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Moving discrete breathers?
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Abstract

We give definitions for different types of moving spatially localized objects in discrete nonlinear lattices. We derive general
analytical relations connecting frequency, velocity and localization length of moving discrete breathers and kinks in nonlinear
one-dimensional lattices. Then we propose a new numerical algorithm to find these solutions.c©1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The search for moving radiationless spatially local-
ized excitations is an interesting topic in the field of
nonlinear dynamics of systems of many interacting
degrees of freedom.

Many of the integrable one-dimensional models,
both discrete and continuous in space, possess moving
objects, either breathers or kinks [1]. The integrability
of these models provides one with action–angle vari-
ables. Tuning the action as parameters one can con-
tinuously go from stationary solutions to moving ones
(examples are the nonlinear Schrödinger equation [1],
the Toda [2] and Ablowitz–Ladik lattices [3]). This
fact allows us to think about the whole family of so-
lutions as a particle-like entity. Still we are lacking a
precise understanding of the connection between in-
tegrability and possible existence of moving localized
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objects. The reason is the hidden character of the sym-
metries which provide integrability.

Another reason for the existence of moving solu-
tions can be some continuous symmetry of the Hamil-
tonian, e.g. the invariance under Lorentz transforma-
tions. The Lorentz transformation generates moving
objects provided the corresponding stationary object
exists. The system does not need to be integrable, so
moving kinks exist for instance in84 theory in 1+ 1
dimensions [1]. However, stationary breathers appear
to be nongeneric for space-continuous models already
in the case of one spatial dimension [4,5]. The rea-
son for that lies in the fact that the phonon frequency
spectrumΩq (q is a wave vector) of small-amplitude
(linearized) vibrations of a continuous system is typ-
ically unbounded from above. As per the definition a
stationary breather is a time-periodic spatially local-
ized solution of the equations of motion. By expand-
ing the solution in a Fourier series with respect to time
one has to deal with the Fourier components associ-
ated to each multiplekΩb of the breather frequency
Ωb with integerk. The unboundeness of the phonon
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spectrum leads to an infinite number of high frequency
resonances, which generally prevents the appearance
of space-localized time-periodic solutions [6]. An ex-
ception is e.g. the sine-Gordon system and some iso-
lated perturbations of it. Note that from these results,
it follows that moving breathers are also nongeneric
solutions for Lorentz-invariant field equations, since
we can always perform a Lorentz transformation and
obtain stationary breathers if moving breathers exist.
Since stationary breathers are nongeneric for space-
continuous models, moving breathers have to be non-
generic too (see results in Section 3.1).

Space-discrete models can generically allow for the
existence of stationary discrete breathers [7,8] (see [9]
for an extensive discussion and for a list of references).
One reason for that is that the discreteness of space
produces a lower cut-off in the wavelength of small
amplitude plane waves, and thus a finite upper bound
for the phonon spectrum. Then one has the possibility
to choose frequenciesΩb such thatkΩb 6= Ωq for all
integerk. However, discreteness in space implies the
loss of say the continuous Lorentz symmetry. Thus in
general there is no clear way how to generate moving
breathers out of stationary ones on lattices.

There have been many attempts to solve for moving
breathers. Moving kinks can be considered to some ex-
tent as moving breathers with zero frequency. Proofs
of existence of moving kinks in FPU chains have been
obtained in [10] by finding them as minimizers of
a variational problem and in [11] by analytical con-
tinuation from the integrable Toda lattice. Numerical
solutions for moving kinks have been obtained e.g.
in [12,13]. Fourier transformations in space are used
in the first one, while the second paper treats space-
periodic solutions, but does not use Fourier transfor-
mations. There is a large amount of work reporting on
moving breathers in FPU chains (e.g. [14,15]) and also
for antiferromagnetic chains [16]. A study of their con-
nection with stationary breathers was started in [17].
In [18] this connection was used to numerically ob-
tain moving breathers by exciting pinning modes of
stationary breathers. Finally, moving breathers have
been obtained numerically for DNLS chains in [19].
Perturbation theories have been applied to the de-
formed Ablowitz–Ladik lattice [20] (see also [21]). So
far, we are not aware of existence proofs for moving
breathers.

