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Energy Tresholds for Discrete Breathers in One-, Two-, and Three-Dimensional Lattices
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Discrete breathers are time-periodic, spatially localized solutions of equations of motion for classical
degrees of freedom interacting on a lattice. They come in one-parameter families. We report on studies
of energy properties of breather families in one-, two-, and three-dimensional lattices. We show that
breather energies have a positive lower bound if the lattice dimension of a given nonlinear lattice is
greater than or equal to a certain critical value. These findings could be important for the experimental
detection of discrete breathers. [S0031-9007(97)02415-0]
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Recently progress has been achieved in the understa
ing of localized excitations in nonlinear lattices. Discret
breathers (DBs) are time-periodic, spatially localized sol
tions of equations of motion for classical degrees of fre
dom interacting on a lattice [1–3]. Nowadays it is know
that the reason for the generic existence of DBs is thedis-
cretenessof the system paired with thenonlinearityof the
differential equations defining the evolution of the syste
[4,5]. Thus one can avoid resonances of multiples of th
discrete breather’s frequencyVb with the phonon spec-
trum Vq of the system [6]. If the coupling is weak the
phonon spectrum consists of narrow bands. The nonl
earity and the narrowness of the phonon bands allows
periodic orbits whose frequency and all its harmonics l
outside the phonon spectrum. For some classes of syst
existence proofs of breather solutions have been publish
[7–9]. A list of references is given in [10].

For generic Hamiltonian systems, periodic orbits occ
in one-parameter families, and discrete breathers are
exception. In many cases, the energy can be used
parameter along the family, but as is well known, th
energy can have turning points along a family of period
orbits. Mathematically, such a turning point in energy i
called asaddle-center periodic orbit.

The main message of this paper is that in 3D lattice
a turning point (in fact, minimum) in energy is almos
inevitable for discrete breather families.

One important property of DBs is their generic exis
tence for weak enough coupling, independent of the latti
dimension [5,7]. This means that DBs are not just a 1
curiosity but could be interesting from the point of view o
applications. The experimental detection of DBs requir
some additional knowledge about their properties. In th
contribution we give heuristic arguments that the ener
of a DB family has a positive lower bound for lattice di-
mensiond greater than or equal to somedc, whereas for
d , dc the energy goes to zero as the amplitude goes
zero, and we confirm these predictions numerically. Th
critical dimensiondc depends on details of the system bu
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is typically 2 and never greater than2. Furthermore, for
d . dc, the minimum in energy occurs at positive am
plitude and finite localization length. Consequently, e
periments could be designed to look for activation ener
thresholds for localized excitations.

Let us consider ad-dimensional hypercubic lattice with
N sites. Each site is labeled by ad-dimensional vector
l [ Zd . Assign to each lattice site a stateXl [ Rf ,
wheref is the number of components and is to be finit
The evolution of the system is assumed to be given by
Hamiltonian of the form

H ­
X

l

HlocsXld 1 HintsXl, hXl1sjd , (1)

where Hint depends on the state at sitel and the states
Xl1s in a neighborhood. We assume thatH has an
equilibrium point atXl ­ 0, with HshXl ­ 0jd ­ 0.

DB solutions come in one-parameter families. Th
parameter can be the amplitude (measured at the
with maximum amplitude), the energyE, or the breather
frequency Vb . It is anticipated (and was found both
numerically and through some reasonable approximatio
[1]) that the amplitude can be lowered to arbitrarily sma
values, at least for some of the families for an infinit
lattice. In this zero amplitude limit, the DB frequency
Vb approaches an edge of the phonon spectrumVq. This
happens because the nonresonance conditionVqyVb fi

0, 1, 2, 3, . . . has to hold for all solutions of a generic DB
family [6]. In the limit of zero amplitude, the solutions
have to approach solutions of the linearized equatio
of motion, thus the frequencyVb has to approach some
Vq, but at the same time not coincide with any phono
frequency. This is possible only if the breather’s frequen
tends to an edgeVE of the phonon spectrum in the limit
of zero breather amplitude. If we consider the fami
of nonlinear plane waves which yields the correspondi
band edge plane wave in the limit of zero amplitudeA,
then its frequencyV will depend onA like

jV 2 VEj , Az (2)
© 1997 The American Physical Society 1207
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for small A, where the “detuning exponent”z depends on
the type of nonlinearity of the Hamiltonian (1), and can b
calculated using standard perturbation theory [11].

