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The separation of dynamics into slow and fast components for the one-dimensional &*

lattice

model with a nearest-neighbor interaction is studied. We find two dynamic scaling laws for the
displacement-displacement correlator in the strong-interaction case.  The temperature window where
scaling appears has a nonzero lower bound. There exist no analogies between the found scaling
properties and structural relaxation processes in undercooled liquids near the liquid-glass transition.
This fact seems to be due to the presence of static on-site double-well potentials. In the case of weak
interaction only one dynamic scaling law seems to appear.

I. INTRODUCTION

This work is concerned with the separation of dynamics
into slow and fast components for a model of structural
phase transitions. Over the past 10—20 years the dynamic
and static properties of the scalar ®* lattice model were
studied with various methods. A lot of work was devoted
to the explanation of a central peak (CP) appearing in
the dynamic structure factor in neutron-scattering stud-
ies of perovskite crystals near structural phase transitions
(see Refs. 1 and 2 and references therein).

In Ref. 3 an intrinsic explanation for the CP appear-
ance was derived by Aksenov, Bobeth, Plakida, and
Schreiber (ABPS) using the ®* model. These authors
started with the assumption that the CP appears due to
the presence of precursor clusters of the low-symmetry
phase in the high-symmetry phase (see also Ref. 1). The
anomalous narrowing of the CP ABPS explained via a
freezing of the cluster system at temperatures well above
the phase transition, i.e., via a structural relaxation of a
glasslike system. ABPS considered the equation of mo-
tion for the displacement-displacement correlation func-
tion Six(t). Applying some approximation they derived
closed self-consistent equations for Six(t). These equa-
tions are called mode-coupling equations (MCE’s) and
were extensively studied by Gotze? to describe freezing
phenomena for undercooled liquids within mode-coupling
theory (MCT) for normalized density-density correlators
®,(t). The most important feature of MCE's is the ex-
istence of a bifurcation point or a dynamic singularity.
Near this singularity dynamic slowing down sets in and
thus a separation of the dynamics (slow and fast) ap-
pears. The existence of the MCT singularity is not nec-

essarily connected with divergences of static susceptibil-
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ities in contrast to second-order phase transitions. The
bifurcation point separates the control parameter space
(e.g., the temperature axis) into a region of ergodic states
(B, (t — 00) = 0] and nonergodic states [®,(t — o) 7= 0].
Thus, at w = 0 in the nonergodu: region, a §(w) peak at
w= 0 in ®4(w) will appear.*

The present paper completes a number of studies®™
of the applicability of MCE to the &4 model as reported
by ABPS. In Sec. II we introduce the model. Section ITI
is devoted to the derivation of MCE’s following ABPS
(with some critical remarks) and to the main mathemat-
ical consequences following Gétze.* In Sec. IV we present
molecular-dynamics studies for one-dimensional ®* Sys-
tems. We discuss our results in Sec. V. A summary is
given in Sec. VL.

II. MODEL

The model under consideration is the so-called ®* lat-
tice model, which is often used to describe features of
structural phase transitions.® Its Hamiltonian reads

N
H= ; (%Pf + V(X;)) Z Cie(Xi — X&)?,

z k=1 ,
1)
V(X)=—3
Model (1) belongs to the universality class of the corre-
sponding Ising model.} All variables and parameters in
(1) are dimensionless. The corresponding transformation
rules are given in Ref. 5. The index [ runs over all unit
cells; X; and P are the conjugated displacement and mo-
mentum of the [th particle, respectively. The coupling

2y ixt.
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constants Cix = Clym,k+m = 0 determine the dimen-
sion of the system and the radius of interaction. The
integrated interaction strength Cy = Y, Cix is usually
used to distinguish two different regimes of (1), namely,
the displacive one (strong interaction Cp > 1) from the
order-disorder one (weak interaction Cp < 1).1'° Earlier
studies'®!! suggested that in the displacive limit model
(1) exhibits a soft phonon mode (being the reason for
the phase transition), whereas in the order-disorder limit
a separation of the motion into a fast (phonons) and a
slow [hopping between the minima of the local potential
V(X)) should take place.! Later, Bruce, Schneider, and
Stoll showed by use of the universality class of (1) that
also in the displacive limit the separation in the dynam-
ics (slow and fast) sets in near the phase transition.1?13
Thus the classical soft-mode picture of the phase transi-
tion breaks down even in the strong-interaction case (see
also Ref. 14).

The mentioned separation of the dynamics naturally
leads to a CP at zero frequency in the displacement-
displacement correlation function Sjx(w),

Suc(t) = (Xi(t)Xk) » Sue = (XiXk) ,
Sie(w) = Six(z =w +10) , 2)

A(z) = LT[A(®)] = / dtet™ A(t)

Here (- - -) denotes standard canonical average and LT][- - -]
means Laplace transformation. The exact influence of
the separation of dynamics on the CP formation is very
complicated. A lot of work was devoted to classify the
dependence of the low-frequency part of Sjx(w) on the
temperature I" and interaction Cj both numerically and
analytically.13:15-23 In all only Sj(w) on a linear w scale
was studied. In Sec. IV we will show that a really pow-
erful method is to look at the imaginary part of the sus-
ceptibility x(w),

Xik (@) = FwSi(w) , 3)

on a logarithmic frequency scale, as commonly done to
study slow relaxations in glass dynamics.® It turns out
that previous characterizations of the CP in Sj(w) can
be replaced by a well-defined low-frequency analysis of
X (w).

