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Energy properties of discrete breathers
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Abstract

Discrete breathers are time-periodic. spatially localized solutions of equations of motion for classical degrees of freedom
interacting on a lattice. They come in one-parameter tamilies. We use recent results of Flach et al. (1997) on d-dimensional
systems with local interaction and recent results of Gaididei et al. (1997) on one-dimensional systems with nonlocal interaction.
We discuss energy properties of breathers in -dimensional lattices with nonlocal interactions. Copyright € 1998 Elsevier

Science B.V,
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1. Introduction

Recently progress has been achieved in the un-
derstanding of energy properties of localized excita-
tions in nonlinear lattices. Discrete breathers (DBs) are
time-periodic. spatially localized solutions of equa-
tions of motion for classical degrees of freedom inter-
acting on a lattice [1-3]. The rcason for the generic
existence of DBs is the discreteness of the svstem
paired with the nonlinearity of the differential equa-
tions defining the evolution of the system [4.5]. Thus
one can avoid resonances of multiples of the discrete
breather’s frequency $2, with the phonon spectrum $2;,
of the system |6]. 1t the coupling is weak. the phonon
spectrum consists of narrow bands. The nonlinearity
and the narrowness of the phonon bands allows for
periodic orbits whose frequency and all its harmon-
ics lie outside the phonon spectrum. For some classes
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of systems. existing proofs of breather solutions have
been published [7-9]."

For generic Hamiltonian systems. periodic orbits
occur in one-parameter families, and DBs are no ex-
ception. In many cases, the energy can be used as a
paramcter along the family, but as is well known. the
energy can have turning points along a family of pe-
riodic orbits. Mathematically. such a turning point in
energy is called a saddle-centre periodic orbit.

In a recent paper, Flach. Kladko and MacKay
(FKM) [10] showed that in three-dimensional lat-
tices, a turning point (in fact, minimum) in energy
is almost inevitable for DB breather families. More
specifically FKM gave heuristic arguments that the
energy of a DB family has a positive lower bound
for lattice dimension ¢ greater than or equal to some
de. whereas for d < d¢ the energy goes to zero
as the amplitude goes to zero. and confirmed these

A list of references s given in hup://www.mpipks-
dresden.mpg.de/~flach/breather. DIR /db.bib.
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predictions numerically. The critical dimension d,
depends on details of the system but is typically 2
and never greater than 2. Furthermore. for d > d. the
minimum in energy occurs at positive amplitude and
finite localization length. Notice that these studies
have been done exclusively for systems with short
range interaction (nearcst neighbour interaction).

The reader might ask for a physical explanation of
the existence of nonzero lower bounds on the breather
energy. Since they were not given in FKM. let us
mention here a possible way of argumentation. Con-
sider a Hamiltonian system with an additional integral
of motion - the norm (think of the discrete nonlin-
ear Schridinger equation as an example). Note that if
the encrgy has a turning point on the breather fam-
ily. so does the norm (because for small amplitudes
and phonon band-edge wave vectors the (wo forms
are quadratic and coincide. and both can be designed
to be nonnegative). Suppose we consider the semi-
classical regime of the corresponding quantum prob-
lem. The quantization of the norm leads to the number
N of quantum particles interacting through a poten-

tial which is given by the original nonlincar terms of

the equations of motion. The breather solution corre-
sponds 10 bound states of the quantum Hamiltonian
with N particles. The existence of a nonzero lower
bound on the number of particles for bound states can
be then explained as follows. According to our us-
sumption we are working in the semiclassical regime.
i.e. NV s large. Consider one quantum particle in the
field of all other N — 1 particles. Our tagged parti-
cle will fecl a mean ficld (potential) caused by the
presence of all other particles. In a bound state these
particles cluster in a given part of the space. Depend-
ing on the sign of the interaction (i.c. of the original
nonlinear term) the tagged particle will be either at-
tracted by or repelled from the cloud of the other par-
ticles. The discreteness of the space ensures that these
cases are essentially equivalent — because the Kinetic
cnergy of the particles (i.c. the original phonon band)
is bounded from both sides (because the discretization
of space leads to a cutofl in the wave vectors and thus
to upper bounds of the phonon spectrum or kinetic en-
ergy). As is known. the existence of a bound state (for

