
is a result of (at least local) integrability properties
of the underlying many-particle system; (ii) the NLE
can be reproduced within a reduced problem, where
all particles performing small amplitude oscillations
are fixed at their ground state positions, thereby re-
ducing the number of relevant degrees of freedom.
With the integrability property in mind, it is clear
that there have to appear two frequencies. If the re-
duced problem is integrable (in some part of phase
space) there should appear two actions I, n=1, 2,
as functions of the original variables, so that the
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Fig. 3. Poincaré intersection between the trajectory and the sub-
space {Q, Qo, @+, = — 1, Q1+, >0) with same initial condition as
in fig. 1. (a) Reduced three particle problem (see text); (b) full
problem (N=3000).

Hamiltonian of the reduced problem can be ex-
pressed through the two action variables only, and
these actions become integrals of motion (see, e.g.,
ref. [9]). The corresponding two frequencies

dH

= A (4.3)

Wy,
determine the motion of system on the surface of the
torus. Obviously all linear combinations of multiples
of these frequencies appear in the Fourier spectrum
of the original particle displacements. That is exactly
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what we observe. Before turning to approximate de-
scriptions of the motion under study, let us mention
that the conclusions from above imply another con-
sequence — namely, that an asymmetric NLE (with
respect to the central particle ) should be possible too,
1.e. that the two nearest neighbours perform out of
phase motions, even with different amplitudes. That
would mean, that in the language of actions we lift
a degeneracy by choosing asymmetric initial condi-
tions and have to expect three instead of two fun-
damental frequencies, i.e. the frequency w, splits into
two frequencies w,# @;. To check this statement we
performed a simulation with an asymmetric initial
condition, which differs from the previous symmet-
ric initial condition by additionally choosing
0,(t=0)=—0.7# —1. Indeed we find (i) that the
local asymmetry is conserved throughout the evo-
lution of the system, and as the Fourier spectrum of
the central particle motion and the two nearest
neighbours motions shows, we now find three fre-
quencies: w; =0.83, w,=1.32 and w;=1.35.

Next we want to discuss approximation schemes
to account for the basic features of the above NLE.
Since we are dealing with a NLE such that
8Q,> 8Q., where Q;=—1+8Q,, a starting point
could be to consider the equation of motion for the
central particle neglecting the small amplitude fluc-
tuations of the nearest neighbours. We arrive at the
effective one particle problem

AV

dQ, ’
where the effective potential V.4 is given by the
expression

Oo= (4.4)

V(X)) = V(x) + C(x+1)2. (4.5)

Using the amplitude of the central particle as an in-
put parameter, one can solve eqs. (4.4), (4.5) with
respect to the fundamental frequency @,. To account
for the second frequency let us consider the equation
of motion for the nearest neighbour using §Q, >> 8(Q,,

80, =—

dv

— —2C8Q, +CQ, . 4.6
401 lor 501 Q1 +CQo (4.6)

This equation describes a driven nonlinear oscilla-
tor, where CQ, is the driving term. If the amplitude
of the nearest neighbour is small enough, the non-
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linearity coming from V(Q,) can be approximately
handled by replacing the original anharmonic po-
tential by a harmonic one with amplitude-dependent
frequency. Nevertheless, we are still confronted with
a complicated problem, since the driving term is not
a harmonic function. Thus if we assume that the
driving term in (4.6) is a harmonic function with
frequency w,, we can solve the equation of motion
for Q,. Using the full amplitude of the nearest neigh-
bour as an input parameter, one can solve for the
second frequency w,.

To check our scheme, we use the simulation result
for @* and Q,(t=0)=1.3456. The simulation yields
,=0.822, w,=1.34. The approximation scheme
gives w,=0.82, w,=1.31. These results should not
be overestimated — in our opinion they only show,
that the integrability concept is correct, and the ex-
istence of more than one fundamental frequency
characterizing the NLE is natural.