Ulc\/Iogiel (1) with a nearest-neighbor interaction (NNI)
exhibits a phase transition at a finite temperature T, # 0
for dimension d > 2,2¢ whereas T, = 0 for d = 1.2¢ As
we reported in Ref. 25 no indications of MCT predictions
were found for d = 2 and a NNI. The same holds for the
case d — oo (mean-field case).5%26 Here we will study
the d = 1 case with a NNI

III. MODE-COUPLING APPROXIMATION

Using standard methods for the equation of motion of
correlation functions (see Appendix A) one can write the
following double fraction for the correlator S,(z) with

Ay =Y expliq- (1 - k)Ay]:?"
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TXT
S’q(z) = — 1}1XT -, -
T 2= M,(2)/T -
(4)

xf =St =0)/T .

Here T denotes the temperature of the system. The re-
laxation kernel M, (z) shall be expressed using two differ-
ent methods, namely, the Tserkovnikov method?®29 and
the Mori method.?” Both methods are projection opera-
tor methods. The Tserkovnikov method uses frequency-
dependent projections:

My(2) = (%) %) P (2), (5)

(AB)NP (2) = ((AI1B)P (2) ~ ((AIP) P (2)
1

xm«m3»9><z>, (6)
((41B),(2) = ((A|B>)1q<z) — ((A1X)),(2)

TR (KIBN) )
(A1), (&) = (4T ©)B(0)), - (8)

Within the Mori method the projection operators P
and Q are frequency independent:

M,(t) = ((QXinQLQtQXq));
A ©)
e X, = Xo(t) o X (t) = iLX (1),

PA =" (AlXq) [ (Xq|Xq) Xq + (AIP) [ (Py|Py) Py ,

q (10)

Q=1-P , (AB)=(4'B).

Here we have to work with g-dependent sets of variables
{X,} and {F,} to guarantee orthogonality (X4|Xq)} =
(X41Xg) 64,4~ L denotes the Liouville operator. It is easy
to see that M,(z) is invariant under the transformation
X — X + aX + bX for both representations. Note that
if Sq(t — c0) = Ly # 0, then also M,(t — o0) # 0, and
both S,(2) and My(z) have a pole at z = 0 + 0. But
it is evident that even if a correlator Sy{z) has a pole at
zero frequency, all Laplace-transformed time derivatives
of the correlator will be regular at zero frequencies (no

pole):

hm zLT [dt"s (t)] =0, n>1. (11)

z—i0

Let us apply these sum rules (11) to the Tserkovnikov
representation of the relaxation kernel [Eqgs. (5)—(8)]. At
first we have to calculate the pole of M,(z):
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2((X1X)),

zMﬂ”=Z“mXDA@—z«kmwga;aﬂiﬁ%é

Performing the limit z — 10 in (12) the first two terms on
the RHS in line 1 vanish because of (11), the first terms
in the angular brackets in lines 1 and 3 remain, and the
pole of M,(z) comes from the angular bracket in line 2 in
(12) (see also Appendix A). Hence decoupling methods
(factorizations of higher-order correlation functions) have
to take into account all angular brackets in (12). This
was not done by ABPS; instead all angular brackets were
neglected and a decoupling in the first two terms on the

BycrA =

2

q1<g2 <+ <gn

Because of the symmetry of (1), the lowest possible order
of n is n = 3. After projection one has to decouple the
correlators of the products into products of correlators,
replacing the reduced time dependence by the full dy-
namics QLQ — L.* This mode-coupling approximation
leads to an equation similar to (13):

Mq(t) ~ Z V(q, QIaQ2)S¢11 (t)Sqa (t) : Sq-th—qz(t) .

d1,492

(15)

If we allow all possible combinations {g1,¢2,¢3} of the
triples Xg, Xg,X¢,, as defined in (14), the calculation of
the vertex V'(q,q1,g2) turns out to be complicated (see
Appendix A) and cannot be given here in an analytical
form. However remember that in our case we know that

(16)

X=X} +(1-Co)Xi+ Y CuuXe
k#l

Thus X contains the product X3 of the initial variable X
from the beginning. In this case it might be reasonable
to proceed to the second step of the mode-coupling ap-
proach immediately and to decouple the products with-
out additional projection (this is equivalent to a pro-
jection of X, onto X3 =1/N?3., X X, Xg—g1-2)-
Then we simply derive
6
V(g,q1:92) = 73 (17)
This result is identical with (13). But strictly speaking
the calculation of M,(t) remains an open question.
Equations (4) and (15) or (4) and (13} are called mode-
coupling equations in analogy to corresponding more gen-

eral equations for the density-density correlator in lig-
uids. Such types of equations have been extensively stud-
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[
RHS in line 1 led to the approximation®