oV

our tagged particle) in a potential well depends on the

dimension of the space: for one- and two-dimensional
systems bound states appear for any well. whereus in
three dimensions a critical nonzero depth of the well
is nceded in order to produce a bound state. The depth
of the well is roughly proportional to the number of
the other particles. Consequently in three-dimensional
systems a nonzero lower bound on the number of par-
ticles exists which is necessary in order to obtain u
bound state of our tagged particle. Since the consid-
cration does not depend on what particle has been
tagged. the lower bound on the number of particles ap-
plics to the existence of the N-particle bound state ax
well. This result has been found ubready by Kosevich
et al. (Section 10 of |11]). Note that it is not trivial to
extend this result to systems with fluctuating particle
numbers. i.e. [or systems without norm conservation.

Another recent study  of  Gaididei. Mingaleey.
Christiansen and Rasmussen (GMCR) [ 12] deals with
the case of one-dimensional lattices with nonlocal
dispersive interaction. This work shows how 1o obtain
the dispersion relation for small wave numbers and
thus Green's function in real space. which describes
the spatial variation of solitary solutions.

In the present contribution we will combine both ap-
proaches to predict the energy properties of DBs in /-
dimensional lattices with nonlocal interaction. Given
the convergence ol certain sums and the existence of
DBs. we predict that the energy properties of DBs
change drastically upon variation of the interaction
range.

2. The case of nearest neighbour interaction

Let us consider a d-dimensionul hypercubic attice
with N sites. Each site is labelled by a -dimensional
vector 1 € Z9. Assign to cach lattice site a state X, €
R!, where f is the number of components and is to
be finite. The evolution of the system is assumed to
be given by a Hamiltonian of the form

H =" Hiel X)) + Hin(X) (X)), (1
{

where H;y depends on the state at site [ and the
states X744, in a neighbourhood. We assume that H
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has an equilibrium point at X; = 0, with H({X; =
0} = 0.

DB solutions come in one-parameter families. The
parameter can be the amplitude (measured at
the site with maximum amplitude). the energy £ or
the breather frequency £2y. It is anticipated (and was
tound both numerically and through some reasonable
approximations [ |]) that the amplitude can be lowered
to arbitrarily small values, at least for some of the
tamilies for an infinite lattice. In this zero amplitude

limit. the DB frequency £2, approaches an edge of

the phonon spectrum §2;. This happens because the
nonresonance condition §2; /82, # 0.1.2,3.... has
to hold for all solutions of a generic DB family [6].
In the limit of zero amplitude, the solutions have to
approach solutions of the linearized equations of mo-
tion, thus the frequency 2, has to approach some £2;.
but at the same time not 1o coincide with any phonon
frequency. This is possible only if the breather’s fre-
guency tends to an edge 2 of the phonon spectrum
in the limit of zero breather amplitude. If we consider
the family of nonlinear planc waves which yields the

corresponding band edge plane wave in the limit of

zero amplitude A, then its frequency £2 will depend
on A like

[

12 = Q2p| ~ A (

for small A, where the “detuning exponent” z de-
pends on the type of nonlinearity of the Hamiltonian
(1). and can be calculated using standard perturbation
theory [13].

An analysis of stability of band edge plane waves
was carricd out in [14] for systems with detuning ¢x-
ponent - = 2 and large N. The critical amplitude A,
of the plane waves at the bifurcation point depends on
the number of lattice sites as A. ~ N~ V4 [14]. We
see that the amplitudes of the new orbits bifurcating
from the plane wave become small in the limit of large
system size. If the energy of the system is given by a
positive definite quadratic form in the variables X in
the limit of small values of X it follows for the critical
energy of the plane wave at the bifurcation point [ 14|

Fo~ N2 (

‘a2

Result (3) is surprising, since it predicts that for - =
2 the energy of a DB for small amplitudes should
diverge for an infinite lattice with d = 3 and stay finite
(nonzero) for d = 2, whereas it d = 1, the breather
energy will tend to zero (as initially expected) in the
limit of small amplitudes and large system size.

