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We analyze the effect of internal degrees of freedom on the movability properties of localized
excitations on nonlinear Hamiltonian lattices by means of properties of a local phase space which
is at least of dimension six. We formulate generic properties of a movability separatrix in this local
phase space. We prove that due to the presence of internal degrees of freedom of the localized
excitation it is generically impossible to define a Peierls-Nabarro potential in order to describe the
motion of the excitation through the lattice. The results are verified analytically and numerically

for Fermi-Pasta-Ulam chains.

PACS numbers: 03.20.+i, 63.20.Pw, 63.20.Ry

Recently localized breatherlike excitations were discov-
ered to exist in several different Hamiltonian lattices in
one and two dimensions [1-6]. They are self-localized (no
disorder) and appear in nonlinear lattices—thus we name
them nonlinear localized excitations (NLEs). For cer-
tain systems it was possible to create moving NLEs [7,8].
Consequently, the idea arose to describe their motion in
a Peierls-Nabarro potential (PNP) [9-12] related to the
PNP of kinks [13,14]. Numerical simulations strongly
support the existence of a PNP-related phenomenon in
Fermi-Pasta-Ulam systems [15] and Klein-Gordon sys-
tems [16]. However, as we show below it is generically
impossible to define a PNP for NLEs.

The NLE solutions are nontopological, i.e., no special
structure of the underlying many-particle potential is re-
quired. The only condition is to have nonlinear terms
in the potential. One can perform stability analysis and
show that if the NLE is localized enough (in practice
it will contain only a few particles which are involved
in the motion) then generically all Hamiltonian lattices
will exhibit families of stable time-periodic NLE solu-
tions [6,17,18]. Hereafter we will call these stable pe-
riodic NLEs elliptic NLEs to emphasize their stability
property (in a Poincaré mapping they would appear as
stable elliptic fixed points [6]). One can view the NLE as
a solution of a reduced problem where only M particles
are involved in the motion; the rest of the lattice members
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are held at their ground-state positions. We showed that
many frequency NLEs can be excited by perturbing the
elliptic NLEs and that thus NLE solutions are motions
on M-dimensional tori in the phase space of the reduced
problem and in the corresponding local subspace of the
phase space of the full system [6,17]. Besides these stable
NLE solutions unstable periodic NLEs exist. Their fea-
ture is that certain local perturbations destroy the unsta-
ble NLE or cause it to move [9,15,19]. Hereafter we will
call them hyperbolic NLEs. If one calculates the energy
density distribution e; for the NLE solutions, one can de-
fine the position of the energy center of the distribution
by Xg = 3 ,lei/ >, e1. For a given system the elliptic
NLE solution yields Xg = Iy (i.e., centered on a lattice
site lp) and the hyperbolic NLE solution Xz = I; + 0.5
(i-e., centered between lattice sites /; and [; 4 1) or vice
versa [9,15,19]. Here I,lp,!; denote lattice sites and the
lattice spacing is 1. Both elliptic and hyperbolic NLEs
as well as certain stable subclasses of their perturbations
obey a symmetry during their whole evolution, namely,
that the evolution of the NLE part for z < Xg is sym-
metric (or antisymmetric) to the evolution of the NLE
part for z > Xg. This symmetry is just the manifesta-
tion of Hamiltonian character of motion combined with
the discrete translational symmetry of the lattice.

The writing down of a certain PNP for the collective
coordinate which describes the motion of the NLE is
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conceptually equivalent to the problem of a pendulum.
The PNP barrier Apy is then intimately connected with
the energy that is required to overcome the separatrix
of the pendulum. This separatrix separates oscillating
pendulum solutions from rotating ones [20]. The PNP
frequency wpy is essentially the pendulum frequency for
infinitely small amplitudes.

