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Energy Tresholds for Discrete Breathers in One-, Two-, and Three-Dimensional Lattices
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Discrete breathers are time-periodic, spatially localized solutions of equations of motion for classical
degrees of freedom interacting on a lattice. They come in one-parameter families. We report on studies
of energy properties of breather families in one-, two-, and three-dimensional lattices. We show that
breather energies have a positive lower bound if the lattice dimension of a given nonlinear lattice is
greater than or equal to a certain critical value. These findings could be important for the experimental
detection of discrete breathers. [S0031-9007(97)02415-0]

PACS numbers: 03.20.+i, 03.65.Sq

Recently progress has been achieved in the understanid-typically 2 and never greater thah Furthermore, for
ing of localized excitations in nonlinear lattices. Discreted > d., the minimum in energy occurs at positive am-
breathers (DBs) are time-periodic, spatially localized soluplitude and finite localization length. Consequently, ex-
tions of equations of motion for classical degrees of freeperiments could be designed to look for activation energy
dom interacting on a lattice [1-3]. Nowadays it is knownthresholds for localized excitations.
that the reason for the generic existence of DBs iddlibe Let us consider @-dimensional hypercubic lattice with
cretenes®f the system paired with theonlinearityof the N sites. Each site is labeled bydadimensional vector
differential equations defining the evolution of the system/ € Z¢. Assign to each lattice site a stal € R/,
[4,5]. Thus one can avoid resonances of multiples of thevhere f is the number of components and is to be finite.
discrete breather's frequendy, with the phonon spec- The evolution of the system is assumed to be given by a
trum (), of the system [6]. If the coupling is weak the Hamiltonian of the form
phonon spectrum consists of narrow bands. The nonlin-
earity and the narrowness of the phonon bands allows for H = ZHIOC(X’) + Hin (X0, {Xi145)). 1)
periodic orbits whose frequency and all its harmonics lie :
outside the phonon spectrum. For some classes of systeMinere Hi,. depends on the state at siteand the states
existence proofs of breather solutions have been publishei+s in & neighborhood. We assume that has an
[7-9]. A list of references is given in [10]. equilibrium point atY; = 0, with H({X; = 0}) = 0.

For generic Hamiltonian systems, periodic orbits occur DB solutions come in one-parameter families. The
in one-parameter families, and discrete breathers are rRarameter can be the amplitude (measured at the site
exception. In many cases, the energy can be used ¥4th maximum amplitude), the energy, or the breather
parameter along the family, but as is well known, thefrequency(,. It is anticipated (and was found both
energy can have turning points along a family of periodichumerically and through some reasonable approximations
orbits. Mathematically, such a turning point in energy is[1]) that the amplitude can be lowered to arbitrarily small
called asaddle-center periodic orbit values, at least for some of the families for an infinite

The main message of this paper is that in 3D latticedattice. In this zero amplitude limit, the DB frequency
a turning point (in fact, minimum) in energy is almost {X» approaches an edge of the phonon spectlym This
inevitable for discrete breather families. happens because the nonresonance conditipi(}, #

One important property of DBs is their generic exis-0.1.2.3.... has to hold for all solutions of a generic DB
tence for weak enough coupling, independent of the latticémily [6]. In the limit of zero amplitude, the solutions
dimension [5,7]. This means that DBs are not just a 1phave to approach solutions of the linearized equations
curiosity but could be interesting from the point of view of of motion, thus the frequenc@, has to approach some
applications. The experimental detection of DBs require$}q. but at the same time not coincide with any phonon
some additional knowledge about their properties. In thigrequency. This is possible only if the breather's frequency
contribution we give heuristic arguments that the energyends to an edg€ of the phonon spectrum in the limit
of a DB family has a positive lower bound for lattice di- Of zero breather amplitude. If we consider the family
mensiond greater than or equal to sorae, whereas for ~ Of nonlinear plane waves which yields the corresponding
d < d. the energy goes to zero as the amplitude goes tBand edge plane wave in the limit of zero amplitutle
zero, and we confirm these predictions numerically. Thdhen its frequency) will depend onA like
critical dimensiord,. depends on details of the system but [Q — Qf| ~ A? 2
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for small A, where the “detuning exponent”depends on — x _ 1
the type of nonlinearity of the Hamiltonian (1), and can be Fil) = e F3(x) ¢ @
calculated using standard perturbation theory [11]. TP D

It is tempting to check then whether the breather Fa(x) = e—dg, (5)
appears through a bifurcation from a periodic orbit VI + 22

which is a normal mode of the linearized equations5 is a spatial decav exponent to be discussed shortl
of motion for any system with finitev. Band edge P y exp Y,

. . ; ; and C is a constant which we shall assume can be
plane waves of the linearized equations of motion ca aken of orderd.. To estimate the dependence of the
be continued to nonzero amplitudes for the genera 0 P

nonlinear system. The stability analysis of these peri—Spaltlal decay exponerd on the frequency of the time-

odic orbits yields the possibility of tangent bifurcations perlodlc motlonﬂ_b'(wmch is close to the edge of the
o - . .~ linear spectrum) it is enough to consider the dependence
(collision of Floguet multipliers at +1) if some algebraic

inequalities of the expansion coefficients &f in (1) of the frequency of the phonon spectrufy, on the

are met [12]. It has been also shown that the orbitdvave vectorg when close to the edge. Generically, this