It is tempting to check then whether the breath
appears through a bifurcation from a periodic orb
which is a normal mode of the linearized equation
of motion for any system with finiteN . Band edge
plane waves of the linearized equations of motion c
be continued to nonzero amplitudes for the gene
nonlinear system. The stability analysis of these pe
odic orbits yields the possibility of tangent bifurcation
(collision of Floquet multipliers at +1) if some algebraic
inequalities of the expansion coefficients ofH in (1)
are met [12]. It has been also shown that the orb
which bifurcate from the plane wave are not invarian
under discrete translations and have the shape of disc
breathers [12]. It has been conjectured that the n
bifurcating orbits are discrete breathers. Subsequent
it was successfully explained why discrete breathe
exist or not for certain models by analyzing the abov
mentioned algebraic inequalities [12]. Numerical studi
confirm these findings [13] for some one-dimension
models.

The above-mentioned analysis of stability of band ed
plane waves was carried out for systems with detuni
exponentz ­ 2 and largeN . The critical amplitudeAc

of the plane waves at the bifurcation point depends
the number of lattice sites asAc , N21yd [12]. We see
that the amplitudes of the new orbits bifurcating from th
plane wave become small in the limit of large system siz
If the energy of the system is given by a positive defini
quadratic form in the variablesX in the limit of small
values ofX it follows for the critical energy of the plane
wave at the bifurcation point [12]

Ec , N122yd . (3)

Result (3) is surprising, since it predicts that forz ­ 2 the
energy of a DB for small amplitudes should diverge fo
an infinite lattice withd ­ 3 and stay finite (nonzero) for
d ­ 2, whereas ifd ­ 1 the breather energy will tend to
zero (as initially expected) in the limit of small amplitude
and large system size. The whole construction depen
on the validity of the assumption that the new period
orbits bifurcating from the plane wave through the abov
mentioned tangent bifurcation are indeed DBs.

It is not known how to prove this assumption. But w
can estimate the discrete breather energy in the limit
small amplitudes and compare the result with (3). Defin
the amplitude of a DB to be the largest of the amplitud
of the oscillations over the lattice. Denote it byA0 where
we define the sitel ­ 0 to be the one with the largest
amplitude. The amplitudes decay in space away from t
breather center, and by linearizing about the equilibriu
state and making a continuum approximation, the decay
found to be given byAl , CFdsjljdd for jlj large, where
Fd is a dimension-dependent function
1208
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F1sxd ­ e2x , F3sxd ­
1
x

e2x , (4)

F2sxd ­
Z e2x

p
11z 2p

1 1 z 2
dz , (5)

d is a spatial decay exponent to be discussed short
and C is a constant which we shall assume can b
taken of orderA0. To estimate the dependence of the
spatial decay exponentd on the frequency of the time-
periodic motionVb (which is close to the edge of the
linear spectrum) it is enough to consider the dependen
of the frequency of the phonon spectrumVq on the
wave vectorq when close to the edge. Generically, this
dependence is quadraticsVE 2 Vqd , jq 2 qEj2 where
VE fi 0 marks the frequency of the edge of the linea
spectrum andqE is the corresponding edge wave vector
Then analytical continuation ofsq 2 qEd to isq 2 qEd
yields a quadratic dependencejVb 2 VEj , d2. Finally,
we must insert the way that the detuning of the breath
frequency from the edge of the linear spectrumjVb 2

VEj depends on the small breather amplitude. Assumin
that the weakly localized breather frequency detunes wi
amplitude as the weakly nonlinear band edge plane wa
frequency this isjVb 2 VEj , Az

0. Thend , A
zy2
0 .

Now we are able to calculate the scaling of the energ
of the discrete breather as its amplitude goes to zero
replacing the sum over the lattice sites by an integral

Eb ,
1
2

C2
Z

rd21F2
dsdrd dr , A

s42zddy2
0 . (6)

This is possible if the breather persists for small ampl
tudes and is slowly varying in space. We find that i
d . dc ­ 4yz the breather energy diverges for small am
plitudes, whereas ford , dc the DB energy tends to zero
with the amplitude. Insertingz ­ 2 we obtaindc ­ 2,
which is in accord with the exact results on the plane wav
stability [12] and thus strengthens the conjecture that di
crete breathers bifurcate through tangent bifurcations fro
band edge plane waves. Note that ford ­ dc logarithmic
corrections may apply to (6), which can lead to additiona
variations of the energy for small amplitudes.