Mg (t) =~ 6[Su()]° (13)
On the other hand, one can use the same treatment of
the Mori representation of the relaxation kernel as in the
MCT.4 There one has to project the force QX, onto the

product of the initial variables X, in the lowest possible
order using the new projection operator

R ¢

| _
ied (see Ref. 4 and references therein) and successfully
applied to describe the dynamics of undercooled liquids.
These MCE’s exhibit a dynamic slowing down due to the
complicated feedback (15). The physical interpretation
of one part of the slowing down for liquids is the cage
effect. A particle rattles in a cage, formed by its neigh-
bors. The cages relax very slowly near some bifurca-
tion point due to the feedback. Passing the bifurcation,
a tagged particle becomes localized in space. In other
words, a complicated multiwell potential landscape orig-
inating from the interaction forms at the bifurcation
point.? In Sec. V we will apply this physical interpreta-
tion to our results. But in the following let us assume
the correctness of (15) for (1) and discuss in more detail
the mathematical consequences as reviewed in Ref. 4.

Variations of the control parameter T lead to variations
of S,. Then the MCE’s describe generically a transition
from ergodic states S,(t — oo0) = 0 to nonergodic states
Syt — 00) = Ly # 0 at some temperature TMCT. This
transition is an A, singularity following the notation of
Ref. 4; i.e., for T = TMCT the L, (TMCT) = L¢ solutions
are doubly degenerate. The whole Aj scenario of MCT
applies to the dynamics of Sy(t), and thus two different
dynamic scaling laws should appear for T' > TMCT. Note
that, at TMCT, S, is finite for all ¢; no static divergencies
are necessary. The normalized correlator

Dq(t) = S4(t)/Sq (18)
will exhibit an inflection point at ®,(tina) = f; =
Lg/So(TMCT).  For 6@4(t) = P4(t) — ¢ < 1 and
g = (T — TMCT)/TMCT ope obtains the S-scaling law*

6@q(t) = hqv/Eg(t/te), (19)

(20)

te = T0€—1/2a .
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For ®,4(t) < fg one finds the a-scaling law

‘pq(t) = Fq(t/TE)s (21)
o = mpe—1/20-1/2b (22)
I?(1—a) T2*1+b) X\ (23)

T(1—2a) T(1+2b)

I'(z) is the gamma function. The parameter A is model
dependent. The master function g(t) for the f-scaling
law [Egs. (19) and (20)] can be specified as
gty ~t™® for g(t) >0 ,
g(t) ~ —t® for g(t) <0 .

(24)
(25)

Note that in the case of a second-order phase transition
only one dynamic scaling law of the type

Bq(t) = £4CG(6P¢,€%) (26)
should appear, where ¢ is the correlation length:3°
1 1 d? }
CE Nl (Rl . 27
f 2 Sq=0 [dq2 q =0 ( )

To be sure that the MCE’s (4) and (15) lead to a tran-
sition at some TMCT > T, for model (1) one has to
calculate So(T) and V(gq,q1,g2) [see (15)]. This seems
to be impossible analytically. However, one can use the
fact of the static critical behavior of (1) near T, and use
the known critical exponents of the corresponding Ising
model. It can be shown that near the phase transition of
model (1) positive solutions f, 5 0 exist ford = 1,2, 3 us-
ing (13) or (15) and (17) (Ref. 31 and Appendix B). Thus,
increasing the temperature, one will find the nonergodic-
ergodic transition at TMCT > T, using (13), since for
T — oo only the f; = 0 solution remains.

In the following we report on our studies of (1) by use
of molecular dynamics. We try to find a temperature
region above T, where dynamic slowing down appears.
Then we test applicability of MCT with respect to the
found slowing down.

IV. MOLECULAR-DYNAMICS ANALYSIS

The results of Sec. IV are obtained by use of molecular
dynamics for (1) with d = 1, Cix = C8; x4+1. We solve
the classical Newton equations of motion using the Ver-
let algorithm®? with periodic boundary conditions. The
total energy of the system was conserved (microcanon-
ical simulation). The time step was A = 0.005. The
system size was N = 8000. In all cases the size of the
system was of the order of 100§ or larger. Comparing
our results with runs for N = 4000 and different time
steps we can definitely exclude any h and N dependence
of our results. The energy was conserved within 0.001%
during one run. The total simulation time of one run
was o = 10% — 107. To make sure we calculate the cor-
rect properties we performed two independent runs with
random initial conditions at each temperature. Then we
mapped both solutions onto each other to see that our
results are reproducible.