We can estimate the DB energy in the limit of small
amplitudes and compare the result with (3). Define
the amplitude of a DB to be the largest of the am-
plitudes of the oscillations over the lattice. Denote it
by Ap where we define the site / = 0 to be the one
with the largest amplitude. The amplitudes decay in
space away from the breather centre, and by lineariz-
ing about the equilibrium state and making a contin-
uum approximation, the decay is found to be given by
A; ~ CFy(}118) for |/] large. where F; is a dimension-
dependent function

1 )
Fiix)y=e~ Fix) = —e™", (4
RY

= d, (5)

1 3

VAN &
Fa(x) :/ y
vIit+¢

& is a spatial decay exponent to be discussed shortly,
and C is a constant which we shall assume can be
taken of order Ag. To estimate the dependence of the
spatial decay exponent § on the frequency of the time-
periodic motion §2y, (which is close to the edge of the
linear spectrum) it is enough to consider the depen-
dence of the frequency of the phonon spectrum 24
on the wave vector k& when close to the edge. Gener-
ically this dependence is quadratic (£2; — £2;) ~
|k — kp |7 where £ # 0 marks the frequency of the
edge of the linear spectrum and A is the correspond-
ing edge wave vector. Then analytical continuation of
(k — kg) to itk — kg yields a quadratic dependence
|2 — 2] ~ 8°. Finally we must insert the way that
the detuning of the breather frequency from the edge
of the linear spectrum |§2,, — £2 ;| depends on the small
breather amplitude. Assuming that the weakly local-
ized breather frequency detunes with amplitude as the
weakly nonlinear band edge plane wave frequency this
is [2h — 2p] ~ A} Then 8 ~ A7/,

Now we are able to calculate the scaling of the
energy of the DB as its amplitude goes to zero
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by replacing the sum over the lattice sites by an
integral

! —zdy/2
Ey ~ ;CZ/I“FIFI%(SF)dr ~ 4(1]4 =) - (6)

This is possible if the breather persists for small am-
plitudes and is slowly varying in space. We find that if
d > d. = 4/, the breather energy diverges for small
amplitudes, whereas for ¢ < d,. the DB energy tends
to zero with the amplitude. Inserting = = 2 we obtain
d. = 2, which is in accord with the exact results on
the plane wave stability [14] and thus strengthens the
conjecture that DBs bifurcate through tangent bifurca-
tions from band edge plane waves. Note that for d =
d. togarithmic corrections may apply to (6). which can
lead to additional variations of the energy for small
amplitudes.

An immediate consequence is that if ¢ > d.. the
energy of a breather is bounded away from zero. This
is because for any nonzero amplitude the breather ¢n-
ergy cannot be zero, and as the amplitude goes to zero
the energy goes to a positive limit (¢ = d.) or diverges
(d > d.). Thus we obtain an energy threshold for the
creation of DBs for ¢ > d.. This new encrgy scale
is set by combinations of the expansion coefficients
in (1). These predictions were tested numerically and
found to be correct [10].

3. Nonlocal interactions

Consider now a nonlocal interaction where /[y can
become infinite in (1):

B

m#£l

C | 5
Hipg = — — (X = X)) (7)
nt Z |I7I w ”,\ { )

This interaction has been considered in [ 12] for a cubic
nonlinear Schrodinger chain. In the following [ will
sketch the results of GMCR with regard to energy
properties for the case d = 1.

First we need the dispersion relation of (7) for small
wave numbers k. For simplicity assume the equations
of motion to be of the form X, = —dH/0X; and
Hy = Xz/Z for small values of X. Then the disper-
sion relation tor (1) with (7) reads

- - cos(km)
2 =142C —_—— (8)
m=I m

The squared plane wave frequency .(2,\2 is given by a
Dirichlet L-series. where the sum in (8) converges for
s > |. Further 0 < (2] — 1) < 4C¢(s). where £ (s) is
the Riemann Zeta function. Obviously Qf(k =0) =
1. To derive the dependence of QE on k for small wave
numbers we first consider the case | < s < 3. In this
case the sum can be replaced by an integral for small k:

x

I — costkm) i
(k) = _— L = a()k T,
Ss(k) Z o af(s)
m=1
~ (9)
"1 —cosx
u(.\'):/ #d.x.
X

0

For the integral a(s) to converge we need s > | (up-
per integration boundary) and s < 3 (lower integra-
tion boundary). For s > 3 we can use the identity
8% fo(k)/ok® = —f, (k) + Z(s — 2). Indeed for 3 <
¢ < 5and small & we find fi(k) = ¢(s — 2)k2/2 +
O(k*~"). The same procedure can be applicd 10 all
larger values of s, so that finally we obtain for small 4:

QE=14Ccs =Dk (s> 3.
. _ (10)
Q= 142CaH " (1 <5 <3).
Now we calculate Green's function
. cos(kn)
(J}\(”): “;——ﬁidlx (1)
e R
tfor large values of n [12]:
Gom)y ~e ™M (5> 3)
(12)

Gimy~n" (1 <5 < 3).

