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Acoustic Breathers in Two-Dimensional Lattices
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We calculatebreathersolutionsfor a two-dimensionallattice with oneacousticphononbranch. We
start from the caseof a systemwith homogeneousinteractionpotentials. We then continuethe zero-
strain breathersolution into the model sectorwith additionalquadraticand cubic potential termswith
the help of a generalizedNewtonmethod. The breathercontinuesto exist but is dressedwith a strain
field. In contrastto the ac breathercomponents,which decayexponentiallyin space,the strain field
(which hasdipole symmetry)shoulddecaylike 1yra, a ­ 2. On our rathersmall lattice (70 3 70) we
find an exponenta ø 1.85. [S0031-9007(97)04812-6]

PACSnumbers:63.70.+h, 03.20.+i, 03.65.Sq,63.20.Dj

Theunderstandingof dynamicallocalizationin classical
spatiallyextendedandorderedsystemsexperiencedrecent
considerableprogress.Specificallytime-periodicandspa-
tially localizedsolutionsof theclassicalequationsof mo-
tion exist,which arecalled(discrete)breathersor intrinsic
localizedmodes[1]. The attributediscretestandsfor the
discretenessof the system,i.e., insteadof field equations
one typically considersthe dynamicsof degreesof free-
dom orderedon a spatiallattice. As alreadymentioned,
the consideredsystemsarespatiallyordered,i.e., the lat-
tice Hamiltonianis invariantunderdiscretetranslationsin
space. The discretenessof the systemproducesa cutoff
in the wavelengthof extendedstates,and thus yields a
finite upper bound on the spectrumof eigenfrequencies
Vq (phononband) of small-amplitudeplanewaves(we
assumethat for small amplitudesthe Hamiltonian is in
leadingorder usually a quadraticform of the degreesof
freedom). If now theequationsof motioncontainnonlin-
earterms,thenonlinearitywill in generalallow usto tune
frequenciesof periodicorbitsoutsideof thephononband,
and if all multiples of a given frequencyare outsidethe
phononbandtoo, thereseemsto beno furtherbarrierpre-
ventingspatiallocalization(for a reviewsee[2,3]).

The existenceof discretebreathershasbeenprovenso
far for (i) weaklycoupledanharmonicoscillators[4,5] or-
deredona latticeof anydimensionand(ii) chainsof parti-
cleswith nearestneighborinteractionwhosepotentialis a
homogeneousfunction,z2m with m ­ 2, 3, ... [6]. While
thefirst casestartsfrom the trivial limiting caseof nonin-
teractingoscillators,thesecondoneusesthepossibilityof
space-timeseparation(due to the homogeneityproperty)
to reducetheconsiderationto a two-dimensionalmap. In
thefirst casethephononbandis degeneratedin a nonzero
frequencyvalueandcangrow uponcontinuation,keeping
its opticalproperty(i.e.,no conservationof total mechani-
cal momentum). In the secondcasethe phononbandis
degeneratedin the zero frequencyvalue, so formally it
is an acousticband(total mechanicalmomentumis con-
served) but its width is zero.

As already mentioned, the breather frequency Vb

shouldfulfill a nonresonanceconditionnVb fi Vq for all
integer n ­ 0, 61, 62, ... . This is necessaryin general
in order to have spatial localization of the correspond-
ing Fourier mode [7]. In the abovementionedcaseof
weaklycoupledoscillatorsa proper choiceof thebreather
frequencyalwaysensuresnonresonance.In the caseof
homogeneousinteractionpotentialsthe symmetryof the
potentialFszd ­ Fs2zd is found in alsothebreatherso-
lution, which implies that only odd Fourier components
arepresentin the breathersolution. Thusthe dc compo-
nent(0 3 Vb ­ 0), which is in resonancewith the men-
tioned degeneratedphononband,is strictly zero and the
resonanceis harmless.

It is a widespreadexpectationthat breathersplay an
important role in the dynamicsof anharmoniccrystals
[8]. Sinceanycrystalhasacousticphononbranches,and
the interparticleinteractionpotentialsare not symmetric
aroundtheir minimum, one hasto face the fact that any
breatherwill beaccompaniedby a strainfield (gradientof
the dc componentof the breather)andthat the resonance
of the dc componentwith the acousticphononbranches
hasto be incorporatedinto theconsideration.