The following quantities were calculated during one

14 913

run: the temperature T =
mean-square displacements

1 1 [t
Sie = (X = 5 3 o [ X Xmiia(elt

F & [0 XP(t)dt, the

the mean cluster length (I} (mean length of chain parts
with equal sign of particle displacements), the mean con-
stant sign time (7) (mean time of constant sign of one
particle displacement), distribution functions of cluster
lengths and mean constant sign times, and the local time-
dependent correlator

to
Su(t) = % ; %A Xi(t' + )X, (¢)dt’ . (28)

The Laplace transformation of Sy;(¢) we performed using
the Filon algorithm.33

A. Strong-interaction case (displacive limit)

In this subsection we report on our results for C = 4.
This value corresponds to the strong interaction case of
(1), and following Aubry!® it is possible to introduce a
reduced temperature T, ~ T/+/C. Thus changing the
interaction strength is equivalent to rescaling the tem-
perature.

1. Static properties

As we reported in Ref. 7 the inverse mean cluster
length (I) as a function of temperature tends to zero
at T' =~ 0.35. At this temperature the {{}(T)) depen-
dence changes essentially. This may be considered as a
crossover temperature 7™ or a “suppressed phase transi-
tion” temperature T*. From our Si, data we obtained the
spatial Fourier-transformed structure factor S, (Fig. 1):

Sy = Zeiq(l—k)Szk . (29)
k

Fitting the ¢ dependence for small ¢ we extracted the
correlation length defined in (27), shown in the insert in
Fig. 1. It turns out that £ is equal to (I} within 10%
of error. Thus the interpretation of T* in terms of a
suppressed phase transition seems to be reasonable. The
fact that at T* some thermodynamic properties of (1)
exhibit unusual properties is confirmed by plotting the
inverse local static susceptibility

1/xu =T/Su (30)

in Fig. 2. Clearly we see a bend at 7™ = 0.35. It shall be
noted here that Aubry found a maximum in the specific
heat at T ~ 0.4,/C/4 = 0.4.'® This maximum seems to
correspond with our crossover temperature 7.

Finally in Fig. 3 a semilogarithmic plot of the cluster
length distribution function Py (l) for different temper-
atures is shown. It is seen that Py (l) ~ exp(—~al) in
a large-l region. Assuming random Zuncorrelated) posi-
tions of cluster boundaries one easily derives

1 1 _
Po)~ (z - __) =2/

) (31)
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FIG. 1. S, vs wave number g for C' = 4 and temperatures 1
T =0.28, 0.305, 0.331, 0.346, 0.387, 0.404, 0.445, 0.653, 0.986,
and 1.2. Higher temperatures correspond to lower values of FIG. 3. Cluster length distribution function Py vs cluster

S, for ¢ — 0. Inset: Inverse mean correlation length £ 1 ys
T for C = 4.

Decreasing the temperature leads to increasing (I} and
thus to decreasing o. Although the assumption of un-
correlated cluster boundary positions does not give the
correct value of a (50% error), the temperature depen-
dence of a can be qualitatively explained.
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FIG. 2. Inverse static local susceptibility 1/xu vs temper-
ature for C = 4 (solid circles). The dashed lines are linear fits
of 1/xu[T] for T < 0.35 and T' > 0.35, respectively. A bend
at T = 0.35 is seen.

length I for C = 4 and T = 0.3,0.35,0.4, and 0.59. Higher

temperatures correspond to larger slopes of log,o[Pgy] vs I for
large 1.

2. Dynamic properties

As we reported in Ref. 7 the inverse mean constant sign
time (7} as a function of temperature tends to zero at T™.
In Ref. 8 we started to analyze the frequency dependence
of the imaginary part of the normalized susceptibility

ei(w) = xi(w)/Su - (32)

{1(w) exhibits a high-frequency two-peak excitation spec-
trum, which can be explained by motions of particles in
one cluster.? In the low-frequency region w < 1 we found
a minimum of }j(w) at w = wg/(T) and at lower fre-
quencies a maximum &t w = wo (T, we (T) < wp(T)
(Fig. 4). The value wp is nearly temperature indepen-

~ dent in contrast to MCT [Eq. (20)]. The height of the

minimum &”(wg ) decreases with decreasing temperature,
but we found no &”2(wg) ~ (T — TMCT) dependence
in contrast to (19).2 Surprisingly we find a scaling law

- around the B’ minimum as shown for the scaled func-

tion &7} 4(@) = efj(Wwg)/eli(wp), ® = w/wp:, in a log-
log-plot in Fig. 5. For T' = 0.33,0.346,0.364 we find a
master function on the low-frequency side of the 8’ min-
imum over one decade in frequency. The master func-

“tion can be fitted by a power law &% with b ~ 1 [cf.