To look for moving breather solutions we need to
have some good definition of them. We define the

simplest type of a moving solution as a solution that
repeats itself after the timeTs shifted by one lattice
site. Such a solution is a fixed point of the mapRGTs,
whereGt is the evolution operator in the phase space
of the system,R is the translation operator that shifts
all indices by 1. More sophisticated solutions can be
obtained by considering fixpoints of the mapRnG,
i.e. solutions that repeat themselves after the timeTs
shifted byn sites. We assume the lattice spacing to be
1, so the velocityV is then justn/Ts.

Depending on the boundary conditions at infinity
we speak about moving breathers or kinks. A trivial
example of a radiationless moving discrete kink can be
obtained by considering identical billiard balls on the
line separated by some distancel. Then kicking one
ball we get an eternal motion where after thenth kick
thenth ball transfers all its energy to the (n+1)th one.
The interaction potential of balls can be more or less
arbitrary the only restriction is that it is short-ranged
enough, so only two balls interact at each moment
of time. Below we will in general discuss boundary
conditions corresponding to moving breathers, i.e. the
lattice is asymptotically in the same ground state at
large distances from the center of the excitation no
matter what direction from the center is chosen.

In Section 2 we will outline a tail analysis of possi-
ble moving breathers. In Section 3 examples are given,
and numerical calculations of solutions are presented
in Section 4. In Section 5 we briefly discuss related
work and summarize our results.

2. Tail analysis of possible moving breathers

The method of analyzing the decay properties in the
tail of a breather is very fruitful. From such an analy-
sis one precisely derives the nonresonance conditions
a stationary nonmoving breather must fulfill in general
to exist. This concept has been extremly useful to ex-
plain why stationary breathers are generic in discrete
systems, while they are nongeneric in field theories. A
necessary condition for existence of a breather is that
the solution is localized in space. But if it is localized
in space, we can analyze the tails, where all ampli-
tudes are small, and check whether the solution really
can decay to zero at infinite distance. This leads to
the well-known nonresonance condition for stationary
breathers [9].
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Since a stationary breather is characterized by an
internal frequencyΩb, we have to incorporate this
timescale into the definition of a moving breather.
Consider a one-dimensional lattice, describing the in-
teraction of degrees of freedom associated to each lat-
tice site. Each degree of freedom is given by a pair
of canonically conjugated variables (e.g. displacement
and momentum) labeled with the site index. Call one
of those variablesun(t). We define a one-frequency
discrete moving breather solution as1

un(t) = F(Ωbt, n − V t). (1)

Here F(x, y) is a function period 2π periodic with
respect tox and localized with respect toy:

F(x + 2π, y) = F(x, y), F (x, y → ±∞) → 0.

(2)

If Ts and 2π/Ωb are commensurate so thatkTs =
l2π/Ωb, where k and l are integers, then such a
breather repeats itself after timekTs shifted by k

sites and belongs to the simplest moving breather
defined above. In the general noncommensurate case
the breather will never repeat itself although coming
arbitrarily close to it.

In the same manner breathers having two orN

internal frequencies can be defined. This hierar-
chy of objects incorporates everything that we in-
tuitively percept as an object moving through the
lattice.

Thinking of moving breathers in terms of fixed
points allows to define other interesting objects on a
discrete lattice. Consider a fixed point of some gen-
eral mapGTsX, whereX is an element of the lattice
symmetry group. IfX is the identical transformation,
we get stationary breathers. The translation operator
gives us moving ones. For one-dimensional lattice the
only symmetry group element left is the reflection,
which gives us reflector-breathers, which mirror them-
selves after timeTs. Higher dimensional lattices pro-
vide more choices namely taking a rotation asX we
get rotation-breathers,2 and then taking asX a super-
position of rotation and translation we get “walking”
breathers.

1 Of course one can choose more complicated forms, which
will not be discussed here. Simplified ansatz versions have been
frequently used for fitting numerical results, e.g. [15].

2 Not to be confused with rotobreathers, see [22–25].

It is clear from the beginning that looking for dis-
crete breathers in terms of exact analytical solutions
is a hard task. Approximate methods like a rotating
wave approximation even if justifiable would turn us
away from the phase space of the system and thus
do not help too much to understand what a moving
discrete breather is. A productive way is to look at
moving breathers from a general point of view and al-
though not solving any particular problem to exactly
find model independent relations that all the moving
breathers should fulfill. We will do this here for the
class of moving breathers described by (1).

