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Acoustic Breathersin Two-Dimensional L attices
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We calculatebreathersolutionsfor a two-dimensionalattice with one acousticphononbranch. We
startfrom the caseof a systemwith homogeneouinteractionpotentials. We then continuethe zero-
strain breathersolutioninto the model sectorwith additional quadraticand cubic potentialtermswith
the help of a generalizedNewton method. The breathercontinuesto exist but is dressedwith a strain
field. In contrastto the ac breathercomponentswhich decayexponentiallyin space the strain field

(which hasdipole symmetry)shoulddecaylike 1/r¢
[S0031-9007(97)04812-6]

find an exponenta = 1.85.

PACSnumbers:63.70+h, 03.20+i, 03.65.50,63.20.Dj

Theunderstandingf dynamicalocalizationin classical
spatiallyextendedandorderedsystemsexperiencedecent
considerabl@rogress.Specificallytime-periodicandspa-
tially localizedsolutionsof the classicalequationsof mo-
tion exist,which arecalled(discrete)oreatherr intrinsic
localizedmodes[1]. The attributediscretestandsfor the
discretenessf the system,i.e., insteadof field equations
onetypically considersthe dynamicsof degreesof free-
dom orderedon a spatiallattice. As alreadymentioned,
the consideredsystemsare spatially ordered,i.e., the lat-
tice Hamiltonianis invariantunderdiscretetranslationsn
space. The discretenessf the systemproducesa cutoff
in the wavelengthof extendedstates,and thus yields a
finite upper bound on the spectrumof eigenfrequencies
Q, (phononband of small-amplitudeplane waves(we
assumethat for small amplitudesthe Hamiltonianis in
leading order usually a quadraticform of the degreesof
freedom). If now the equationof motion containnonlin-
earterms,the nonlinearitywill in generalallow usto tune
frequencief periodicorbits outsideof the phononband,
andif all multiples of a given frequencyare outsidethe
phononbandtoo, thereseemgo be no furtherbarrierpre-
ventingspatiallocalization(for areviewsee[2,3]).

The existenceof discretebreathershasbeenprovenso
far for (i) weakly coupledanharmonimscillators[4,5] or-
deredonalattice of anydimensionand(ii) chainsof parti-
cleswith nearesheighborinteractionwhosepotentialis a
homogeneouginction~z2" with m = 2,3, ... [6]. While
thefirst casestartsfrom thetrivial limiting caseof nonin-
teractingoscillators,the secondoneusesthe possibility of
space-timeseparationdue to the homogeneityproperty)
to reducethe considerationo a two-dimensionamap. In
the first casethe phononbandis degenerateth a nonzero
frequencyalueandcangrow uponcontinuation keeping
its optical property(i.e., no conservatiorof total mechani-
cal momentum). In the secondcasethe phononbandis
degeneratedn the zero frequencyvalue, so formally it
is an acousticband (total mechanicaimomentumis con-
served butits width is zero.
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, a = 2. On ourrathersmall lattice (70 X 70) we

As already mentioned, the breather frequency ),
shouldfulfill anonresonanceonditionn{};, # (}, for all
integern = 0, =1, =2,.... This is necessaryn general
in order to have spatial localization of the correspond-
ing Fourier mode[7]. In the above mentionedcase of
weakly coupledoscillatorsa proper choiceof the breather
frequencyalways ensuresnonresonance.In the caseof
homogeneoudnteractionpotentialsthe symmetryof the
potential®(z) = ®(—z) is foundin alsothe breatherso-
lution, which implies that only odd Fourier components
arepresentin the breathersolution. Thusthe dc compo-
nent(0 X Q, = 0), which s in resonanceavith the men-
tioned degenerateghhononband, is strictly zero and the
resonances harmless.

It is a widespreadexpectationthat breathersplay an
importantrole in the dynamicsof anharmoniccrystals
[8]. Sinceany crystalhasacousticphononbranchesand
the interparticleinteraction potentialsare not symmetric
aroundtheir minimum, one hasto face the fact that any
breathewill beaccompaniedby a strainfield (gradientof
the dc componenbf the breather)andthat the resonance
of the dc componentwith the acousticphononbranches
hasto beincorporatednto the consideration.

