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~Received 6 July 1998!

We analyze the properties of breathers~time periodic spatially localized solutions! on chains in the presence
of algebraically decaying interactions 1/rs. We find that the spatial decay of a breather shows a crossover from
exponential~short distances! to algebraic~large distances! decay. We calculate the crossover distance as a
function of s and the energy of the breather. Next we show that the results on energy thresholds obtained for
short range interactions remain valid fors.3 and that fors,3 ~fractal dispersion at the band edge! nonzero
thresholds occur for cases where the short range interaction system would yield zero threshold values.
@S1063-651X~98!51010-0#

PACS number~s!: 03.20.1i, 03.65.Sq

The understanding of dynamical localization in classical
spatially extended and ordered systems experienced recent
considerable progress. Specifically time-periodic and spa-
tially localized solutions of the classical equations of motion
exist, which are called~discrete! breathers, or intrinsic local-
ized modes. The attribute discrete stands for the discreteness
of the system, i.e., instead of field equations one typically
considers the dynamics of degrees of freedom ordered on a
spatial lattice. The lattice Hamiltonian is invariant under dis-
crete translations in space. The discreteness of the system
produces a cutoff in the wavelength of extended states, and
thus yields a finite upper bound on the spectrum of eigenfre-
quenciesVq ~phonon band! of small-amplitude plane waves
~we assume that usually for small amplitudes the Hamil-
tonian is in leading order a quadratic form of the degrees of
freedom!. If now the equations of motion contain nonlinear
terms, the nonlinearity will in general allow to tune frequen-
cies of periodic orbits outside of the phonon band, and if all
multiples of a given frequency are outside the phonon band
too, there seems to be no further barrier preventing spatial
localization~for reviews, see@1# and @2#!.

To cope with breathers in lattice dynamics, one has to
face the problem of~i! quantization of breathers,~ii ! breath-
ers in the presence of acoustic phonon bands, and~iii !
breathers in the presence of long range interactions~e.g., in
ionic crystals!. While ~i! still lacks a full understanding, the
correspondence between classical breathers and quantum
bound states is believed to be correct~@3–7#!. The case of
acoustic breathers has been studied in one dimension@8# and
in two dimensions@9#, where it was shown that the reso-
nance of a zero frequency component of the breather~static
deformation! with the zero of the acoustic spectrum leads to
an algebraically decaying lattice deformation, but not to a
disappearance of the breather.

As for the case of long range interactions, some results
are known ~e.g., @10#!. A general proof of existence of
breathers ind-dimensional lattices with algebraically decay-
ing interactions was obtained in@11# with upper bounds for
the spatial decay of the breather amplitude. Namely, for in-
teractions decaying like 1/rs with r being the distance from
the breather center ands some powers.d, the breather
amplitude is bounded from above by a power lawa/rs, with
a being some nonzero constant.~This is in contrast to results

obtained in@12# and @13#, where ford51 and s.3 expo-
nential decay was obtained. Actually, both decay laws hold;
see below.! This result leaves us with two questions. First,
how can one obtain contact with the case of short range
interaction~basically s→`! where exponential localization
takes place? And second, what is happening to energy
thresholds of discrete breathers in the presence of long range
interactions? In the case of short range interactions, simple
estimates of the far distance energy of a breather solution
yield the correct predictions for nonzero energy thresholds
@14#. Obviously these estimates would yield zero energy
thresholds for all cases of long range interactions if the far
distance energy is calculated with the help of a spatial decay
a/rs for the breather~the far distance energy would be sim-
ply ;a2, and would always tend to zero ifa→0; see also
@13#!. We will resolve these puzzles in the following.