(25)]. This value leads to A = 0.5 [Eq. (23)]. It shall be
noted here that 1 > XA > 1/2.% For lower temperatures
T = 0.3,0.28 we see a possible breaking of the scaling
behavior on the low-frequency side of the 8’ minimum.
Now we stretch the w scale on the high-frequency side of
the B’ minimum (Fig. 6). We again see a scaling behav-
ior for T = 0.33,0.346,0.364. But the master function
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log

FIG. 4. ¢€f; vs log,p(w) for C = 4. T =0.28, 0.305, 0.331,
0.346, 0.364, 0.379, 0.397, 0.404, 0.432, and 0.445. Higher
temperatures correspond to larger values of £}, in the 8’ min~
imum.
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FIG. 5. Scaled &;;/ejj(wpr) vs scaled frequency w/wg: for
the 8/ minimum in a logio-logio plot for € = 4. Solid lines:
T =0.331, 0.346, 0.364, 0.379, 0.404, 0.432, and 0.487. Dashed
lines: T = 0.28 and 0.305. Higher temperatures correspond
to lower values of the scaled function outside the 8’ minimum.
The dashed-dotted line is a power fit x/} ~ w™?® with b =~ 1.
The fluctuations of the dashed lines near the 8’ minimum are
numerical uncertainties.
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FIG. 6. Same as Fig. 5 but on a stretched frequency scale.
Only the right-hand side of the 8’ minimum is seen. Solid
squares, T = 0.28; solid circles, T' = 0.305; squares, T =
0.331; triangles, T = 0.346; stars, T = 0.364; circles, T =
0.379. Clearly a master function (solid line) is observed for
T >0.3.

E’il (“)) / Elvu((‘)a')
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FIG.7. Scaled e};/ei{wer) vs logio of the scaled frequency
w/war for C = 4. Solid lines: T =0.331, 0.346, 0.379, 0.404,
0.432, and 0.487. Higher temperatures correspond to larger
values of the height of the 8’ minimum. Kohlrausch fit (see
text), solid circles, and Debye fit (see text), dashed line.
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FIG. 8. Same as in Fig: 7 but with solid lines, T = -
0.331, 0.346, and 0.379; dashed line, T = 0.305; dashed-dotted
line, T" = 0.28. '
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log o FIG. 10. Hypsometric plots for C = 4. Abscissa
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FIG. 9. Same as in Fig. 4 but with T" = 0.487, 0.653, (0,...,200), £/0.6. Dark areas, positive sign of Xi(t); white

0.83, 0.986, and 1.2. Higher temperatures correspond to lower areas, negative sign of Xi(¢). (a) T.= 0.5, (b) T = 0.7, (c)
values of the low-frequency part w < 1072, T = 0.9, and (d) T = 10.
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cannot be fitted by a power law in contradiction to (24).
Again the curve for the lowest temperature T = 0.28
falls out of the scaling region. Thus we find a scaling
region for the 4’ minimum 0.3 < T < 0.364. Note that
the crossover temperature 7™ introduced by the static
properties analysis lies within this scaling window.

The o maximum shifts to lower frequencies with de-
creasing temperature. Its height does not vary signifi-
cantly for T > 0.3. But for " < 0.3 there appears a
jump—e”(wy) decreases rapidly (Fig. 4). To analyze
the scaling properties let us first look at temperatures
T > 0.3. In Fig. 7 we see that a scaling law is valid
for the scaled function €} ,.(@) = ejj(Gwar)/efj(war),
@ = w/wy. The master function can be partially fit-
ted by a Kobhlrausch law

Su(t) ~ e~ E/7 @I (33)

The Kohlrausch exponent 8 =2 0.8 + 0.02 (see solid cir-
cles in Fig. 7). Especially the high-frequency side of
the o' master function cannot be described by (33).
We also observe slight differences on the low-frequency
side of the master function. A fit with a Debye law
Su{t) ~ exp[—t/7(T)] cannot account for the o peak
(see dashed line in Fig. 7). Thus we observe a slightly
stretched o relaxation. In Fig. 8 we show the breaking
of the ¢’ scaling law for T = 0.3,0.28. Clearly an addi-
tional stretching of the ¢/ maximum appears. It follows
for both o’ and ' analysis that the observed dynamic
scaling region is limited in temperature to T" > 0.3. Us-
ing the reduced temperature 7, we find for the lower
limit T > 0.15v/C. The found scaling properties there-
fore cannot be attributed to the phase transition of (1)

0.6
0.4
(-3\
N
.=
w
0 1
log w
FIG. 11. Same as in Fig. 4 but with C = 0.1 and T =

0.106, 0.126, and 0.151. Higher temperatures correspond to
larger values of the 8 minimum.
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FIG. 12. Same as in Fig. 7 but with C = 0.1 and T =

0.106, 0.126, and 0.151. Higher temperatures correspond to
larger values of the height of the ' minimum.

log [ €' (0/wg) / €1 (wp) ]

-2 1 0
log ( w/wg )
FIG. 13. Same as in Fig. 5 but with C = 0.1 and T =

0.106, 0.126, and 0.151. Higher temperatures correspond to
lower values of the scaled function outside the 4’ minimum.
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at T =0.

In Fig. 9 the &/j(w) data for higher temperatures T' <
1.2 are plotted. The o/ maximum shifts to higher fre-
quencies and at T' ~ 0.9 (T = 0.45+/C) coalesces with the
lower-frequency peak of the high-frequency spectrum.

