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Breathers on lattices with long range interaction
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We analyze the properties of breathéimse periodic spatially localized solutionsn chains in the presence
of algebraically decaying interactiong 1/ We find that the spatial decay of a breather shows a crossover from
exponential(short distancesto algebraic(large distancesdecay. We calculate the crossover distance as a
function of s and the energy of the breather. Next we show that the results on energy thresholds obtained for
short range interactions remain valid for 3 and that fors<3 (fractal dispersion at the band edg®nzero
thresholds occur for cases where the short range interaction system would yield zero threshold values.
[S1063-651%98)51010-0

PACS numbsg(s): 03.20:+i, 03.65.Sq

The understanding of dynamical localization in classicalobtained in[12] and[13], where ford=1 ands>3 expo-
spatially extended and ordered systems experienced recemential decay was obtained. Actually, both decay laws hold,;
considerable progress. Specifically time-periodic and spasee below. This result leaves us with two questions. First,
tially localized solutions of the classical equations of motionhow can one obtain contact with the case of short range
exist, which are calleddiscreté breathers, or intrinsic local- interaction(basicallys—o) where exponential localization
ized modes. The attribute discrete stands for the discretenet&kes place? And second, what is happening to energy
of the system, i.e., instead of field equations one typicallythresholds of discrete breathers in the presence of long range
considers the dynamics of degrees of freedom ordered oniateractions? In the case of short range interactions, simple
spatial lattice. The lattice Hamiltonian is invariant under dis-estimates of the far distance energy of a breather solution
crete translations in space. The discreteness of the systeyield the correct predictions for nonzero energy thresholds
produces a cutoff in the wavelength of extended states, arid4]. Obviously these estimates would yield zero energy
thus yields a finite upper bound on the spectrum of eigenfrethresholds for all cases of long range interactions if the far
quencies), (phonon bangof small-amplitude plane waves distance energy is calculated with the help of a spatial decay
(we assume that usually for small amplitudes the Hamil-a/r® for the breathefthe far distance energy would be sim-
tonian is in leading order a quadratic form of the degrees oply ~a2, and would always tend to zero &—0; see also
freedom. If now the equations of motion contain nonlinear [13]). We will resolve these puzzles in the following.
terms, the nonlinearity will in general allow to tune frequen- At this stage it is appropriate to fix the class of Hamilto-
cies of periodic orbits outside of the phonon band, and if allnians to be considered further,
multiples of a given frequency are outside the phonon band
too, there seems to be no further barrier preventing spatial
localization(for reviews, se¢1] and[2]).

To cope with breathers in lattice dynamics, one has to

face the problem ofi) quantization of breathersij) breath-  Here P; and X, are canonically conjugated scalar momenta
ers in the presence of acoustic phonon bands, @hfl  and displacements of a particle at lattice sitdhe on site
breathers in the presence of long range interactiers, i potential V(z) = =%_,(v,/x)z* can be used as a simple
P : : : : n= ®

ionic crystalg. While (i) still lacks a full understanding, the 4y 1o generate an optical phonon spectrum, and the inter-

corresponden(_:e bgtween classical breathers and quantuon W|(Z)=E°;=2[¢M(|)/M]Z“ should incorporate longe

bound states is believed to be c_orré_[éi—?]). The case of range interactions withp, (1) =(C/2)(I"). For small values

acoustic breathers has been studied in one dimefi8land ¢ p “4nq x; the classical Hamiltonian equations of motion

in two dimensiong9], where it was shown that the reso- = gH/ P, Pi= — aHlaX be i ized i Th

nance of a zero frequency component of the breaitetic ! b | can be finéarized Ir#, . 1he

deformation with the zero of the acoustic spectrum leads tocorrespondmg_ elgenve_llue_ problem when solved for plane