H _ —_ _ 2
which bifurcate from the plane wave are not invariantderJendence is quadratily — Q) ~ |g — gl where

under discrete translations and have the shape of discre?eE # 0 marks the frequency of the edge of the linear

breathers [12]. It has been conjectured that the ne goectrum andy is the corresponding edge wave vector.

bifurcating orbitsare discrete breathers. Subsequentlymf-hen analytical continuation ofg — gr) 10 i(g ~ qr)

) . . ields a quadratic dependenié®, — Qx| ~ 8%. Finally,
it was successfully explained why discrete breather%ve must insert the way that the detuning of the breather

exist or not for certain models by analyzing the above-frequency from the edge of the linear spectrify, —

mentioned algebraic inequalities [12]. Numerical studie . .
confirm these findings [13] for some one—dimensiona‘T‘QE| depends on the small breather amplitude. Assuming

that the weakly localized breather frequency detunes with
models.

The above-mentioned analysis of stability of band edgéamp"tude as the weakly nonlinear band edge plane wave

.. z/2
plane waves was carried out for systems with detunindrequency thisigQ, — Qr| ~ Aj. Thend ~ A,
exponent; = 2 and largeN. The critical amplitudeA, Now we are able to calcul_ate the _scallng of the energy
of the plane waves at the bifurcation point depends o®f the_dlscrete breather as |ts_ amplltude goes to zero by
the number of lattice sites @ ~ N~'/4 [12]. We see replacing the sum over the lattice sites by an integral
that the amplitudes of the new orbits bifurcating from the l de1 2 (4—zd)/2
plane wave become small in the limit of large system size. Ey ~5C f r¢  Fa(8r)dr ~ Ay . (6
If the energy of the system is given by a positive definite
guadratic form in the variableX in the limit of small  This is possible if the breather persists for small ampli-
values ofX it follows for the critical energy of the plane tudes and is slowly varying in space. We find that if
wave at the bifurcation point [12] d > d. = 4/z the breather energy diverges for small am-
E. ~ N\-2d 3) pI_itudes, Wher_eas fod < d. _the DB energy tgnds to zero
¢ with the amplitude. Inserting = 2 we obtaind,. = 2,
Result (3) is surprising, since it predicts that for= 2 the  which is in accord with the exact results on the plane wave
energy of a DB for small amplitudes should diverge forstability [12] and thus strengthens the conjecture that dis-
an infinite lattice withd = 3 and stay finite (nonzero) for crete breathers bifurcate through tangent bifurcations from
d = 2, whereas ifd = 1 the breather energy will tend to band edge plane waves. Note thatdor= d. logarithmic
zero (as initially expected) in the limit of small amplitudes corrections may apply to (6), which can lead to additional
and large system size. The whole construction dependsriations of the energy for small amplitudes.
on the validity of the assumption that the new periodic An immediate consequence is that if = d., the
orbits bifurcating from the plane wave through the aboveenergy of a breather is bounded away from zero. This
mentioned tangent bifurcation are indeed DBs. is because for any nonzero amplitude the breather energy
It is not known how to prove this assumption. But we cannot be zero, and as the amplitude goes to zero the
can estimate the discrete breather energy in the limit oénergy goes to a positive limitd(= d.) or diverges
small amplitudes and compare the result with (3). Defindd > d.). Thus we obtain an energy threshold for the
the amplitude of a DB to be the largest of the amplitudesreation of DBs ford = d.. This new energy scale is
of the oscillations over the lattice. Denote it Ay where  set by combinations of the expansion coefficients in (1).
we define the sitd = 0 to be the one with the largest If z = 2 with | — Qg| ~ BA? for the nonlinear plane
amplitude. The amplitudes decay in space away from thevaves, and the energy per oscillatbr~ gA”> and the
breather center, and by linearizing about the equilibriunspatial decay exponent is related by|Q, — Qg| ~
state and making a continuum approximation, the decay i8 8%, then the energy threshold,,;, is of the order of
found to be given byi; ~ CF,(|1|8) for |I| large, where kg/B, and the minimum energy breather in 3D has spatial
F, is a dimension-dependent function size of the order of the lattice spacing, independently of
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. FIG. 2. Amplitude distribution of the minimum energy
FIG. 1. Breather energy versus amplitude for the DNLSpreather solution of the DNLS system with= 3, u = 3,
system in one, two, and three lattice dimensions. Parametegs = (.1, and N = 313. Actually, only a distribution in a
€ = 0.1 andu = 3 for all cases. System sizes iér=1,2.3.  cutting (x;y) plane is shown (the plane cuts the center of the
N =100, N = 25°, N =31°, respectively. The estimated preather).” The intersections of the grid lines correspond to
points @; E) of bifurcation of the band edge plane wave the actual amplitudes, the rest of the grid lines are guides to
for d = 1,2,3 are (0.014;0.024), (0.064;5.53), (0.097;237), the eye.
respectively.