Finally we show in Fig. 10 so-called hypsometric plots
of the particle positions for different temperatures. In
these plots (particle number versus time on the axes) a
particle is marked by a dot if its sign is positive and is not
marked if the sign is negative. These plots are used to
detect solitary excitations.2® Clearly we see propagating
cluster walls (kinks) with velocities v = 1,...,2 for T <
0.9. :

B. Weak-interaction case (order-disorder limit)

In this subsection we will discuss the dynamic proper-
ties of (1) for C = 0.1. As we showed in Ref. 7 at T' =0.1
one can expect a crossover in analogy to C = 4, however
only due to an increasing of the mean constant sign time
(1) (see Fig. 5 in Ref. 7). The correlation length does not
exhibit unusual behavior at this temperature (£ < 5 for
T > 0.1). Again we observe a high-frequency two-peak
spectrum in &}j{w) with peak positions at w = 0.66 and
w = 1.3 (Fig. 11). This part of the spectrum can be qual-
itatively attributed to the spectrum of a single particle
moving in a double-well potential.®4 In the low-frequency
region of €};(w) again a ' minimum and a o/ peak are

FIG. 14. Hypsometric plots for C = 0.1 (cf. Fig. 10). {a)
T =0.2 and (b) T = 0.5.
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observed. As in the strong-interaction case the o peak
shifts to lower frequencies with lowering the temperature,
whereas the 8/ minimum does not shift. A scaling anal-
ysis shows that there is an indication of an ¢ scaling for
T < 0.125 (Fig. 12). However, no ' scaling is observed
(Fig. 13). Thus only one dynamic scaling law (o’ peak)
seems to be present. In Figs. 14(a) and 14(b) hypsomet-

ric plots for T = 0.2 and 0.5, respectively, are shown. No
propagating kinks can be detected.

V. DISCUSSION

Let us first interpret our results in terms of MCT. The
nonapplicability of (15) in the strong-interaction case
follows from the (i) nonshifting of the 8 minimum of
¢’(w) with temperature, (ii) nonlinear &"?(wg)[T] de-
pendence, and (iii) nonexistence of a power law on the
high-frequency side of the 8’ master function.

In terms of MCT we can say that we are far away from
any dynamic singularity as described by that theory. All
arguments listed above are concerned with the 5’ mini-
mum. The corresponding time window for Sy (t) is the
decay onto a plateau (see Fig. 1 in Ref. 8). If wg does
not shift with temperature, the time Sj;(£) needs to decay
onto the plateau also does not change. This time is about
three to four periods of the short-time oscillations,® and
thus this decay process {(onto the plateau) takes place on

~ microscopic time scales. In contrast the corresponding

decay within MCT (and experiments confirming MCT
for liquids) takes place on mesoscopic time scales, five
to ten decades larger than the microscopic time scales.
‘What is the reason for the short-time scale of the 3 re-
laxation in our system? For low temperatures we have a
dilute gas of propagating kinks in the strong-interaction
case. The mean velocity of these kinks does not vary es-
sentially with temperature.'® The whole short-time dy-
namics then comes from the dynamics in one cluster.
In this cluster all particles are displaced and oscillate
around the mean nonzero position X. Then the corre-
lator Sy (t) will decay onto X2 for times large compared
with the oscillation time. The presence of propagating
kinks finally leads to some relaxation of the correlator
to zero. Thus the 8’ relaxation onto the plateau comes
from the time average over some short-time oscillations
in a cluster. The o relaxation from the plateau comes
from the presence of propagating kinks. Since by lower-
ing the temperature the density of the kink gas is lowered
(the correlation length increases), the o relaxation takes
place at larger times with decreasing temperature. The
presence of clusters originates in the double-well on-site
potential in (1). Thus the §’ relaxation comes from the
trapping of a particle in one of the two minima of V(X)
due to the appearance of kinks. In other words, the par-
ticle becomes localized in the static on-site double-well
potential V(X). This “cage” does not relax in time in
contrast to MCT. No stretching of the 3 process then oc-
curs. In Ref. 31 the presented data for the static structure
factor S, (Fig. 1) were used as inputs in (B1) to calcu-
late f;. There 0.98 < TMCT < 1.2 was found. Clearly
no low-frequency anomalies in £”(w) are observed in this
temperature region (Fig. 9).
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In the weak-interaction case the reason for the separa-
tion of dynamics of Sj;(¢) into slow and fast components
is the existence of nearly conserved variables, namely,
effective one-particle energies. For C' = 0 these nearly
conserved variables become exact integrals of motion.®
Thus the decay onto the plateau in Sy (¢) corresponds to
the dynamics of an isolated particle in the static on-site
double-well potential V(X). Again the particle becomes
localized in one of the two minima, and this “cage” does
not relax in time. By the same way one can explain the
nonstretching of the decay onto the plateau as reported
by Kob and Schilling?® for finite systems (1) with infinite-
range interaction Cy, = Cp/N. We can summarize that
the on-site double-well potentials in (1) play the domi-
nant role in the formation of a “cage” for one particle.
This seems to be the reason for nonapplicability of MCT.