To describe a periodic elliptic NLE we need to intro-
duce one degree of freedom. We will work in the action-
angle phase (J,6) space and name this degree of free-

dom J;. Its corresponding frequency will be w; = §; = -

OH/8J,. Here H denotes the full Hamiltonian of the lat-
tice. We assume that there exists a certain transforma-
tion between the original variables (positions, momenta)
and the actions and angles. This does not imply inte-
grability of the system as well as it does not imply the
inverse. Since our NLE solutions are regular solutions
(at least on moderate time scales), there is no need to in-
troduce stochasticity (cf. [17] for details). Because of the
symmetry of the elliptic NLE, the NLE will be stationary
(nonmoving) for any value of J; in the whole range of its
existence. To excite a moving NLE we have to excite an
additional degree of freedom J3. Exciting J3 we destroy
the symmetry of the elliptic NLE. But since it is always
possible to perturb the NLE conserving the symmetry,
we have to include an additional symmetry conserving
degree of freedom J, into the consideration. Thus we
end up with the simplest generic case of a Hamiltonian
problem with three degrees of freedom:
H=H(;J3;J3), wi=06;= g‘?’j,
According to our notation ¢ = 3 labels the symmetry-
breaking degree of freedom. If it is excited strongly
enough, we expect to hit a separatrix which separates
stationary NLEs from moving ones. We will name this
separatrix movability separatrix. All three degrees of
freedom are of local character; they especially can be well
defined in the reduced problem for the NLE. Since we can
consider the NLE excitation at (or between) any lattice
site(s), we thus study the local character of a movability
separatrix which is also defined for the infinite system.
The movability separatrix for the full system is just a
periodic continuation of the local movability separatrix.
Let us state the general condition for the movability
separatrix we are looking for. Since on the movability
separatrix a trajectory will for infinite times asymptoti-
cally reach a hyperbolic state (which is nothing but the
hyperbolic NLE and its symmetric perturbations), the
corresponding frequency of the 3D degrees of freedom

i=1,2,3. (1)

g—% — (1 Ta; Ja) @

w3 =

has to vanish on the movability separatrix, i.e.,

F(J1;J2; J3) =0, (3)

which implies an equation for a surface in the three-
dimensional subspace of the actions (Ji; Ja; J3). We can
always eliminate J using the expression for the energy
E = H(Jy; Jo; J3), so that (3) yields

(13 Jz; J3) = F(E; J1; Js) = 0. (4)

From (4) it follows that there exists a critical value for
J3 on the movability separatrix:

J3 = g(J1; J2) = G(E; J1). (5)

The only possibility of introducing the PNP would be to
use the relation between the potential of a pendulum and
its critical value for the action as well as the frequency
of small amplitude oscillations:

wen = f(Ji; Jo; Js = 0) = F(B; Ji; J3 = 0). (6)

It is very important to note that if f from (2) or f from
(4) depends on (Jy; J2) or (E; J1), respectively, then the
same fact holds for wpy in (6) as well as for J§ in (5).
As we immediately recognize a PNP would be different
for different (E; J;) because of the generic dependence of
the PNP parameters on the values of E and Ji in (5) and
(6). It is not only that we would obtain different PNPs
by varying the energy. Even for a fixed energy different
PNPs occur because of the dependence of the right-hand
sides in (5) and (6) on J;.

Let us discuss special nongeneric cases: (i) The Hamil-
tonian separates in the actions in the following way:

H(Jy; Jo; J3) = Hya(Jy; J2) + Hz(J3). (M

Then according to its definition ws depends only on Js.
Thus the value of J£ becomes independent on (Ji;J3)
or (E;Jy) and a unique PNP can be immediately asso-
ciated with the term H3(J3) in (7). (ii) A more subtle
nongeneric case appears if no separation holds but the
frequency ws is only a function of energy E. In this case
a PNP can be introduced which would depend on the
energy of the NLE.

Let us apply the results from above to a class of sys-
tems where moving NLEs were detected [7,8,15):

H= ; (%Pf + V(X - X1—1)> ) ®

1 1
V{z) = 50:1:2 + Za;“ . 9)