We derive these relations below considering the tail
of a moving breather where the motion can be consid-
ered linear because of the small amplitude of oscilla-
tions.

Let us consider a moving breather with one inter-
nal frequency as defined above in (1). We write the
functionF(x, y) in a Fourier series with respect tox:

F(x, y) =
∑

k

eikxfk(y). (3)

Inserting this ansatz into the Hamiltonian equations
of motion we obtain coupled equations for the func-
tions fk(y). In the spatial tails of the breather these
equations decouple with respect to the labelk. 3 Let
us consider some particular value ofk with frequency
Ωk = kΩb. The equations are linear so we seek for a
solution in exponential form:

fk(y) = e−iqky . (4)

Hereqk is a complex number. Theun(t) term corre-
sponding to a givenkth harmonic then takes the fol-
lowing form:

unk(t) = ei(ωt−qkn). (5)

Hereω = Ω + V qk. Using the equations of motion
we finally obtain

ω = G(qk), (6)

whereG(q) = Ωq is the dispersion relation of the
system analytically continued to the complex plane.

3 The decoupling implies that in the tails, where allfk become
small, nonlinear terms infk can be dropped. This linearization
can be violated if additional symmetries are present or if some of
the fk functions decay very slowly in space [26].
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With the definition ofω we have

Iz = V Iqk, (7)

where (Iqk)
−1 is the localization length of a given

harmonic,Rω = Ω + VRqk, Ω = kΩb.
This equation connects the frequency, velocity and

the localization length of a given harmonic with each
other. For the particular case of a breather without
internal frequency,Ωb = 0 (shock wave), we obtain
the following relation between the velocity and the
localization length:

V qk = G(qk). (8)

This equation shows that for a shock wave with a given
velocity, only a discrete set of complex wave vectorsqk

is allowed. For the linear dispersion relationG(q) =
Cq, only the velocityV = C is allowed and thenq
can be arbitrary. For the parabolic dispersion relation
G(q) = Aq2, q is always real namelyq = V/A,
so no localization is possible because the localization
length is the inverse of the imaginary part ofq. For
the quadratic dispersion relation with a cut-off at finite
frequency

V q = G(q) = Aq2 + D, (9)

we have a complex root when(V )2 − 4AD < 0.
Therefore, a cut-off in the dispersion relation at finite
frequencies in the dispersion relation appears to be
relevant in order to have localization of a moving so-
lution. Note that such a cut-off can be caused either
by a gap in a space-continuous system or simply by a
space-discrete system.

For moving breathers with nonzero internal fre-
quency a necessary condition of existence is obviously
that all harmonicsfk(y) are localized, namely for any
Ω = kΩb, there is a solution of Eq. (7) withIqk 6= 0.

Therefore we obtain that for any nonlinear lattice
the frequency of the breather, its velocity and the lo-
calization length of its harmonics are not independent
but connected by Eq. (7).

3. Examples

In this chapter we will consider examples of systems
to illustrate the general considerations from above.

3.1. Space-continuous models

3.1.1. Klein–Gordon models in 1+1 dimensions
Consider the partial differential equation for the

field U(x, t):

U,t t = −U + CU,xx − Fnl(U), (10)

where the functionFnl(x) if expanded in a Taylor
series aroundx = 0 contains only nonlinear terms in
x. Examples are e.g. the84 Klein–Gordon equation
with Fnl(x) = x3 or the sine-Gordon equation with
Fnl(x) = sin(x) − x.