A DB with frequency |2 — 24 = A will have a
spatial decay in its tails governed by (12). Clearly the
dimension-dependent 4 functions from the previous
section can be obtained in precisely the same way for
= 00,

Assuming again that the breather solution can be
continued down to small amplitudes where the para-
meter A becomes small we can estimate the energy de-
pendence on the amplitude. For s > 3 the spatial decay
of the breather is exponential — as in the case s —
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for the nearest neighbour interaction. The exponent of
this decay is 4 dependent. This dependence allows for
qualitatively different £, (A) behaviour depending on
the type of nonlinearity (note that we still consider =
) as given by (6). We thus can predict that the energy
of a breather in a one-dimensional lattice will diverge
for small amplitudes provided s > 3 and the nonlin-
carity is strong enough such that the detuning expo-
nent - > 4. This will be the case e.g. for the quintic
nonlinear Schrodinger chain with nonlocal interaction.
A different situation arises for I < s < 3. Not only
is the spatial decay now algebraic, but also the ex-
ponent of the decuy does not depend on the breather
parameter 2 anymore. Conscquently the energy of the
breather will be a quadratic function of the breather
amplitude for small amplitudes. Even if the nonlinear-
ity is strong enough such that for s = 3 Ey, diverges
for small amplitudes. the energy decavs to zero for
Iy < 3 and small amplitudes. Consequently we
expect the nonzero bounds on the breather cnergy to
disappear regardless of what the nonlincar terms might
vield for s = 3.

4. Higher lattice dimensions

Now we generalize the findings to higher lattice
dimensions. For the case s -—— oc (nearest neighbour
interaction) we wlready found that a critical dimension
¢ exists such that for d = d. the breather encrgy will
be always bounded away Irom zero. This fact relies on
the circumstance that the ¢xponent of the spatial decay
coverning the breather variation in space depends on
the breather parameter (frequency or amplitude). What
can be expected for nonlocal interaction when v i
tnite”

To proceed we first need the dispersion relation. We
consider again a hypercubic lattice of dimension « and
spacing one. Then the dispersion is given by

, I = | — cos (kyn)
i =120y Ly et
: D
N (13)
ko= ka,cosd,. a, = ‘ Z pf,,

Here the integers p,, have to fulfill the condition
{propao.. .. pat = 1 (largest common divisor equals
one). The angle ¢, is spanned by the wave vector k
and the lattice vector p,.. The double sum in (13) con-
verges if s > 1 and if the sum ) 1/a) converges.
Since «; is an integer. this sum certainly converges if
s > 2. Most probably it will converge even for s > |
but this demands a separate proof.

Let us give a comment on how to derive (13). The
idea is to choose a lattice site / = 0, and to consider
the sum over all other sites in the interaction hamilto-
nian as a double sum: the inner sum goes over a chain
with spacing «, and wave vector k.. The outer sum
goes over all such “irreducible” chains. The angle de-
pendence enters through the effective wave vector k.

Now we can first evaluate the inner sums. For small
k values we again find .QAZ 1 ~ k% for s > 3 and
Qif] ~k* Tfor2 < 5 < 3. Keeping in mind that the
full dispersion relation will depend on some angles, the
dependence on the absolute value of the wave vector
is found to coincide with the one-dimensional case.

Consequently the spatial decay of the breather for
s > 3 1s given hy (4) and (5). Again we obtain that
the energy of the breather is bounded away from zero
provided d > d..

For 2 < s < 3 the situation s again different. The
spatial decay of the breather is algebraic - e.g. ford =

v+

3 it will be proportional to 1/-*™". But the main point
1s that the exponent will not depend on the breather
parameter. Conscquently the energy of the breather

should vanish in the limit of small amplitudes.