These systems belong to the class of Fermi-Pasta-Ulam
systems [21]. P; and X are the momentum and position
of the lth particle, respectively. The parameter C regu-
lates the strength of the quadratic terms. For C' — oo,
E = const, Eq. (8) becomes the well-known linear atomic
chain, which is integrable and has no NLE solutions. For
C — 0, E = const, Eq. (8) becomes a highly nonlinear
nonintegrable atomic chain. All properties of (8) can be
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obtained by fixing the energy, e.g., at E = 1 and vary-
ing C. All solutions for other energies can be obtained
by proper scaling of the times, displacements, and the
parameter C: If {X,(¢; E = 1;C)} is a solution of (8),
then {X;(%; E;C} is a solutlon for the energy E = A~4,
parameter C = C/X?, and X;(8) = A~1X(A~1t). Let us
first discuss the case C = 0. Then an even simpler scaling
holds—it is enough to study the system at one given en-
ergy, e.g., £ = 1, and through the above described scaling
all solutions for other energies are obtained. The elliptic
NLE solution is the well-known even parity mode [2,15].
It is centered between two particle sites (Xg = I + 0.5)
and four particles are essentially involved in the motion.
Its amplitude distribution can be qualitatively indicated
by (--1 l T l++). More precisely the scaled abso-
lute values of the amplitudes in decreasing order read:
1, 0.16579, 0.00048,... . No exact compacton structure
is observed as was wrongly claimed in [11] because of a
calculation error in Eq. (13) of [11]. The frequency of
the elliptic NLE for £ = 1 is w(F = 1) = 1.760+0.0018.
The hyperbolic NLE solution is known as the odd parity
mode [15,19]. It is centered on a particle (Xg = [) and
essentially three particles are involved in the motion. Its
amplitude distribution is roughly (--| T |--). More
precisely the scaled absolute values in decreasing order
read: 1, 0.52304, 0.02305,.... The frequency of the hy-
perbolic NLE is found to be wh(E =1) = 1.75140.0018,

Let us mention an important property of (8). Besides
the energy conservation law this system conserves the
total mechanical momentum: ), P, = const. It is suf-
ficient to study the system in the center of mass frame,
so that the total momentum vanishes and the center of
mass does not move. All other cases can be obtained by
& Galilean boost in (8). Since the NLE solution is local-
ized, the total mechanical momentum outside the NLE
is zero. Thus it has to be zero inside too, i.e., our NLE
solutions have to obey mechanical momentum conserva-
tion, at least approximately. The consequence is that
the elliptic NLE (four particles) is described by 4—1 = 3
degrees of freedom. That is exactly our simplest generic
problem as described above.

The properties of the perturbed elliptic NLE can be
studied with Poincaré mappings for symmetry-preserving
perturbations, i.e., for J3 == 0. Then we can consider a
reduced problem where the particles outside the NLE
are fixed at position zero. This fixed boundary does
not break the momentum conservation because of the
antisymmetry of the perturbed NLE. The result for the
Poincaré map is shown in Fig. 1. The point in the middle
of the map corresponds to the elliptic fixed point solution.
All torus intersections inside the diamondlike structured
torus correspond to stable two-frequency NLEs in the
full system (1000 particles). Every torus in Fig. 1 corre-
sponds to a certain triple of (Jy;J2; J5 = 0). The fixed
point (elliptic NLE) is defined by (Ji;J2 = 0;J3 = 0).
Thus we first arrive at the unambiguous result that a
perturbation of the elliptic NLE preserving the symme-
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FIG. 1. Poincaré intersection between the trajectory of sys-
tem 89 for a reduced problem with fixed boundaries: C = 0,
E = 1, P1 = —Po, X1 = -—Xo, P2 = -—P...1, X2 = —X_l; a.ll
other lattice members are fixed at position zero.

try leads to two-frequency NLE solutions (Jy; J2; J3 = 0).
This is similar to NLE properties in Klein-Gordon lattices
[6,17).

Now we excite the third degree of freedom J3 7 0 which
destroys the symmetry of the elliptic NLE. We choose a
path in phase space where Pi(t = 0) = —Py(t = 0),
Pg(t = 0) = —P_l(t = 0) = 8, Xl(t = 0) = —X_l(t =
0) = a, and all other displacements or momenta are equal
to zero at t = 0. The total energy is still E = 1. We
work with 1000 particles. Here the elliptic NLE is chosen
to be centered between the lattice sites | = 0 and | =
1, respectively. The actions are some functions of the
chosen path: Jy = Ji(E;s;a) and J3 = J3(E;s;a). We
especially know that J3(E,s,a = 0) = 0. By increasing
a we measure the time dependence of the energy center
XE(t). The energy density is defined by

1 1
e = §P;2 + §[V(X1
Since Xg(t) is independent of time for a = 0, we can
hope that the energy center will essentially couple only
to (Js3;63) so that we can measure the frequency wsz. In-
deed for a # 0, Xg(t) oscillates around its mean value
of 0.5. There are modulations of this oscillation with the
frequency wy, but their amplitude is small and we clearly
observe the frequency ws = F(E; Ji(E; s;a); J3(E; s; a)).