If any nonzeromultiple of €}, resonategvenwith an
edgeof a phononband,this leadseitherto the vanishing
of thewhole breatheror to a delocalizatiorof the breather
and to a divergenceof its energy[9]. The resonance
of the dc componentto be consideredhereis special—
it resonatewith a Goldstonemode,and onecan expect
the resonancenot to be as destructiveto the breatheras
any resonancet nonzerofrequency. From the theory of
elasticdefects[10] we know the characteristideatureof
the strain decayto be algebraicin the distance(from the
defectcenter). The exponentis only dependingon the
dimensionof the systemand on the symmetrycharacter
of the defect(monopoledipole, etc.),but independenbn
the defectstrength.

This independenceof the exponenton the defect
strength implies that if acoustic breathers (breathers
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with dc componentsn the presenceof acousticphonon
branches)do exist, there will be no parameterlimit
in which their spatial decay becomesinfinitely large.
Insteadthe strain will always decay algebraically;only
its amplitudecanbe varied.

At this stageit is appropriateto fix the class of
Hamiltoniansto be consideredurther. We will treatthe
simplestcaseof hypercubiclattices with one degreeof
freedomper lattice site and nearestneighborinteraction,
which canbe consideredsgeneralized-ermi-Pasta-Ulam
(FPU) systems:

H=§|:%P,2 -

Here P; and X; are canonically conjugatedscalar mo-
mentaand displacementof a particle at lattice site 1.
Note thatdependingon the lattice dimensiond the lattice
site label [ is a d-componentvector with integer com-
ponents. The inner sum in (1) goesover all directed
nearestneighbors e.g.,for d = 1 and [ = n we sum
over!!/=n + 1,ford = 2 and! = (n, m) we sumover
I'={(n + 1,m); (n,m + 1)}, etc. The interaction po-
tential ®(z) is givenby
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which turns out to be genericenoughfor the purposes
discussedelow.

Breathersfor sucha systemcan be representedn the
form

D) = 5 b2 + @

—+oo

X(t) = Z Age,

k=—x

3)

We will restrict ourselvesto solutions invariant under
timereversalsothatall Ay; = A_;; arereal. Thespatial
localizationpropertyof (3) implies A jjj—» — 0 for k #
0 andAy |;j—- — const.The dc componenbf the breather
is givenby A;.

Sofar we know aboutresultsonly for one-dimensional
lattices. A lot of numericaland approximativework ex-
ists, which shows that the acoustic breatherseemsto
exist as a solution to finite energy[11-13]. Its pecu-
liarity is thatthe dc componenof the breathewersuslat-
tice site numberhasa kink shapeAj;—.+. — *constfor
free boundaries. For periodic boundaryconditions one
would find a linear decayof Ay, far from the breather,
but the gradientof the dc componentgthe strain)is in-
verseproportionalto the size of the chain, so thatin the
limit of aninfinite chainthe resultis againa constantfor
the dc component(zero strain). An analytical proof has
beengiven recently by Livi, Spicci, and MacKay [14].
The proof considersa diatomic chain with asymmetric
interactionpotential [note that the correspondingHamil-
tonian differs from (1) in that one hasto introducean
additional parameterl/M # 1 in front of eachkinetic

energyterm for, say, all even lattice site indices]. The
breatheris continuedfrom the limit of zero massratio
(heavymassesareinfinitely heavy). Theproblemof reso-
nancewith the Goldstonemodeis solved by coordinate
transformatiorand by imposinga strainfield of compact
support. This meansthat the dc displacementsat this
limit are given by a steplikekink. The breatheris then
continuedinto a sectorof the Hamiltonianwith nonzero
massratio.