If any nonzeromultiple of Vb resonatesevenwith an
edgeof a phononband,this leadseither to the vanishing
of thewholebreatheror to a delocalizationof thebreather
and to a divergenceof its energy [9]. The resonance
of the dc componentto be consideredhere is special—
it resonateswith a Goldstonemode,and onecan expect
the resonancenot to be as destructiveto the breatheras
any resonanceat nonzerofrequency. From the theoryof
elasticdefects[10] we know the characteristicfeatureof
the straindecayto be algebraicin the distance(from the
defect center). The exponentis only dependingon the
dimensionof the systemand on the symmetrycharacter
of thedefect(monopole,dipole,etc.),but independenton
thedefectstrength.

This independenceof the exponent on the defect
strength implies that if acoustic breathers (breathers
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with dc componentsin the presenceof acousticphonon
branches)do exist, there will be no parameterlimit
in which their spatial decay becomesinfinitely large.
Insteadthe strain will always decayalgebraically;only
its amplitudecanbevaried.

At this stage it is appropriate to fix the class of
Hamiltoniansto be consideredfurther. We will treat the
simplestcaseof hypercubiclattices with one degreeof
freedomper lattice site and nearestneighborinteraction,
which canbeconsideredasgeneralizedFermi-Pasta-Ulam
(FPU)systems:
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Here Pl and Xl are canonically conjugatedscalar mo-
menta and displacementsof a particle at lattice site l.
Note thatdependingon the lattice dimensiond the lattice
site label l is a d-componentvector with integer com-
ponents. The inner sum in (1) goes over all directed
nearestneighbors, e.g., for d ­ 1 and l ­ n we sum
over l0 ­ n 1 1, for d ­ 2 andl ­ sn, md we sumover
l0 ­ hsn 1 1, md; sn, m 1 1dj, etc. The interaction po-
tentialFszd is givenby
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which turns out to be genericenoughfor the purposes
discussedbelow.

Breathersfor sucha systemcan be representedin the
form

Xlstd ­

1
X̀

k­2`

Akle
ikVbt . (3)

We will restrict ourselvesto solutions invariant under
time reversal,sothatall Akl ­ A2k,l arereal. Thespatial
localizationpropertyof (3) implies Ak,jlj!` ! 0 for k fi
0 andA0,jlj!` ! const.Thedc componentof thebreather
is givenby A0l.

So far we know aboutresultsonly for one-dimensional
lattices. A lot of numericalandapproximativework ex-
ists, which shows that the acoustic breatherseemsto
exist as a solution to finite energy [11–13]. Its pecu-
liarity is that thedc componentof thebreatherversuslat-
tice site numberhasa kink shapeA0,l!6` ! 6constfor
free boundaries. For periodic boundaryconditionsone
would find a linear decayof A0l far from the breather,
but the gradientof the dc components(the strain) is in-
verseproportionalto the sizeof the chain,so that in the
limit of an infinite chainthe result is againa constantfor
the dc component(zero strain). An analyticalproof has
beengiven recently by Livi, Spicci, and MacKay [14].
The proof considersa diatomic chain with asymmetric
interactionpotential [note that the correspondingHamil-
tonian differs from (1) in that one has to introducean
additional parameter1yM fi 1 in front of eachkinetic

energyterm for, say, all even lattice site indices]. The
breatheris continuedfrom the limit of zero massratio
(heavymassesareinfinitely heavy). Theproblemof reso-
nancewith the Goldstonemode is solvedby coordinate
transformationandby imposinga strainfield of compact
support. This meansthat the dc displacementsat this
limit are given by a steplikekink. The breatheris then
continuedinto a sectorof the Hamiltonianwith nonzero
massratio.