5. Discussion and summary

Let us discuss similarities and differences of the ob-
tained results with the scaling theory for polarons for
one electron interacting with a classical deformable
lattice following the work of Emin and Holstein [ 13]
(sce also [16]). The ground state of such a system is
given by a static lattice deformation A(r) and a corre-
sponding one-electron wave function W (r) (note that
minimization with respect to the strain field yields a
functional dependence of A(r) on ¥ (r)). The ideca of
Emin and Holstein was to replace the yet unknown
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true groundstate wave function by a scaled function
R™42@(r/R) keeping the normalization condition.
Considering the groundstate energy E(R) as a func-
tion of R, the condition on starting with the true
groundstate is that £(R) shows a minimum. Formally
that should be at R = 1. However if we find a min-
imum in E(R) at R # |, then we simply rescale all
coordinates. So we have to see whether £(R) admits
nontrivial minima at all. Emin and Holstein consid-
ered among others a local electron—lattice interaction.
This yields a continuum Nonlincar Schrodinger de-
pendence of E(W¥) and the dependence E(R) =
T/R> —V*/RY where T is the kinetic cnergy of the

clectron. and V* > 0 is the interaction energy. For

d = 3 E(R) shows a minimum at R = oc, a maxi-
mum at some finite Ry, and a divergence (o —oc at

= (. Within the framework of polaron thcory one
arrives at the conclusion that a small polaron exists.
with size zero within the continuum approach (the
ultraviolet divergence is stopped upon discretization
of space. i.e. the small polaron should have a size
comparable to the interatomic distance). Within the
continuum approach this small polaron has an infinite
binding energy, which again becomes finite only after

discretizing space (see ¢.g. | 17]. where the effects of

discreteness are studied for ¢ = 2). Finally we could
consider different values of the charge. Trivially these
lead only to a rescaling of the ratio T/ V*.

What is the similarity to breathers? First in the spe-
cific case of a nonlinear Schrédinger equation a contin-
uous gauge transformation can map any time-periodic
solution into a static solution of a rescaled nonlin-
car Schrodinger equation. Second static solutions are
extrema of the energy. Thus all extrema of the func-
tion E(R) from above can be considered as classical
breather solutions of the nonlinear Schrodinger equa-
tion. The extremum at R = O is the well-known col-
lapse solution [ 18]. For the same norm we find another
breather solution which is unstable (corresponding to
the maximum in E(R)). This is similar to our findings.
because instead of considering the energy we could
as well consider the action of a breather orbit, or the
norm for the nonlinear Schrodinger case.

However from our consideration it follows that no
breathers exist upon lowering the cnergy /action/norm
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below a nonzero threshold. This is evidently not the
case for the continuum polaron. The continbum ver-
sion will always provide with a small polaron solution.
Apparently the discreteness of the underlying space is
relevant for this result [19]. This is also confirmed by
the numerical study in [ 10| where the minimum c¢n-
ergy breather was tound to be localized on a few lat-
tice sites. What is known from perturbation theory on
the Tattice is that for the groundstate to be polaronic
it needs to overcome a finite threshold in V¥ which is
equivalent to a finite threshold in the horm. But this re-
sult does not tell that the extremum associated with the
polaron disappears at some different threshold value
of V. Apparently our result provides also this con-
clusion. although in the context of polaron theory this
is of minor interest. Further ditferences are due to the
fact that when considering breather properties we are
not confined to systems which conserve a norm. [n the
language of polarons this corresponds to considering
additional terms which do not conserve the number of
clectrons. To conclude this discussion we believe that
there are several similarities between what is known
as polaron scaling theory and our results on breather
properties. But the results for breathers, which are ob-
tained using a small number of input assumptions. can
only be guessed when staying on the ground of stan-
dard continuum polaron scaling theory.

In conclusion we have extended the analysis of
breather energy properties to the case of nonlocal in-
teraction and higher lattice dimensions. A number of
assumptions are entering this analysis. The breather
should be continuable to small amplitudes. where its
frequency should come close to the phonon band. Then
for interactions decaying faster than dipole—dipole in-
teraction (s > 3) the breather shows exponential de-
cay in space. and its energy is bounded away from
zero provided the lattice dimension is larger than a
critical one (which depends on the type of nonlinear-
ity and can be even equal to one). For 2 < s < 3 the
breather decays algebraically in space. and the energy
threshold for creating a hreather is zero, independent
of the lattice dimension (for = 1 this result ex-
tends to values 1 < s < 3). Note that this follows not
simply from the type of the spatian decay (exponen-
tial versus algebraic). but rather from the dependence
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or independence of the exponent of the decay on the
breather parameter.
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