- - : - wavesX(t) ~e'(9~ %D js given by

an algebraically decaying lattice deformation, but not to a

disappearance of the breather. =
As for the case of long range interactions, some results Qé:szr ZCZ — [1—coggm)]. 2

are known (e.g., [10]). A general proof of existence of m=1 M

breathers ird-dimensional lattices with algebraically decay-

ing interactions was obtained [i1] with upper bounds for Let us discuss the properties Eﬁ(q)IQSZO. FirstE¢(q)

the spatial decay of the breather amplitude. Namely, for inis bounded from above for a>1 and periodic ing with

teractions decaying like a7 with r being the distance from period 2r. Most important is thatEg(q) is a nonanalytic

the breather center angl some powers>d, the breather function ing, i.e., its k= (s—1)st derivative with respect to

amplitude is bounded from above by a power la®, with ¢ is discontinuous atj=0 [when s is noninteger, §—1)

a being some nonzero consta(his is in contrast to results <x<s]. This follows already from the fact that the conver-

1
H=2 |5 PEHVOO)+ 2 Wi (X=X [ (1)
I!
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FIG. 1. Breather solution at time=0 with P,(t=0)=0. The FIG. 2. Same as in Fig. 1, but fe=30 in a log-log plot.

corresponding displacementamplitude$ X;(t=0) are plotted vs

lattice site. The nonzero model parameters age=v,=1, C equations of motion far from the breather center, keeping the

=0.01. The frequency of the solutions is chos&s-4.7682. information that we deal with a time-periodic solution with

Circles,s=10; squaress=20; diamondss=30. Lines are guides frequency w,, fulfilling the nonresonance conditiokwy,

to the eye. #{), (see, e.g.[2] for details and also for exceptional non-
linear corrections, which are, however, not important at this

gence radius of Eq.2) is zero for nonzero imaginary com- stag@. AssumingX,(t) = =,x,(k)e' st we find linear differ-

ponents ing. Indeed for even integers one finds[15]  ence equations fok,(k) that do not mix ink space. The

[Es(q) —v2]~Bdal(2m)] for O=q=<2m. HereBy(z) isthe  spatial decay of theth amplitude is then given by the lattice
Bernoulli polynomial ofsth order. Consequently at smajl  Green’s function

the expansion oE¢(q) contains a terng® %, which leads

together with the periodicity ofEg(q) to the mentioned 27 cogql)

nonanalyticity. For odd integers the expansion oE4(q) GK(I)ZJ 02—\

contains a terng®~ ! In(g), and for noninteges a termqg®~! I

[follows from d2E(q)/dg?= —E_,(q) +2C{(s—2), with  The spatial decay of the breather is thus given by the con-

{(z) being the Riemann Zeta functibrFinally for smallqg  vergence properties of the Fourier series, whose coefficients

the leading term in the expansion &(q) is v,+C{(s are given by the right-hand sidghs of Eq. (3). As is

—2)g? for s>3 andv,+2Ca(s)q® ! for 1<s<3, with  known, nonanalytic functions with discontinuities in the (

a(s)=[¢(1—cosx)/x°dx [13]. Note that the dispersion at the —1)st derivative[cf. the integrand on the rhs in E43)]

upper band edgegi 7) is completely analytical, and in produce Fourier series that converge algebraically [15].

leading order always proportional tq € 7). Some of these From that follows that at large distances the spatial decay of

results have been discussed at lengthli] (see also origi- the breather will be algebraic, which is what we found in Fig.

nal references therein 1. To obtain the exponential decay at small distances, let us
Now we can turn to the first problem of the spatial decayfirst slide along the breather family such that the breather

of a breather. In order to generate a breather solution wéequency(or one of its multiplesapproaches the edge of the

chosev,#0 and all other anharmonic terms W(z) and  phonon band},. Then the integrand3) will become very

W(z) being zero. Since we can only simulate finite systemlarge for wave numbers close to the band edge that is ap-

sizesN, we use periodic boundary conditions. In that case weproached. Applying a stationary phase approximation to Eq.

have to define a cutoff length in the interaction, which we(3), i.e., expanding the integrand around the band edge we

chose to beN/2 [we will discuss the corresponding correc- obtain

tions toE¢(q) later]. We calculate breather solutions using a

Newton algorithm(see Refs[17] and[2] for detail3. The G (l)wf“’ cogql) g @

results fors=10,20,30 are shown in Fig. 1. We observe that A % Up— A+ CL(s—2)q°

the spatial decay of the breather eézponential for small

distances from the center, while it becomalgebraic (in  for s>3 and

fact, exactly 1F) after a crossover at some distarigegsee

Fig. 2. G (|)~Jm cogql) dq 5
Note thatl; is s dependent. Moreovetl, is also depend- A 0 v,—A+2Ca(s)gs?