The reader might think that we are contradicting
ourselveswith the previous paragraphand the above
statementsabout the algebraicdecaybeing independent
of the breatherparameters.Let us explain why that is
not so. Supposethat a breatherexists, which creates
some strain field. The dc displacementsA0l will have
somedependenceon the lattice site vector l. The strain
El is given by the lattice gradient of A0l . The far
field energy stored is given by the integral over the
squaredstrain. Assuming that the strain does decay
algebraically,we can usecontinuumtheory far from the
breather. The correspondingequation is equivalent to
the electrostaticequationsin d dimensions. Consider
d ­ 1. A monopolefar field will yield E ­ c fi 0 and
the correspondingenergydiverges. Also in this casethe
potential A0l ­ sgnslda 1 cl. This clearly is not what
was observedfor acousticbreathersin one dimension.
A dipole far field instead will yield E ­ 0, A0l ­

sgnslda, and the energy is finite. This is the situation
observed. So the known acoustic breather solutions
are accompaniedby a dipole strain field. Already the
demandthat the acousticbreatheris a solution to finite
energy limits the strain fields to dipole or higher order
multipole symmetries. In this specialcasethe potential
A0l is constant far away from the breather, so the
correspondingexponentof the algebraicdecayis simply
zero. That is the reasonwhy the analytical proof of
existencecan go through, becausea kinklike field for
A0l canhavethe limiting form of a stepfunction, which
is precisely the case for the limit of zero mass ratio
(seeabove).

For d ­ 2 (squarelattice) the situation is the follow-
ing. A monopolewill generatea strain E , 1yl and
a potential A0l , lnsld. The energyof such a field di-
verges. If we searchfor acousticbreatherswith finite
energy, we would have to exclude a monopole field.
A dipole generatesa strain E , 1yl2 (we skip direc-
tion dependencieshere)and a potentialA0l , 1yl. The
energy for this field is finite. In any case the pre-
dicted exponentsof the algebraic decay are nonzero,
and no simple limit exists, which makes the strain to
be of compactsupport. So already at this stage it is
clear that existenceproofs of acousticbreathersin two-
dimensionalsystemsare much more complicatedthan
for d ­ 1.

Notice that for d ­ 3 (cubic lattice) a monopole
generatesE , 1yl2 andtheenergyof this field is finite.
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FIG. 1. dc displacementof a breatheras a function of the
lattice vectorl. Parametersaregiven in the text.

To answerthe question“to be or not to be” we will
presentnumericalcalculationsof acousticbreathersof (1)
for d ­ 2. The resultsshow up to numericalaccuracy
that acousticbreathersexist on finite lattices with free
boundaries. The symmetryand spatialdecayproperties
are in accord with the expectationsgiven above. The
maximum lattice size is 70 3 70, but we observedno
profoundsize effectson the existenceand symmetryof
the acousticbreatherwhen consideringsmaller systems.
The only size effect (to be expected) is observedeven
for the largestsystemswith respectto thealgebraicdecay
properties.

We start with f2 ­ f3 ­ 0. In this case Fszd ­

Fs2zd, so Akl ­ 0 for k ­ 2m and m integer. In par-
ticular no dc componentsare present. Furthermore,due
to thedegeneracyof thephononbandinto asinglenumber
thebreatherswill belocalizedin spacestrongerthanexpo-
nentially. Becauseof the homogeneityof the interaction
potentialwe canseparatetime andspaceXlstd ­ UlGstd.
ThemasterfunctionGstd satisfiesthedifferentialequation
G̈ ­ 2G3, andthespatialamplitudesUl aregivenby the

FIG. 2. Zoom of Fig. 1 in the breathercenter.

extremaof a functionSshUljd, i.e., ≠Sy≠Ul ­ 0:
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The function S has a local minimum at hUl ­ 0j. For
largevaluesof thevariablesUl it will divergeto 2` with
the fourthpowerof the distancefrom hUl ­ 0j with the
exceptionof somenongenericdirectionsin the spaceof
hUlj, in which S will continueto increasewith thesecond
powerof thedistancefrom hUl ­ 0j. Thusall nontrivial
extremaof S aresaddlepoints,which arelocatedon some
rim surroundingthepoint hUl ­ 0j.

Thesearchstrategyis thusto definea certaininitial di-
rection in hUlj, to find the rim, and then to minimize S

stayingon the rim. The procedureis very fast, because
localized solutionsdecay in spacefaster than exponen-
tially. The full solution is obtainedby multiplying the
found eigenvectorfor hUlj with the time periodicmaster
functionGstd, which canhaveanyperiod.