Let us search for a moving solution in the form

U(x, t) =
∑

k

uk(x − V t)eikΩbt . (11)

Inserting (11) into (10), assuming that the amplitude
of the solution is small at large distances from some
center, skipping the nonlinear terms in (10) we obtain
for each integerk:

(V 2 − C)
d2uk

dz2
− 2iV kΩb

duk

dz

+(1 − k2Ω2
b)uk = 0. (12)

For simplicity we skip thek index and defineu =
uk, Ω = kΩb, z = x − V t . To solve (12) we make
the ansatzu(z) ∼ eλz. Note thatλ = iqk (see (4)).
Decomposingλ into real and imaginary partsλ =
R + iI (R, I real), we find

(V 2 − C)(R2 − I2) + 2V ΩI + 1 − Ω2 = 0, (13)

(V 2 − C)2RI − 2V ΩR = 0. (14)

The physically relevant parameters of our solution are
the velocityV and the exponent of the spatial decay
R characterizing the localization length of the object.
The physical frequency describing the true oscillations
is given byω = Ω − V I . Solving (13) we find

I2 =
V 2

C

[

1

C − V 2
− R2

]

, (15)

ω = −
C

V
I. (16)

It follows that V 2 < C (Lorentz invariance of (10))
andV 2 ≥ C − 1/R2. These two curves define the al-
lowed region in the{R2, V 2} plane of possible solu-
tions, which is shown in Fig. 1. The velocity of any



S. Flach, K. Kladko / Physica D 127 (1999) 61–72 65

Fig. 1. Phase diagram for localization conditions on the existence of moving localized objects in Klein–Gordon models in 1+1 dimensions
(see text).

moving object has to be below the speed of light. For
large (weakly localized) objects withR2 < 1/C the
solution will always have some nonzero frequencyω,
i.e. there is a gap in the allowed frequency spectrum
containingω = 0. For small (strongly localized) ob-
jects withR2 ≥ 1/C the gap closes, and one can al-
ways design a tail solution with zero frequencyω = 0
(this corresponds to the lower bound of the allowed re-
gion in Fig. 1). The case of zero frequency is nothing
but the tail (or front) of a shock wave. Note that there
are no restrictions with respect to the value ofR2, so
the tail solutions can be infinitely strongly localized
in space.

So far we discussed the solutions without checking
whether the initial ansatz (11) can be completely ful-
filled in the tails, i.e. for all integersk. Note that in
ansatz (11) we parametrize the solution usingΩb and
V . To answer that question, we can argue in the follow-
ing way. Suppose we choose a point in the{R2, V 2}
diagram in the allowed region. This point gives us a
set of values forω andI . Suppose thatk = 1. Then
we obtain some unique value forΩb. Now we can go

the inverse way and say that for that value ofΩb and
V we find the corresponding values forR andI . But
what happens for other values ofk? Since by increas-
ing k we increaseω, we have to check whether at a
fixed value ofV we can realize any value forω in Fig.
1 by changingR throughout the allowed region. The
answer is no. Indeed fixingV we always obtain a finite
line segment in Fig. 1. On the right end of this seg-
mentω = 0, and on the leftω ≤ ωmax(V ) < ∞, with
no singularities in between. Thus we can never realize
ansatz (11). So we conclude that in general moving
breathers do not exist in Klein–Gordon field problems.
The only possiblity is to have a shock wave (or kink),
i.e. to setΩb = I = ω = 0, which is possible.

Note that we are in complete agreement with the re-
sults on stationary breathers in space-continuous mod-
els (see Section 1). Indeed, having taken the mathe-
matical proofs that stationary breathers are nongeneric
[4,5] for nonlinear Klein-Gordon equations, it imme-
diately follows that moving breathers will be non-
generic too, since in the opposite case one could form
a stationary breather out of a moving one by Lorentz
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transforming, and be in conflict with the results on the
nongeneric occurrence of stationary breathers.

3.1.2. (Non)linear Schr̈odinger equation
Consider the partial differential equation for the

complex fieldΨ (x, t):

Ψ̇ = i(CΨ,xx + F(Ψ )). (17)

Again we search for a solution in the formΨ (x, t) =
φ(x − V t)eiΩt . Repeating the same procedures as in
the previous case we arrive at the equations

I =
V

2C
, (18)

ω = C
(

R2 − I2
)

. (19)

Since (17) is not Lorentz-invariant, we do not find
restrictions on the choice of the velocityV . In fact we
find no restrictions at all, the whole parameter space
{R, V } is allowed.