ing on the parameter which selects a given breather solution

from its one-parameter familjthis parameter could be the for 1<s<3. Standard evaluation of E¢4) (closing the in-

breather frequency, its energy, action or something)else tegration contour in the complex plane by adding a half

order to understand this result we can proceed along the fokircle with infinite radius and evaluating the resigyzelds

lowing path. Since the breather amplitude decays to zer6,(I)~e 2N for s>3, i.e., exponential decajl2,13.

with increasing distance from the center, we can linearize th©n the other side, E@5) yields (closing the integration con-

dg, A=Kk?w?. ©)
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tour in the complex plane by adding a quarter circle andclose to a phonon band eddéhe only limit where the
returning to zero along the positive imaginary axis, and no-breather energy can actually become sjnéling exponen-
ticing that there are no poles of the integrand in the enclosetial spatial decay the result is that the breather energy tends
first quadrant including the imaginary axi§, (1)~1/° for ~ to zero only ifv3#0 or/andv,# 0, stays finite ifvg=v,
1<s<3[12,13. =0 andvs#0 or/andvg#0, and diverges ifvz=v,4=vs
Now we can explain the observed crossover from expo=vg=0 andv ,#0 for someu=7 (see[14] for details. In
nential to algebraic decay in Fig. 1. Indeed, the stationarghe case of long range interactibntends to infinity in this
phase approximation for these cases leads to(#qgn the  limit for w,>Q, or w,<Q, and s=3. Consequently, the
limit (v,—\)—0. This approximation neglects higher order breather energy will have the same qualitative behavior as in
terms in the expansion &¢(q) aroundg=0, which neces- the case of short range interactigtise results are similar to
sarily contain nonanalytic terms. Consequently, Ed4)  those obtained ifil4] with the tendency that the height and
probes Eq(3) for not too large distanceghis is counterin-  the position of the energy minima shift to larger values with
tuitive to the assumption that the stationary phase approxidecreasing values .
mation is correct for large[12,13, which it is no}. Thus we However, foro,<(), and 1<s<3 no exponential decay
can explain the observed crossover. We can even estimai® observed and the far distance energy of the breather is
the crossover distandg using a simple argument. A tagged given by ~A?[(1/r?%)d’ whereA is the amplitude of the
site with indexl <l and|>0 (the center of the breather is breather center. This energy will always vanish in the limit
located atl,=0) will experience forces from all other sites of zero amplitude. However we are in posses of a second line
with index |’ according to Eq(1). The amplitude of these of argumentation for the behavior of the breather energy at
forces will monotonically decay to zero for increasihg  small amplitudes. For that we consider a finite systenNof
with ['>1. However, the amplitude of the forces for decreas-sites. As was shown 18], the band edge plane waves
ing I” will be given by (—17)~Se*(~") for 0<1'<| (here, (BEPW) (which can be rigorously defined in the limit of
vis the given exponent of the spatial decaylig«|,). Since  Vanishing amplitudgsundergo tangent bifurcations, which
for negativel’ the amplitude of these forces will again result in the appearance c_>fd|sc_rete br_eathers. The_ ar_nphtude
monotonically decay to zero, the worst case is reached whefic Of the BEPW at the bifurcation poirifor nonvanishing
|"=0. If this force acting from the center of the breather onCUbic and/or quartic terms in the Hamiltonjawas calcu-
site| is comparable to the forces acting bfrom its nearest lated in[18],
neighbors, the exponential decay will be violated. This con-
dition yields|_ Se”'e=1 or Ac~ 1 Qgepw— Qg . @)