However, Prigodin®® has shown that (1) with one min-
imum on-site potentials V(X) = X% + vX* and random
interaction Cix = dix/N, dix; being randomly distributed
around zero, can lead to applicability of MCT. The ap-
pearance of the stretching of the 3 relaxation has to be
attributed to the randomness of interaction. The “cage”
one particle “feels” probably originates from the inter-
action with all other particles, and thus this “cage” can
relax in time.

So far we discussed our results in terms of MCT. How-
ever, we can also make a conclusion about the appli-
cability of the more general assumption of ABPS view-
ing the appearance of the narrow CP as due to a struc-
tural relaxation of a glasslike system (of clusters). As
recent light-scattering experiments near the liquid-glass
transition®® show, the main features of systems exhibit-
ing & dynamic liquid-glass transition indeed are (i) the
power law €”(w) ~ w*, @ < 0.4, on the high-frequency
side of the # minimum [being the reason for the enhance-
ment of the values of €/ (w) in the B relaxation regime well
above the white-noise behavior] and (ii) the von Schwei-
dler relaxation &”(w) ~ w™?, b < 1, on the low-frequency
side of the # minimum. Both features are not found for
our system. Thus the ABPS assumption seems to fail
also from this more general point of view in the cases
studied above.

From the discussion above it follows that the o/ peak
in gfj(w) can be attributed to the presence of propagat-
ing kinks in the case of strong interaction. From the
coalescence of the o’ peak with the high-frequency part
at T =~ 0.9 we find that kinks disappear at higher tem-
peratures. This conclusion agrees with hypsometric plot
studies of Kerr and Bishop.?? The existence of the cor-
responding nonlinear solutions was shown by Krumhansl
and Schrieffer3” and Aubry!® for the continuum limit of
(1). The dynamic properties were usually studied for
the frequency-dependent correlator S,(w). In Fig. 15 we
show the Sy(w)/Su(w = 0) curves for C = 4. From these
curves we can only find the presence of a central peak
at zero frequency, which width decreases with decreas-
ing temperature. Clearly a much better analysis can be
done studying the susceptibilities (Fig. 4). The tempera-
ture dependence of the width of the central peak can be
attributed to the shifting of the o/ maximum. The dis-

cussed dynamic scaling in the susceptibility would not be
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FIG. 15. Su(w)/Su(w = 0) vs log,o(w) for C = 4 and
T = 0.28, 0.432, 0.487, 0.653, 0.986 and 1.2 (from left to
right).

possible in Sy (w), and even the clear distinguishing be-
tween different contributions to high-frequency and low-
frequency parts of the spectra is possible only for ”(w).

The appearance of the o peak in the case of weak in-
teraction probably can be attributed to a relaxation of
nearly conserved variables. It is surprising that although
the correlation length was short in the temperature win-
dow under study, indications for a dynamic scaling law
can be found. Again the phase transition at T' = 0 seems
not to be the reason for its appearance.

So far we have only discussed the low-frequency prop-
erties of Sy(w). But it is interesting to note that there
are features of the high-frequency properties of Sj;(w),
being connected with the results listed above. First let
us mention that for C = 4 at 7' = 0.9 the mean-square
displacements Su(t = 0)[T] = Sy[T] = (X?)[T] have
a minimum.” This property seems to correlate with the
creation of kinks as suggested from the temperature de-
pendence of the o’ peak. In an isolated double-well po-
tential (X?) also exhibits a minimum at a temperature
comparable with the height of the energy barrier of the
potential.> Thus we might conclude that for T > 0.9 for
C = 4 the particle overcomes some potential barrier. But
then one expects that at the same temperature the par-
ticle position and thus the correlator Sj;(t) change their
sign within the first period of oscillation, since in the op-
posite case the particle cannot overcome the barrier, it
is “localized,” and the sign of its time-dependent posi-
tion does not change during the first oscillation. Indeed
in Fig. 16 it is seen that around T = 0.9 the change

of sign of Sy;(t) during the first oscillation period takes
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FIG. 16. Su(t)/Su{t =0) vstimetfor C =4 and T =
0.653, 0.83, 0.986, and 1.2 {from top to bottom). Inset: Same
for a harmonic chain (see text) with C =4, T = 1.

place. From Fig. 16 also follows that in the tempera-
ture range 0.65 < T < 1 Sy(t) is nearly temperature
independent for times ¢ > 30 and oscillates with a fre-
quency wp ~ 4.24. This value corresponds to the po-
sition of the high-frequency band edge of ejj(w) being
also nearly temperature independent. A calculatlon of
the time dependence of the correlator Sy(t) for a har-
monic chain [(1) with V(X) = X?] using the analytic
expression of &7j(w) (Ref. 8) also yields an oscillation (in-
set in Fig. 16). However, the corresponding frequency is

whe™ x 1.414 ~ /2, which is the position of the low-
frequency band edge of the high-frequency band of €] (w).
Thus the observed oscillation in Sy (t) for the o4 model
has its origin in the nonlinearity of the model. 1t is un-
clear whether these oscillations might be connected with
recently observed localized vibrations in nonlinear mod-
els, e.g., such as (1), with V(X) = X* (Ref. 38) (note
that in such a case no kinks should be present) or not.
This remains an interesting question.