At this stage it is appropriate to fix the class of Hamilto-
nians to be considered further,
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Here P l and X l are canonically conjugated scalar momenta
and displacements of a particle at lattice sitel. The on site
potential V(z)5(m52

` (vm /m)zm can be used as a simple
way to generate an optical phonon spectrum, and the inter-
action W l(z)5(m52

` @fm(l)/m#zm should incorporate longe
range interactions withf2(l)5(C/2)(l-s). For small values
of P l and X l the classical Hamiltonian equations of motion
Ẋ l5]H/]P l , Ṗ l52]H/]X l can be linearized inX l . The
corresponding eigenvalue problem when solved for plane
wavesX l(t);e i(ql2Vqt) is given by
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Let us discuss the properties ofEs(q)5Vq
2>0. First Es(q)

is bounded from above for alls.1 and periodic inq with
period 2p. Most important is thatEs(q) is a nonanalytic
function in q, i.e., itsk5(s21)st derivative with respect to
q is discontinuous atq50 @when s is noninteger, (s21)
,k,s#. This follows already from the fact that the conver-
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gence radius of Eq.~2! is zero for nonzero imaginary com-
ponents inq. Indeed for even integerss one finds @15#
@Es(q)2v2#;Bs@q/(2p)# for 0<q<2p. HereBs(z) is the
Bernoulli polynomial ofsth order. Consequently at smallq
the expansion ofEs(q) contains a termqs21, which leads
together with the periodicity ofEs(q) to the mentioned
nonanalyticity. For odd integerss the expansion ofEs(q)
contains a termqs21 ln(q), and for nonintegers a termqs21

@follows from d2Es(q)/dq2
52Es22(q)12Cz(s22), with

z(z) being the Riemann Zeta function#. Finally for smallq
the leading term in the expansion ofEs(q) is v21Cz(s
22)q2 for s.3 and v212Ca(s)qs21 for 1,s,3, with
a(s)5*0

`(12cosx)/xsdx @13#. Note that the dispersion at the
upper band edge (q5p) is completely analytical, and in
leading order always proportional to (q2p)2. Some of these
results have been discussed at length in@16# ~see also origi-
nal references therein!.

Now we can turn to the first problem of the spatial decay
of a breather. In order to generate a breather solution we
chosev4Þ0 and all other anharmonic terms inV(z) and
W(z) being zero. Since we can only simulate finite system
sizesN, we use periodic boundary conditions. In that case we
have to define a cutoff length in the interaction, which we
chose to beN/2 @we will discuss the corresponding correc-
tions toEs(q) later#. We calculate breather solutions using a
Newton algorithm~see Refs.@17# and @2# for details!. The
results fors510,20,30 are shown in Fig. 1. We observe that
the spatial decay of the breather isexponential for small
distances from the center, while it becomesalgebraic ~in
fact, exactly 1/ls! after a crossover at some distancelc ~see
Fig. 2!.

Note thatlc is s dependent. Moreover,lc is also depend-
ing on the parameter which selects a given breather solution
from its one-parameter family~this parameter could be the
breather frequency, its energy, action or something else!. In
order to understand this result we can proceed along the fol-
lowing path. Since the breather amplitude decays to zero
with increasing distance from the center, we can linearize the

equations of motion far from the breather center, keeping the
information that we deal with a time-periodic solution with
frequency vb fulfilling the nonresonance conditionkvb
ÞVq ~see, e.g.,@2# for details and also for exceptional non-
linear corrections, which are, however, not important at this
stage!. AssumingX l(t)5(kx l(k)e ikvbt we find linear differ-
ence equations forx l(k) that do not mix ink space. The
spatial decay of thekth amplitude is then given by the lattice
Green’s function

Gl~ l !5E
0

2p cos~ql !

Vq
2
2l

dq, l5k2vb
2. ~3!

The spatial decay of the breather is thus given by the con-
vergence properties of the Fourier series, whose coefficients
are given by the right-hand side~rhs! of Eq. ~3!. As is
known, nonanalytic functions with discontinuities in the (s
21)st derivative@cf. the integrand on the rhs in Eq.~3!#
produce Fourier series that converge algebraically 1/ls @15#.
From that follows that at large distances the spatial decay of
the breather will be algebraic, which is what we found in Fig.
1. To obtain the exponential decay at small distances, let us
first slide along the breather family such that the breather
frequency~or one of its multiples! approaches the edge of the
phonon bandVq . Then the integrand~3! will become very
large for wave numbers close to the band edge that is ap-
proached. Applying a stationary phase approximation to Eq.
~3!, i.e., expanding the integrand around the band edge we
obtain