An immediate consequence is that ifd $ dc, the
energy of a breather is bounded away from zero. Th
is because for any nonzero amplitude the breather ener
cannot be zero, and as the amplitude goes to zero t
energy goes to a positive limit (d ­ dc) or diverges
(d . dc). Thus we obtain an energy threshold for the
creation of DBs ford $ dc. This new energy scale is
set by combinations of the expansion coefficients in (1
If z ­ 2 with jV 2 VEj , bA2 for the nonlinear plane
waves, and the energy per oscillatorE , gA2 and the
spatial decay exponentd is related by jVb 2 VEj ,
kd2, then the energy thresholdEmin is of the order of
kgyb, and the minimum energy breather in 3D has spati
size of the order of the lattice spacing, independently o
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FIG. 1. Breather energy versus amplitude for the DNL
system in one, two, and three lattice dimensions. Parame
C ­ 0.1 andm ­ 3 for all cases. System sizes ford ­ 1, 2, 3:
N ­ 100, N ­ 252, N ­ 313, respectively. The estimated
points (A; E) of bifurcation of the band edge plane wav
for d ­ 1, 2, 3 are (0.014; 0.024), (0.064; 5.53), (0.097; 237
respectively.

k, g, andb. One should allow for a factor ofs2 1 dd for
underestimating the true height of the minimum and t
contributions of nearest neighbors.

To confirm our findings, we performed numerica
calculations. First, we study the discrete nonline
Schrödinger (DNLS) equation

ÙCl ­ i

µ
Cl 1 jClj

m21Cl 1 C
X

m[Nl

Cm

∂
, (7)

whereNl denotes the set of nearest neighbors ofl. The
detuning exponentz is easily seen to bem 2 1. Making
the substitutionCl ­ AleiVb t we solve the algebraic
equations for the real amplitudesAl. Numerically this
is implemented by considering the case of large breat
amplitudeA0 first. Then the breather is essentially give
by A0 ø sVb 2 1d1ysm21d andAlfi0 ­ 0. Next we define
a functional G which is the sum over the squares o
differences between left hand and right hand parts of
algebraic equations for the amplitudes. This function
is minimized by gradient descent, where the initial gue
is the large amplitude approximate solution. Finally, th
frequencyVb is varied in small steps and the breath
solution is traced. In Fig. 1 we show the resultin
breather energy as a function of the amplitudeA0 for
m ­ 3 and d ­ 1, 2, 3. The results are in full accord
with the predictions. Ford ­ 3 the above estimate of the
minimum energy yields a value of 0.2 withb ­ g ­ 1
and k ­ C ­ 0.1. The mentioned factors2 1 dd ­ 5
accounts for the deviation from the true value of
Figure 2 shows the amplitude distribution of the discre
breather with minimum energy in thesx, yd plane crossing
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FIG. 2. Amplitude distribution of the minimum energy
breather solution of the DNLS system withd ­ 3, m ­ 3,
C ­ 0.1, and N ­ 313. Actually, only a distribution in a
cutting sx; yd plane is shown (the plane cuts the center of th
breather). The intersections of the grid lines correspond
the actual amplitudes, the rest of the grid lines are guides
the eye.

the breather center ford ­ 3. The minimum energy
breather is strongly localized—its spatial width is only a
few lattice spacings. In Fig. 3 we show results ford ­ 1
and m ­ 3, 5, 7. Again we find full agreement. Note
that even one-dimensional lattices exhibit positive lowe
bounds on breather energies ifm $ 5. This d ­ 1 result
has also been predicted using variational techniques [14

To demonstrate that the numerical results are not a
artifact of the DNLS case, we study the three-dimension

FIG. 3. Breather energy versus maximum amplitude for th
DNLS system in one lattice dimension and for three differen
exponentsm ­ 3, 5, 7 (solid lines). The system size isN ­
100 and the parameterC ­ 0.1. The dashed line is for the
modified system (cf. text).
1209
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nonlinear Klein-Gordon lattice

Ül ­ 2Ul 2 U
m
l 2 C

X
m[Nl

sUl 2 Umd . (8)