Inl,

14

—. (6) whereq, denotes the wave vector closest to the band edge
S wave vector. Here we consider periodic boundary conditions
This equation has either two solutions or none. For the largend @ cutoff in the interaction at one half of the system size.
(physically relevantsolution we find .— = if v/s—0, while T_h|s cgtoff will induce finite size corrections to the d_lsper-
the smaller one yields 1 in this limit and is not of interest. SIoN {}q for all g except for the band edge points. Wit
Thus for s>3 exponential decay is reobtained either for =27/N this correction amounts to

larges or for breathers with frequencies close to the phonon A, =02 ()= Q2 (N)

band edge. Since we are considering a lattice, the exponen- i 770 9

le

tial decay part will disappear if;~1 or smaller. Fois=20 o 5
and v=4.2724 we obtain,=11.39, and fors=30 and the =2C — 1_COS(_7T m” (8)
same value ofv the result isl;=21.56. We miss the ob- m=N2+1 M N

served crossovers in Fig. 1 by just two sites.

For 1<s<3 no exponential decay is observed provided
the breather frequency is located in the gap below the pho-
non band. For breather frequencies above the phonon band —
the dispersion at the upper band edge yields always quadratic 2C
dependence iq (see aboveand thus there will be always a
crossover from exponential to algebraic de¢pyovided|
>1). All these results were verified by calculating corre-

Evaluation of Eq(7) for s>1 gives
s—1 2 S
_Z(N) , 9

with b(s)=[71/x%1—cosx)dx. Consequently the correct
result for Eq.(7) and 1<s<3 is A§~c(s)/NS*l with c(s)

— S(1 __ — 2 i
sponding breather solutions. To conclude this part we Wan_follx (1-cosxdx. The total energyE.~NA in the bi

Aq,

“b(s)(w

to stress that a modified interactiay(l)~(— 1)/ will  furcation point for kxs<3 is finally given by

simply exchange the notation of upper and .Iowe_r phon_on E.~N2"S. (10)
band edges, and the case of acoustic interactions is obtained

by lettingv,—0. This has to be contrasted with the case of short range inter-

Let us now turn to the question of energy thresholds foractions in one-dimensional systems, which can be obtained
breathers in the presence of long range interactions. Thefeom Eq. (10) by choosings=3 and isE.~1/N. We thus
are two lines of argumentation known from the short rangdind that fractal dispersion at the band edgg® * for 1
interaction cas¢l4]. The first one estimates the far distance <s<3 even further supports the divergence of the breather
energy of the breather solution in the limit when the ampli-energy at small amplitudes, since for cubic and quartic an-
tude of the breather center is small and thus its frequency isarmonicities in the Hamiltonian, for which no divergence in
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energy is found for short range interactions, energy diverergy thresholds provided the lattice dimension is large
gence is obtained for long range interactions witki2.  enough(typically d=2) or the interaction is long ranggéor

These results confirm studies of nonlinear Sdimger d=1s<2).
chains with long range interactions, whese 2 marks the Let us speculate on the value of these energy thresholds

) . for the lattice dynamics of crystals. As there is no small
appearance of two stable soliton solutions compared to on[garameter in the system, these threshold energies will be

for s>2[12]. _ _ ~ comparable to the energy of a vacancy. Consequently, dis-
Let us discuss the results. First, we numerically confirmgrete breathers in two- or three-dimensional crystal lattices

that discrete breathers persist in the case of long range inteill be high energy excitations, which could play a role close

actions, even in the case of fractal dispersions at the bang the melting transition. In contrast, for one-dimensional

edge. Secondly, the spatial decay of breathers is charactesystems there are no energy threshgisept fors<2) and

ized by a crossover length that separates exponential frofpreathers can play a role in the dynamics of molecules and

algebraic decay. Third, we show that the existence of energ§imilar objects also at low temperatures.

fchresho_lds for breather solutions is supported by !ong fang€ | \ish to thank D. Bonart and J. B. Page for many dis-

interactions, and can take place when short range interactiong,ssjons, which initiated these studies; C. Baesens and R. S.

(e.g., in one-dimensional systenase not capable of produc- \acKay for sending me their work prior to publicati¢and

ing these thresholds. Thus we can state that discrete breathefiawing my attention to the helpful Rdfl5]); and Yu. Gai-

appear independent of the lattice dimension and surviveidei, M. Katsnelson, Yu. Kosevich, and O. Yevtushenko for

acoustic and fractal dispersions. Discrete breathers have ehelpful discussions.
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