the breather center fod = 3. The minimum energy
k,g,andB. One should allow for a factor 2 + d) for  breather is strongly localized—its spatial width is only a
underestimating the true height of the minimum and thefew lattice spacings. In Fig. 3 we show results dbr= 1
contributions of nearest neighbors. and x = 3,5,7. Again we find full agreement. Note
To confirm our findings, we performed numerical that even one-dimensional lattices exhibit positive lower
calculations. First, we study the discrete nonlineatbounds on breather energiesif= 5. Thisd = 1 result
Schrddinger (DNLS) equation has also been predicted using variational techniques [14].
. To demonstrate that the numerical results are not an
v, = i<\I’, + ¥+, + C Z \I’m>, (7) artifact of the DNLS case, we study the three-dimensional

mEN,

where N, denotes the set of nearest neighbors.ofThe
detuning exponens is easily seen to bg — 1. Making 50 . . , .
the substitution¥; = A;¢!*’ we solve the algebraic
equations for the real amplitudey. Numerically this

is implemented by considering the case of large breathe 4.0
amplitudeA, first. Then the breather is essentially given
by Ag = (Q; — 1)~V andA;o = 0. Next we define

a functional G which is the sum over the squares of
differences between left hand and right hand parts of al
algebraic equations for the amplitudes. This functional’s 20
is minimized by gradient descent, where the initial guess§ '
is the large amplitude approximate solution. Finally, the
frequency(), is varied in small steps and the breather 10}
solution is traced. In Fig. 1 we show the resulting

d=1

>
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—
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breather energy as a function of the amplitudlg for
u=3andd = 1,2,3. The results are in full accord
with the predictions. Fo#l = 3 the above estimate of the
minimum energy yields a value of 0.2 with = g = 1
and k = C = 0.1. The mentioned factof2 + d) = 5
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FIG. 3.
DNLS system in one lattice dimension and for three different
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Breather energy versus maximum amplitude for the

accounts for the deviati_on from Fhe true value.of 1'exponents,u — 3,5,7 (solid lines). The system size i§ =
Figure 2 shows the amplitude distribution of the discretejoo and the paramete€ = 0.1. The dashed line is for the
breather with minimum energy in the, y) plane crossing modified system (cf. text).
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nonlinear Klein-Gordon lattice a positive energy threshold for the excitation of discrete
breathers.

U =-U — U[‘ - C Z (U, — Uy). (8) Another consequence of our work is that breather

meN, solutions belonging to parts of the family where the en-

ergy is decreasing with increasing amplitude are dynami-
The detuning exponeutis given byu — 1for x odd and  cally unstable, whereas those in the other parts have a
2p — 2for u even. Again the discrete breather with largegood chance of being dynamically stable. This can be
amplitude is essentially an on-site excitation and given byeen from a Poincaré map of the phase space flow around
Up = —Uy — Uy andU,xo = 0. The equations of mo- the breather orbits. The minimum energy breathers cor-
tion are integrated numerically for a given set of initial respond to saddle-center bifurcations, since no breather
conditions{U,(tr = 0), U,(r = 0)} over the breather pe- solutions will exist if the energy is lowered beyond the
riod T, = 27/Q,. The functionalG = >, {{U;(T,) —  minimum breather energy.
U (0 + [U(Ty) — U;(0)]} is minimized with respect A similar phenomenon occurs in polaron theory. In
to the initial conditions using gradient descent. Thisa three-dimensional lattice, two polarons of unit electric
method allows us to perform a reliable numerical calcucharges exist above a certain parameter threshold (large
lation of DBs in three-dimensional arbitrary lattices. Theand small polaron) [15].
resultin Fig. 4 foru = 3 andd = 3is again in full accord Summarizing, we have shown that discrete breather
with the predictions. families have positive lower energy bounds if the dimen-
We can predict that a modified DNLS system with sion of the lattice is larger than or equal to some criti-
an additional termu#fl\lfllﬂ"l\lfl can exhibit complex cal value which in turn is defined by the power of the
curveskE,(Ay). For example, fod = 1, u =7, u' = 3, first nonlinear expansion term in the equations of motion.
and v, = 0.1, the E,(A;) dependence will be nearly These results are expected to be of importance for the
identical to the casev,, = 0 already considered, if experimental detection of discrete breathers, because the
the amplitudeA, is not too small. Thenk,(4q) will minimum energy of a breather family should show up as
show a minimum at a nonzero value 4f. For small an activation energy.
Ao, however, the energy of the breather will ultimately
decay to zero, so the curve has a maximum for smaller); » 1 kosevich and A.S. Kovalev, JETP Let67, 1793
amplitudes! The dashed line in Fig. 3 shows the numerical (1974).
calculation, which coincides with our prediction. [2] A.J. Sievers and S. Takeno, Phys. Rev. L&, 970
Our findings should help to detect discrete breathers — (1988).
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