The detuning exponentz is given bym 2 1 for m odd and
2m 2 2 for m even. Again the discrete breather with larg
amplitude is essentially an on-site excitation and given
Ü0 ­ 2U0 2 U

m
0 andUlfi0 ­ 0. The equations of mo-

tion are integrated numerically for a given set of initia
conditions hUlst ­ 0d, ÙUlst ­ 0dj over the breather pe-
riod Tb ­ 2pyVb. The functionalG ­

P
l hfUlsTbd 2

Uls0dg2 1 f ÙUlsTbd 2 ÙUls0dg2j is minimized with respect
to the initial conditions using gradient descent. Th
method allows us to perform a reliable numerical calc
lation of DBs in three-dimensional arbitrary lattices. Th
result in Fig. 4 form ­ 3 andd ­ 3 is again in full accord
with the predictions.

We can predict that a modified DNLS system wit
an additional termym0 jCl j

m021Cl can exhibit complex
curvesEbsA0d. For example, ford ­ 1, m ­ 7, m0 ­ 3,
and ym0 ­ 0.1, the EbsA0d dependence will be nearly
identical to the caseym0 ­ 0 already considered, if
the amplitudeA0 is not too small. ThenEbsA0d will
show a minimum at a nonzero value ofA0. For small
A0, however, the energy of the breather will ultimatel
decay to zero, so the curve has a maximum for smal
amplitudes! The dashed line in Fig. 3 shows the numeric
calculation, which coincides with our prediction.

Our findings should help to detect discrete breathe
in experimental realizations like the dynamics of atom
in crystals. For a three-dimensional crystal we pred

FIG. 4. Breather energyEb versus frequency detuning
sV 2 VEd for a 3D Klein-Gordon lattice. Parametersm ­ 3
andC ­ 0.1. System sizeN ­ 103.
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a positive energy threshold for the excitation of discret
breathers.

Another consequence of our work is that breathe
solutions belonging to parts of the family where the en
ergy is decreasing with increasing amplitude are dynam
cally unstable, whereas those in the other parts have
good chance of being dynamically stable. This can b
seen from a Poincaré map of the phase space flow arou
the breather orbits. The minimum energy breathers co
respond to saddle-center bifurcations, since no breath
solutions will exist if the energy is lowered beyond the
minimum breather energy.

A similar phenomenon occurs in polaron theory. In
a three-dimensional lattice, two polarons of unit electri
charges exist above a certain parameter threshold (lar
and small polaron) [15].

Summarizing, we have shown that discrete breath
families have positive lower energy bounds if the dimen
sion of the lattice is larger than or equal to some criti
cal value which in turn is defined by the power of the
first nonlinear expansion term in the equations of motion
These results are expected to be of importance for th
experimental detection of discrete breathers, because
minimum energy of a breather family should show up a
an activation energy.

[1] A. M. Kosevich and A. S. Kovalev, JETP Lett.67, 1793
(1974).

[2] A. J. Sievers and S. Takeno, Phys. Rev. Lett.61, 970
(1988).

[3] S. Takeno, K. Kisoda, and A. J. Sievers, J. Phys. Soc. Jp
Suppl.94, 242 (1988).

[4] D. K. Campbell and M. Peyrard, inCHAOS–Soviet
American Perspectives on Nonlinear Science,edited by
D. K. Campbell (American Institute of Physics, New
York, 1990).

[5] S. Takeno, J. Phys. Soc. Jpn.59, 1571 (1990);61, 2821
(1992).

[6] S. Flach, Phys. Rev. E50, 3134 (1994).
[7] R. S. MacKay and S. Aubry, Nonlinearity7, 1623 (1994).
[8] S. Flach, Phys. Rev. E51, 1503 (1995).
[9] D. Bambusi, Nonlinearity9, 433 (1996).

[10] http:yywww.mpipks-
dresden.mpg.dey,flachybreather.DIRydb.biby

[11] A. H. Nayfeh, Introduction to Perturbation Techniques
(John Wiley & Sons, New York, 1993).

[12] S. Flach, Physica (Amsterdam)91D, 223 (1996).
[13] K. W. Sandusky and J. B. Page, Phys. Rev. B50, 866

(1994).
[14] B. Malomed and M. Weinstein, Phys. Lett. A220, 91

(1996).
[15] D. Emin, in Polarons and Bipolarons,edited by E. K. H.

Salje, A. S. Alexandrov, and W. Y. Liang (Cambridge
University Press, Cambridge, England, 1995).