The above described approximation scheme can
also successfully be used to account qualitatively for
stability properties of the NLE. For that we plot in
fig. 4 the energy dependence of the fundamental fre-
quency of the effective potential (4.5). We observe,
that for energies smaller than some threshold value
the frequency lies always in the phonon band. The
same effect appears for an energy window at larger
energy values. Using the stability condition (3.7) we

1 | A [ 1 1 |
05 0 05 10 15 20 25 30
(E-0.25)

Fig. 4. Energy dependence of the fundamental frequency w, for
the effective potential (4.5) (solid line); dashed lines indicate
the position of the phonon band (2.3).
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Fig. 5. Energy dependence of the normalized entropy . For the
solid line the abscissa is the NLE energy scale; for the dashed line
the abscissa is the initial energy scale.

conclude that there exists an energy threshold for the
creation of a NLE, as well as a second instability
window at larger energies, or in other words, the ex-
citation spectrum of the NLE has two gaps. To check
this conclusion, we calculate the normalized local
energy distribution functions p,=e™*/>, e™* for
different initial energies e. Then we calculate the cor-
responding normalized entropy o of these distribu-
tions

1
o=— Wiljpzln(pz)- (4.7)

From definition (4.7) we have 0<o< 1. Delocali-
zation occurs if =1 and maximum localization if
o=0. Then we plot in fig. 5 the energy dependence
of o. The solid curve in fig. 5 represents the depen-
dence of ¢ on the energy of the NLE, whereas the
dashed curve shows the dependence of ¢ on the ini-
tial energy. We clearly observe the two gaps in the
excitation spectrum of the NLE. The difference be-
tween both curves indicates the amount of energy lost
by initial radiation.

5. Discussion

The integrability concept sketched above is not re-
stricted to the @* model. It is also not restricted to
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the dimensionality of the system. It provides a sim-
ple understanding of the phenomenon of localiza-
tion in terms of regular motion. The main reason for
the occurrence of NLEs is the nonlinearity of the sys-
tem, which expresses itself by an energy dependence
of oscillation frequencies of the particles. In that sense
the existence of a NLE can be viewed as a conse-
quence of (nearly) zero energy transfer between
coupled oscillators with different frequencies. Here
we find a common feature with well-known localized
excitations in harmonic systems with mass defects
(see, e.g., ref. [10]). The energy dependence of the
frequencies in nonlinear systems can be partially
matched to an energy dependence of particle masses.
Thus when we choose an initial condition with
strongly varying energies we end up with a solution
close to a corresponding harmonic system with mass
defect.

The success of the approximation scheme encour-
ages us to proceed to the prediction of the existence
of NLEs in other systems. For example, that (2.1)
with

V(Q) = V(Q—Qi1)=(Q =0 1) (5.1)

allows for no NLE solutions for k=3, but allows for
solutions for k=4. That happens because the fun-
damental frequency of the corresponding effective
potential for the central particle will never come out
of the phonon band for k=3. In contrast the fre-
quency comes out of the phonon band for k=4 for
large enough initial amplitudes. Such predictions will
be checked in forthcoming work.

When we compare the value of the energy thresh-
old for NLE creation with the minimum energy of a
kink-antikink pair E 2’,{', we find that for the param-
eter case studied here Egg is nearly four times larger
than the value of the energy threshold of the NLE.
Thus one can expect that at certain temperatures the
NLE can affect the dynamical behaviour of the sys-
tem stronger than do kinks and antikinks.

One critical comment should be added with re-
spect to the stability analysis in section 3. From (3.7)
it follows, that there are no stable NLEs in the con-
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tinuum limit C-s oo with frequencies below the lower
phonon band edge frequency. However it is well
known, that some models like the sine-Gordon model
allow for exact breather solutions in the continuum
limit [11]. The reason for that should be the van-
ishing of the prefactors of the resonant terms in the
perturbation expansion for such nongeneric integra-
ble continuum models.

Finally we want to emphasize, that we have found
rather interesting objects from the point of view of
nonlinear motion. The NLEs appear to behave like
three particle excitations weakly coupled to phon-
ons. Because of the weak coupling we expect to find
adiabatic tuning of the energy of the NLE as well as
of its actions and frequencies. Together with the ex-
istence of several internal degrees of freedom this can
be an interesting object for unusual energy relaxa-
tion in complex systems.
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