Gl~ l !;E
2`

` cos~ql !

v22l1Cz~s22!q2 dq ~4!

for s.3 and

Gl~ l !;E
0

` cos~ql !

v22l12Ca~s !qs21 dq ~5!

for 1,s,3. Standard evaluation of Eq.~4! ~closing the in-
tegration contour in the complex plane by adding a half
circle with infinite radius and evaluating the residua! yields
Gl(l);e2Av22ll for s.3, i.e., exponential decay@12,13#.
On the other side, Eq.~5! yields ~closing the integration con-

FIG. 1. Breather solution at timet50 with P l(t50)50. The
corresponding displacements~amplitudes! X l(t50) are plotted vs
lattice site. The nonzero model parameters arev25v451, C
50.01. The frequency of the solutions is chosenT54.7682.
Circles,s510; squares,s520; diamonds,s530. Lines are guides
to the eye.

FIG. 2. Same as in Fig. 1, but fors530 in a log-log plot.
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tour in the complex plane by adding a quarter circle and
returning to zero along the positive imaginary axis, and no-
ticing that there are no poles of the integrand in the enclosed
first quadrant including the imaginary axis! Gl(l);1/ls for
1,s,3 @12,13#.

Now we can explain the observed crossover from expo-
nential to algebraic decay in Fig. 1. Indeed, the stationary
phase approximation for these cases leads to Eq.~4! in the
limit ( v22l)→0. This approximation neglects higher order
terms in the expansion ofEs(q) aroundq50, which neces-
sarily contain nonanalytic terms. Consequently, Eq.~4!
probes Eq.~3! for not too large distances~this is counterin-
tuitive to the assumption that the stationary phase approxi-
mation is correct for largel @12,13#, which it is not!. Thus we
can explain the observed crossover. We can even estimate
the crossover distancelc using a simple argument. A tagged
site with indexl,lc and l.0 ~the center of the breather is
located atlb50! will experience forces from all other sites
with index l8 according to Eq.~1!. The amplitude of these
forces will monotonically decay to zero for increasingl8
with l8.l. However, the amplitude of the forces for decreas-
ing l8 will be given by (l2l8)2sen((l2l8) for 0,l8,l ~here,
n is the given exponent of the spatial decay forulu,lc!. Since
for negative l8 the amplitude of these forces will again
monotonically decay to zero, the worst case is reached when
l850. If this force acting from the center of the breather on
site l is comparable to the forces acting onl from its nearest
neighbors, the exponential decay will be violated. This con-
dition yields lc

2senlc51 or

ln lc

lc
5

n

s
. ~6!

This equation has either two solutions or none. For the larger
~physically relevant! solution we findlc→` if n/s→0, while
the smaller one yields 1 in this limit and is not of interest.
Thus for s.3 exponential decay is reobtained either for
larges or for breathers with frequencies close to the phonon
band edge. Since we are considering a lattice, the exponen-
tial decay part will disappear iflc'1 or smaller. Fors520
and n54.2724 we obtainlc511.39, and fors530 and the
same value ofn the result islc521.56. We miss the ob-
served crossovers in Fig. 1 by just two sites.

For 1,s,3 no exponential decay is observed provided
the breather frequency is located in the gap below the pho-
non band. For breather frequencies above the phonon band
the dispersion at the upper band edge yields always quadratic
dependence inq ~see above! and thus there will be always a
crossover from exponential to algebraic decay~provided lc
.1!. All these results were verified by calculating corre-
sponding breather solutions. To conclude this part we want
to stress that a modified interactionf2(l);(21)l/ls will
simply exchange the notation of upper and lower phonon
band edges, and the case of acoustic interactions is obtained
by letting v2→0.