3.2. Space-discrete models

3.2.1. Discrete (non)linear Schrödinger equation
The equations of motion are given by

Ψ̇n = i[ |Ψn|µΨn + C(Ψn−1 + Ψn+1)]. (20)

Here the nonlinear term is characterized by someµ >

0. Again we search for a moving solution in the form
Ψn = φ(n − V t)eiΩt . Due to the nonlocality of the
difference operator (as compared to the differential
one) the differential equation forφ(z) contains now
retarded and advanced terms (the tail is again only
considered, nonlinear terms are neglected):

−V φ′(z) = i[−Ωφ(z) + C(φ(z + 1) + φ(z − 1))].

(21)

Skipping the intermediate calculations we arrive at
the result (without loss of generality we can choose
C = 1)

I = arcsin

[

V R

2 sinhR

]

, (22)

ω = 2 coshR cosI. (23)

A necessary condition is thusV ≤ 2 sinh(R)/R and
is shown in Fig. 2. In the region of possible solutions

for each pair of{R, V } we now have two solutions
due to the periodicity of (22) and (23) inI–to each
solution with a given value ofI1 = I we can construct
a second solution withI2 = π−I . For any given value
of R there is a finite upper bound on the value ofV .
However, with increasingR, the threshold value of the
upper bound ofV also increases. Again we can find
infinitely strongly localized and infinitely fast moving
tails.

3.2.2. Klein–Gordon chains
These models describe the dynamics of atoms on a

substrate and interacting with each other:

ün = −αun − C(2un − un−1 − un+1)

+Fnl(un). (24)

As in the field case we search for a moving solution
in the form

un(t) =
∑

k

Ak(n − V t)eikΩbt . (25)

In the tails of the assumed existing solution we obtain

V 2 d2Ak(z)

dz2
− 2ikΩbV

dAk(z)

dz

= (Ω2 − α − 2C)Ak(z)

+C(Ak(z + 1) + Ak(z − 1)). (26)

Repeating the intermediate calculations as above we
arrive at the following equations (note that we skip the
indexk, so belowω = kΩb − V I ):

ω = −
C

V R
sinhR sinI, (27)

[

C

V R

]2

sinh2R sin2I

= V 2R2 + α + 2C(1 − coshR cosI ). (28)

The allowed region in the parameter space{R, V 2} is
not only similar to the one of the discrete nonlinear
Schr̈odinger case (Fig. 2) but also more complicated.
Solutions exist below a certain lineV 2(R). This line
consists of two parts. For coshR > 2C/(α + 2C −√

α2 + 4αC), the line is given by

(a) V 2 =
1

R2
(2C coshR − α − 2C). (29)
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Fig. 2. Same as Fig. 1, but for the DNLS chain.

For smaller values ofR we have line (b):

(b) V 2 =
1

2

sinh2R

R2
(α+2C −

√

α2 + 4αC). (30)

In this second case the continuation of line (a) (29) sep-
arates solutions with multiplicity 4 (to the left) from
solutions with multiplicity 2 (to the right) as shown in
Fig. 3.

Let us fix a value ofV . This value defines some half-
infinite line segment of allowed solutions in{R, V 2}.
For ω we find 0≤ ω < ∞. Thus for anyV 6= 0 we
can generate a breather solution in the tails, for any
value ofΩb! Surprisingly the problem of resonances,
as in the case of a stationary breather, does not appear
on that stage.

We can also find a solution toΩb = ω = I = 0, i.e.
we can again generate shock waves (or kinks) with any
velocity (in the tails). They correspond to solutions on
line (a).

3.2.3. Acoustic chains
This case is obtained by performing the limitα →

0. The phonon spectrum is acoustic. Relations similar
to (27) and (28) were also obtained in [14]. In that
case solutions exist below line (a) (29), which now
extends down toR = 0 (Fig. 4) . All solutions are
of multiplicity 2. In contrast to the previous case for
velocitiesV 2 < C we can generate moving breather
tails only for frequencies above some threshold value.
This gap value shrinks to zero and remains zero as
the velocity is increased aboveV 2 > C. Also shock
waves (kinks) which correspond to all points on line
(a) can again be generated. Again in contrast to the
previous case, these shock waves or kinks must have
velocitiesV 2 > C to be generated.