For small values of a (< 107*) the value of w3 becomes
independent of a, thus we can measure f(E; Ji(E;s;a =
0); J3 = 0) which is nothing else than wpy [cf. (6)]. Es-
pecially for the elliptic NLE solution we find w3 = 0.343+
0.006. For two other tori within the diamondlike torus in
Fig. 1 (s = 0.1, s = 0.2) we find w3 = 0.391 % 0.005
and ws = 0.322 £+ 0.005. Thus we find variations of
wy = f(B; Jy; Js = 0) for a fixed value of the energy (by
varying Ji) of at least 21%. Now let us increase a for a
given value of s and monitor the time evolution of Xg(t).

—X1-1) + V(X — X3)]. - (10)
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It is shown in Fig. 2. In agreement with our expectations
we find that with increasing a the frequency ws decreases
and the amplitude of the oscillations of Xg(t) increases.
At a threshold value of a = a; we clearly observe the
crossing of the movability separatrix—the NLE escapes
from its mean position.

The properties of the movability separatrix are eas-
ily constructed. Because of the scaling property of the
Hamiltonian for C' = 0 we find all solutions at other en-
ergies by proper scaling. Since the frequencies scale too,
we immediately find that f(E;Jy;J3 = 0) depends on
the energy. Because we found strong (20%) variation of
this frequency on the energy hypersurface (for constant
energy), the J; dependence is also significant. Having
f(E; Ji; J3 = 0) to be strongly dependent on E and Jy
we find using (2)-(6) that the same holds for the critical
value of J§ on the movability separatrix. Thus we see
that our example is a generic case, and a PNP cannot be
constructed.

If one considers C' 3 0 (here C' = 0.3), one rediscov-
ers all the above statements. There are only quantitative
changes—the dependence of w3 on E and J; becomes
weaker. For large enough values of C' (fixing the total
energy) the frequencies wy and w3 can become resonant
with the phonon band (which still does not prevent us
from studying the movability separatrix on short time
scales). For too large values of C the frequency w; be-
comes resonant with the phonon band and the whole NLE
solution then quickly disappears [6,17,22,23].

Let us make some final comments. First our results
demonstrate a clear way of studying and characterizing
the movability properties of NLEs in terms of a movabil-
ity separatrix in phase space. Second we find that generi-
cally no simple PNP can be introduced. The reason is the
intimate connection between the “translational” degree
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FIG. 2. Time dependence of the center of energy of an NLE
for different asymmetric perturbations a (see text): solid line,
a = 0.02; dotted line, a = 0.06; dashed line, a = 0.1; long
dashed line, @ = 0.112; dash-dotted line, ¢ = 0.113.
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of freedom (J3) and the “internal” degrees of freedom
(J1,J2) through the Hamilton function. Consequently,
the necessary energy supply to an elliptic NLE in order
to cross the movability separatrix at a certain orbit can
be positive, zero, or negative depending on the chosen
orbit on the movability separatrix. That is the reason
why intuitive approaches to derive PNPs are sometimes
even self-contradictory: in [12] under assumption of sep-
arability property [our Eq. (7)] of a discrete nonlinear
Schrédinger equation a PNP is derived which is energy
dependent, but that implies the nonseparability of the
Hamiltonian. The results in the present paper disprove
the conjecture in [11}, where it is predicted that for our
equations (8) and (9) and C = 0 freely moving NLEs
exist, i.e., no PNP (no separatrix) should exist. Our
Fig. 2 shows that the separatrix exists. A very interest-
ing perturbation analysis was carried out in [10,12] for a
weakly perturbed integrable Ablowitz-Ladik lattice. The
authors were able to show analytically that the NLE solu-
tion is described by the evolution of three internal degrees
of freedom, so that the movability separatrix can be an-
alyzed analytically in their case. Finally we mention the
treatment of a discrete sine-Gordon breather with a col-
lective coordinate method [24]. There it was shown how
to treat unambiguously a NLE with 2 degrees of freedom.
Already there it is clear that no unique PNP exists, i.e.,
the amplitude of the PNP is a function of F and the NLE
amplitude.
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