The reader might think that we are contradicting
ourselveswith the previous paragraphand the above
statementsabout the algebraicdecaybeing independent
of the breatherparameters.Let us explain why that is
not so. Supposethat a breatherexists, which creates
some strain field. The dc displacementsAy; will have
somedependencen the lattice site vector/. The strain
E; is given by the lattice gradient of Ay;. The far
field energy stored is given by the integral over the
squaredstrain. Assuming that the strain does decay
algebraically,we can use continuumtheory far from the
breather. The correspondingequationis equivalentto
the electrostaticequationsin d dimensions. Consider
d = 1. A monopolefar field will yield E = ¢ # 0 and
the correspondingenergydiverges. Also in this casethe
potential Aoy = sgn(l)a + cl. This clearly is not what
was observedfor acousticbreathersin one dimension.
A dipole far field instead will yield E =0, Ay =
sgrl)a, and the energyis finite. This is the situation
observed. So the known acoustic breather solutions
are accompaniecby a dipole strain field. Already the
demandthat the acousticbreatheris a solution to finite
energy limits the strain fields to dipole or higher order
multipole symmetries. In this special casethe potential
Ag; is constantfar away from the breather, so the
correspondingexponentof the algebraicdecayis simply
zero. That is the reasonwhy the analytical proof of
existencecan go through, becausea kinklike field for
Ag; canhavethe limiting form of a stepfunction, which
is precisely the casefor the limit of zero massratio
(seeabove).

For d = 2 (squarelattice) the situationis the follow-
ing. A monopolewill generatea strain E ~ 1/1 and
a potential Ag; ~ In(l). The energyof sucha field di-
verges. If we searchfor acousticbreatherswith finite
energy, we would have to exclude a monopole field.
A dipole generatesa strain E ~ 1/1> (we skip direc-
tion dependencielere)and a potential Ao, ~ 1/1. The
energy for this field is finite. In any casethe pre-
dicted exponentsof the algebraic decay are nonzero,
and no simple limit exists, which makesthe strain to
be of compactsupport. So already at this stageit is
clear that existenceproofs of acousticbreathersin two-
dimensional systemsare much more complicatedthan
ford = 1.

Notice that for d = 3 (cubic lattice) a monopole
generate€ ~ 1/1%> andthe energyof this field is finite.
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FIG.1. dc displacementof a breatheras a function of the
lattice vector/. Parameteraregivenin thetext.

To answerthe question“to be or not to be” we will
preseninumericalcalculationsof acousticbreathersof (1)
for d = 2. The resultsshow up to numericalaccuracy
that acousticbreathersexist on finite lattices with free
boundaries. The symmetryand spatial decayproperties
are in accord with the expectationsgiven above. The
maximum lattice size is 70 X 70, but we observedno
profoundsize effects on the existenceand symmetry of
the acousticbreatherwhen consideringsmaller systems.
The only size effect (to be expected is observedeven
for the largestsystemawith respecto the algebraicdecay
properties.

We start with ¢, = ¢3 = 0. In this case ®(z) =
®d(—z), 0 Ay = 0 for k = 2m and m integer. In par-
ticular no dc componentsare present. Furthermore due
to thedegeneracyf the phononbandinto a singlenumber
thebreathersill belocalizedin spacestrongethanexpo-
nentially. Becauseof the homogeneityof the interaction
potentialwe canseparat¢ime andspaceX, () = U,;G(z).
Themasterffunction G(r) satisfieghe differentialequation
G = —G?, andthe spatialamplitudesl; aregivenby the
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FIG. 2. Zoomof Fig. 1 in the breathercenter.
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extremaof afunctionS{U;}), i.e.,dS/0U; = 0:

S=Z[%U? - %l > WU - Uz/)4]- (4)

I '"€DNN

The function S hasa local minimum at {U; = 0}. For
largevaluesof thevariablesU;, it will divergeto — with

the fourthpower of the distancefrom {U; = 0} with the
exceptionof somenongenericdirectionsin the spaceof

{U,}, in which S will continueto increasewith thesecond
powerof the distancefrom {U; = 0}. Thusall nontrivial
extremaof S aresaddlepoints,which arelocatedon some
rim surroundinghe point{U; = 0}.

The searchstrategyis thusto definea certaininitial di-
rectionin {U,}, to find the rim, and thento minimize S
stayingon the rim. The procedureis very fast, because
localized solutionsdecayin spacefaster than exponen-
tially. The full solutionis obtainedby multiplying the
found eigenvectorfor {U;} with the time periodic master
function G(¢), which canhaveany period.