After we find a certainsolution for f2 ­ f3 ­ 0 and
choosea certain period Tb ­ 2pyVb for Gstd, in the
secondstep we switch on f2 ­ f3 ­ 0.01. With the
help of a generalizedNewtonmethod(see,e.g.,[15]) we
aresearchingfor a periodicorbit with thesameperiodTb

closeto thestartingsolutionin phasespace.We startwith
all velocities set to zero, i.e., with the time point when
ÙGstd ­ 0. If we find a new periodicorbit, after time Tb

all velocitiesare zero again,so in the Newton algorithm
we use only the displacementvariablesXl. A periodic
orbit is saidto befoundif

s

X

l

fXlst ­ 0d 2 Xlst ­ Tbdg2 , 1028. (5)

The maximum size of the squarelattice N 3 N with
N ­ 70 comesfrom the circumstancethat the rank of

FIG. 3. Absolute value of the strain of the breathersolution
of Fig. 1 as a function of the latticevectorl.
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FIG. 4. Variation of the absolutevalue of the strain (Fig. 3)
along the diagonalsof the lattice on a double-logarithmicplot.
Opencircles:(1,1) direction;filled squares:s21, 1d direction.

the Newtonmatrix is N2 and the operativememorysize
neededfor calculationwith doubleprecisionis 8N4 bytes.

The numericalresultsshownbelow apply to the above
mentionedinitial vectorin hUlj spacefor which all Ul are
zeroexceptoneelementaryplaquetteof four lattice sites
on which jUl ­ 1j and the signsarealternatingbetween
nearestneighbors. We obtainedsimilar resultswith an
initial vectorwhereall Ul arezeroexceptfor onesingle
latticesitewhereUl ­ 1.

As already mentioned,the Newton searchalgorithm
successfullyproducedsolutions in all casesconsidered.
The ac componentsof the found solution decay expo-
nentially in spaceand essentiallyvanishat a distanceof
5–7 lattice constantsfrom the centerof the breather. In
Fig. 1 we showthedc displacementsof onesolutionwith
a periodobtainedby initial conditionsGst ­ 0d ­ 1 and
ÙGst ­ 0d for the masterfunction Gstd. We do observe
dipole symmetryof the dc field. In Fig. 2 a zoomof the
centerof thedc field is shown.

Let usturn to thestrain. In Fig. 3 we showtheabsolute
valuesof the strain field of the found acousticbreather.
To analyzethe spatialbehaviorof the strain, we plot in
Fig. 4 the variation of the absolutevaluesof the strain
along the two diagonals,as in thosedirectionswe have
thelargestdistanceandcanhopethattheboundaryeffects
are suppressedin somebulk region. The resultsdepend
on the choice of the diagonal. The diagonal which is
directed along the dipole moment gives poor results—
the finite sizeeffectsaretoo strongto observeany power
law in the doublelogarithmicplot in Fig. 4. The second
diagonalperpendicularto the dipole moment,however,

though still with strong influence from the boundaries,
allowsus to fit somepartof the“bulk” datawith a power
law (solid line in Fig. 4). Theresultingexponentis 1.85,
and,consideringthe small systemsize,quite closeto the
expectedvalue2.

In conclusionwe cansaythatacousticbreatherscanbe
obtainedfor finite two-dimensionallatticesup to numeri-
cal precision. The symmetry is the one expectedfrom
generalargumentations.Thedc components(andthusthe
strain) decaymuch slower than the exponentiallydecay-
ing ac componentsof the breather,anda fit alongoneof
thediagonalsof thesurprisinglysmallsystemunderstudy
yields a powerlaw with anestimatedexponentof 1.85 to
be comparedwith the exponentof 2, which follows from
theassumptionthat thestrainfield hasdipolesymmetry.

These results should support the expectationsthat
breatherscanexist in realcrystals. Moreoverat anyfinite
temperatureexcitedbreatherswill decayafter sometime.
Sincethey areaccompaniedby a strainfield, thosestrain
fields will be dispersedin the form of low-lying acoustic
modes after the decay of a breather. Thus breathers
can act as an efficient energy transfer from high-lying
excitationsinto low-lying acousticphonons.
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