VI. SUMMARY

We studied the time dependence of a one-dimensional
®* lattice model with a NNI. For strong interaction we
found a temperature region where two dynamic scaling
laws for the displacement-displacement correlator Sy (£)
appear. The analysis of these scaling laws brought out no
applicability of mode-coupling equations for Sy (¢t). The
scaling region is limited to T > 0.154/C. Thus the dy-
namic scaling cannot be attributed to the presence of a
phase transition at T, = 0. On the other hand, we find
a drastic increase of the correlation length in the scaling
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region. The imaginary part of the susceptibility &”{w)
exhibits a low-frequency o/ peak due to the presence of
propagating kinks. At T' = 0.45+/C the o peak coalesces
with the high-frequency part of ¢”(w). At this tempera-
ture Sy (t) exhibits a change of sign within the first period
of its oscillation.

For weak interaction we found indications for one dy-
namic scaling law in Sy (t), which corresponds to the o'
scaling in the strong-interaction case. The nonexistence
of a second scaling law (3’ relaxation) again points to the

. honapplicability of MCT.

The nonexistence of a structural relaxation such as,

. eg.,in undercooled liquids, is attributed to the presence
. of static on-site double-well potentials, which are mainly
: respon51ble for the relaxatmn of Sy (t) onto a plateau

. ‘ ‘i
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APPENDIX A

In the following we will sketch the derivation to see that
the pole of M, (2) in the Tserkovnikov representation (5)—
(8) comes from the second line in (12). The equations of
motion for a correlator, ((A|B))(z) = LT[(A(2)B)}], read

#((4|B)) = (A|B) +i((4|B))

= (A|B) —i((AB)) , (A1)

with (A|B) = (AB). Thus we obtain using
lim; oo (A(¢)A) = Laa
lim ((A14)) = z(Laa — (4]4)) , (A2)
lim ((AI4)) = —i(Ald) , (43)
lim, ((A14) = (A1) (A4)
Jm ((Al4)) = —i(Laa - (A]4)) , (A5)
lim ((A]4)) = i(Laa — (414)) . (A6)
Using these properties we derive from (12)
lim M,(2) = T (XEL_‘I Ty (AT)

Inserting (A7) into (4) one derives an identity 1=1.
Now let us analyze the Mori method for (1). For that
we use the properties

(AthBtn) = (Ath B—tn)‘sth,—qz: (AS)

(A|f|B) = —%({A*, B}) (A9)
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B -3 [Shat - vam] - @O
From

QX =Xq+ Xg/xT (A11)
we find with n = 3 for (14)

PucrX, ~ AxT Z (Ti;q;) (A12)
We used the following approximation:

(X Xy Xan X o) = (1 Xaa N1 X[ (A13)

To calculate PMCTXq /xq one has to treat averages
(XgXg, X4, Xqs). If one decouples them using the ap-
proximation
(X XtIquzXQS) ~ (]XQ|2><|XQ2! )6,1 tn»—q:s
+(1 X)) (1 X gs|? )5q,—qz5q1,—qs
+(1 XY (| X1 164, g5 O, ~aa
(A14)
|
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it follows that HJCTQXq = 0. This is not surprising,
since the properties of (1) were not considered explic-
itly. Approximation (A14) becomes exact for, e.g., a
harmonic chain, and there no relaxation kernel should
appear. Thus the correct calculation of V(g,q1,¢z2) in
(15) remains an open question.

Substituting QLQ in (9) and decoupling the time-
dependent correlator

(X q(D)X g () X g, () X X g, X )
w2 (X g (8) Xg) (X —ga (8) Xgo (X g5 (£) Xg5) »  (AL5)

we find (15).

APPENDIX B

Here we want to briefly discuss the solutions of (4) and
(13) near the phase transition T, = 0 of (1).
With (13) one gets for fq = Lq/Sq(t = 0) (Ref. 4)

_Jfq
1— fq = 6T2 1B d‘Jld‘12fQ1Xg11szXg; fq—q1—qu5—q1—q9 (B1)
Using the known critical behavior of the d = 1 Ising model®® it follows that
Xg"- =eC/T4Cq . (B2)
Inserting (B2) into (B1) and transforming ¢ — C'e€/Tq one finds for T — 0
fq 6T 2C/T —2/ fmea fq—q1—q9
= ——=¢ C dg1d . B3
-7, 1+ o BT+ )0+l — 0 — ) (B3)
Thus we obtain
1 _ —
fa=1—Agzze /T L+ 079/, (B4)
with
-2
L _5& f dg1dga(1 + ) M1+ @) (L +lg - — a2 (B5)
A, 149 /o

AMAT=T,=0, f; =1
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