After we find a certainsolutionfor ¢, = ¢3 = 0 and
choosea certain period T, = 27 /Q, for G(¢), in the
secondstep we switch on ¢, = ¢35 = 0.01. With the
help of a generalizedNewton method(see,e.g.,[15]) we
aresearchingor a periodicorbit with the sameperiod T,
closeto the startingsolutionin phasespace.We startwith
all velocitiessetto zero, i.e., with the time point when
G(t) = 0. If we find a new periodicorbit, aftertime T},
all velocitiesare zeroagain,so in the Newton algorithm
we use only the displacementvariablesX;. A periodic
orbit is saidto befoundif

\/Z[X](l = 0) - Xl(t = Tb)]2 < 10_8. (5)
l

The maximum size of the squarelattice N X N with
N = 70 comesfrom the circumstancethat the rank of

FIG. 3. Absolute value of the strain of the breathersolution
of Fig. 1 as a function of the lattice vector!.
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FIG. 4. Variation of the absolutevalue of the strain (Fig. 3)
alongthe diagonalsof the lattice on a double-logarithmiglot.
Opencircles: (1,1) direction;filled squares(—1, 1) direction.

the Newtonmatrix is N2 and the operativememorysize
neededor calculationwith doubleprecisionis SN* bytes.

The numericalresultsshownbelow apply to the above
mentionednitial vectorin {U,} spacefor which all U; are
zero exceptone elementaryplaquetteof four lattice sites
on which |U; = 1| andthe signsare alternatingbetween
nearestneighbors. We obtainedsimilar resultswith an
initial vectorwhereall U, are zeroexceptfor one single
lattice sitewhereU,; = 1.

As already mentioned,the Newton searchalgorithm

successfullyproducedsolutionsin all casesconsidered.

The ac componentsof the found solution decay expo-
nentially in spaceand essentiallyvanishat a distanceof
5-7 lattice constantdrom the centerof the breather. In
Fig. 1 we showthe dc displacementsf one solutionwith
a periodobtainedby initial conditionsG(t = 0) = 1 and
G(r = 0) for the masterfunction G(¢r). We do observe
dipole symmetryof the dc field. In Fig. 2 azoomof the
centerof thedc field is shown.

Letusturnto thestrain. In Fig. 3 we showtheabsolute
valuesof the strain field of the found acousticbreather.
To analyzethe spatial behaviorof the strain, we plot in
Fig. 4 the variation of the absolutevaluesof the strain
along the two diagonals,asin thosedirectionswe have
thelargestdistanceandcanhopethatthe boundaryeffects
are suppressetéh somebulk region. The resultsdepend
on the choice of the diagonal. The diagonalwhich is
directed along the dipole momentgives poor results—
thefinite size effectsaretoo strongto observeany power
law in the doublelogarithmicplot in Fig. 4. The second
diagonal perpendicularto the dipole moment, however,

though still with strong influence from the boundaries,
allows usto fit somepartof the “bulk” datawith a power
law (solid line in Fig. 4). Theresultingexponenis 1.85,
and, consideringthe small systemsize, quite closeto the
expectedvalue2.

In conclusionwe cansaythatacousticbreathercanbe
obtainedfor finite two-dimensionalatticesup to numeri-
cal precision. The symmetryis the one expectedfrom
generalargumentationsThedc componentgandthusthe
strain) decaymuch slower than the exponentiallydecay-
ing ac componentof the breatheranda fit alongone of
the diagonalsof the surprisinglysmall systemunderstudy
yields a powerlaw with an estimatedexponentof 1.85to
be comparedwith the exponentof 2, which follows from
the assumptiorthatthe strainfield hasdipole symmetry.

These results should support the expectationsthat
breathersanexistin realcrystals. Moreoverat anyfinite
temperatureexcitedbreatherswill decayafter sometime.
Sincethey areaccompaniedby a strainfield, thosestrain
fields will be dispersedn the form of low-lying acoustic
modes after the decay of a breather. Thus breathers
can act as an efficient energy transfer from high-lying
excitationsinto low-lying acousticphonons.
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