Let us now turn to the question of energy thresholds for
breathers in the presence of long range interactions. There
are two lines of argumentation known from the short range
interaction case@14#. The first one estimates the far distance
energy of the breather solution in the limit when the ampli-
tude of the breather center is small and thus its frequency is

close to a phonon band edge~the only limit where the
breather energy can actually become small!. Using exponen-
tial spatial decay the result is that the breather energy tends
to zero only if v3Þ0 or/andv4Þ0, stays finite ifv35v4
50 and v5Þ0 or/andv6Þ0, and diverges ifv35v45v5
5v650 andvmÞ0 for somem>7 ~see@14# for details!. In
the case of long range interactionlc tends to infinity in this
limit for vb.Vq or vb,Vq and s>3. Consequently, the
breather energy will have the same qualitative behavior as in
the case of short range interactions~the results are similar to
those obtained in@14# with the tendency that the height and
the position of the energy minima shift to larger values with
decreasing values ofs!.

However, forvb,Vq and 1,s,3 no exponential decay
is observed and the far distance energy of the breather is
given by ;A2*(1/r2s)ddr whereA is the amplitude of the
breather center. This energy will always vanish in the limit
of zero amplitude. However we are in posses of a second line
of argumentation for the behavior of the breather energy at
small amplitudes. For that we consider a finite system ofN
sites. As was shown in@18#, the band edge plane waves
~BEPW! ~which can be rigorously defined in the limit of
vanishing amplitudes! undergo tangent bifurcations, which
result in the appearance of discrete breathers. The amplitude
Ac of the BEPW at the bifurcation point~for nonvanishing
cubic and/or quartic terms in the Hamiltonian! was calcu-
lated in @18#,

Ac;AuVBEPW
2

2Vq1

2 u, ~7!

whereq1 denotes the wave vector closest to the band edge
wave vector. Here we consider periodic boundary conditions
and a cutoff in the interaction at one half of the system size.
This cutoff will induce finite size corrections to the disper-
sion Vq

2 for all q except for the band edge points. Withq1

52p/N this correction amounts to

Dq1
5Vq1

2 ~` !2Vq1

2 ~N !

52C (
m5N/211

`
1

ms F12cosS 2p

N
m D G . ~8!

Evaluation of Eq.~7! for s.1 gives

Dq1

2C
'b~s !S 2p

N D s21

22S 2

N D s

, ~9!

with b(s)5*p
`1/xs(12cosx)dx. Consequently the correct

result for Eq.~7! and 1,s,3 is Ac
2;c(s)/Ns21 with c(s)

5*0
p1/xs(12cosx)dx. The total energyEc;NAc

2 in the bi-
furcation point for 1,s,3 is finally given by

Ec;N22s. ~10!

This has to be contrasted with the case of short range inter-
actions in one-dimensional systems, which can be obtained
from Eq. ~10! by choosings53 and isEc;1/N. We thus
find that fractal dispersion at the band edge;qs21 for 1
,s,3 even further supports the divergence of the breather
energy at small amplitudes, since for cubic and quartic an-
harmonicities in the Hamiltonian, for which no divergence in
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energy is found for short range interactions, energy diver-
gence is obtained for long range interactions withs,2.
These results confirm studies of nonlinear Schro¨dinger
chains with long range interactions, wheres,2 marks the
appearance of two stable soliton solutions compared to one
for s.2 @12#.

Let us discuss the results. First, we numerically confirm
that discrete breathers persist in the case of long range inter-
actions, even in the case of fractal dispersions at the band
edge. Secondly, the spatial decay of breathers is character-
ized by a crossover length that separates exponential from
algebraic decay. Third, we show that the existence of energy
thresholds for breather solutions is supported by long range
interactions, and can take place when short range interactions
~e.g., in one-dimensional systems! are not capable of produc-
ing these thresholds. Thus we can state that discrete breathers
appear independent of the lattice dimension and survive
acoustic and fractal dispersions. Discrete breathers have en-

ergy thresholds provided the lattice dimension is large
enough~typically d>2! or the interaction is long range~for
d51 s,2!.

Let us speculate on the value of these energy thresholds
for the lattice dynamics of crystals. As there is no small
parameter in the system, these threshold energies will be
comparable to the energy of a vacancy. Consequently, dis-
crete breathers in two- or three-dimensional crystal lattices
will be high energy excitations, which could play a role close
to the melting transition. In contrast, for one-dimensional
systems there are no energy thresholds~except fors,2! and
breathers can play a role in the dynamics of molecules and
similar objects also at low temperatures.
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