3.3. Some discussions

Let us summarize the results obtained so far. We
assumed the existence of some moving localized ob-
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Fig. 3. Same as Fig. 1 but for a Klein–Gordon chain. The labels M2, M4 indicate the multiplicity of solutions in the given part of the
parameter space. HereC = α = 1.

ject (breather) which is parametrized in a proper way.
Then we considered the equations of motion in the
tails of the object, and checked under what conditions
the linearized equations in the tails can be satisfied.
We found, that Klein–Gordon PDEs do not allow4 in
general for moving breathers (as they do not for sta-
tionary ones), only shock waves or kinks are allowed.
Discretizing these equations, we found that all restric-
tions are gone, and moving breather tails can be gen-
erated for any parameters. It is surprising that even
the nonresonance conditions known to exist for sta-
tionary breathers do not appear here. If we consider
a chain with an acoustic spectrum, then the nonreso-
nance condition reappears in some sense, but the for-
bidden frequency gap shrinks to zero as the velocity
is increased above the speed of sound. One of the rea-
sons for the disappearance of the nonresonance con-
dition in the tails of a possible moving breather is the
presence of the second term on the l.h.s. of (26). This

4 Note that “allow” implies only that the tail of the expected
solution can be constructed, not that the whole solution exists.

term causes a mixing of the real and imaginary parts
of the eigenvalues. However, this term is also present
for space-continuous systems. Since (26) also contains
advanced and retarded terms, these terms cause a pe-
riodicity of the equations for the eigenvalues in the
imaginary part of the eigenvalue. Thus one can find
eigenvalues with infinitely large real parts at fixed ve-
locities, in contrast to the space-continuous case.

Another result is that we can generate shock wave
tails in all cases, with restrictions in some cases (acous-
tic chains) on the velocity.

4. Numerical methods

4.1. The general idea

Let us consider a chain with the full equations of
motion5 given by ün = −∂H/∂un. Then the ansatz

5 The reader should note that in this section we consider the full
nonlinear equations of motion.
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Fig. 4. Same as Fig. 1 but for FPU chains.

(25) yields equations of the type (cf. (26))

V 2 d2Ak(z)

dz2
− 2ikΩbV

dAk(z)

dz

= Ω2Ak(z)

+
∑

n

fn({Ak′(z)}, {Ak′(z + n)}, {Ak′(z − n)}).

(31)

The essential feature is that these coupled differential
equations contain advanced and retarded terms. These
terms arise due to the interaction on the lattice. Instead
of directly trying to solve these equations, we consider
a lattice governed by the equations

V 2Äkn(t) − 2ikΩbV Ȧkn(t)

= Ω2Akn(t)

+
∑

n′

fn′({Ak′,n(t)}, {Ak′,n+n′(t)}, {Ak′,n−n′(t)}).

(32)

Here n is again the lattice site label, and with each
lattice siten we have an associated infinite set of vari-
ables{Akn}, k = 0, ±1, ±2, . . . Eq. (32) defines a
phase space flow in the phase space of all variables
Akn, Ȧkn. In general, trajectories generated by that dy-
namics are not related to solutions of (31). However,
all fixed points of the mapRGt=1 (Gt is the evolution
operator defined by (32) andR is the translation op-
erator that shifts all lattice indices by 1) are solutions
of (31). The main reason for this is that all delay and
advance intervals are integers.

Once a fixed point (solution) is found, it can be con-
tinued using generalized Newton methods or steepest
descent methods.

4.2. Example: DNLS

Let us investigate numerically moving breathers
in the discrete nonlinear Schrödinger model (DNLS)
with µ = 2 (20) which is a nonintegrable model.
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The DNLS system has an integrable counterpart
which is the Ablowitz–Ladik model (ALM) having the
following Hamiltonian:

Ψ̇n = i(Ψn−1 + Ψn+1)(1 + |Ψn|2). (33)

The ALM has moving breathers of the form:

Ψn =
sinh(µ)

cosh(µ(n − V t))
e−ikneiΩbt . (34)

Herek andµ are free parameters. Note that these
solutions possess exact self-dual reflectional symme-
try [21].

All other parameters are expressed throughk andµ:

Ωb = 2 cosh(µ) cos(k), (35)

V =
2

µ
sinh(µ) sin(k). (36)

HereV is the velocity of a breather.
Now we can test the relations obtained in the pre-

vious section. Indeed, using the solution (34) in the
tails it can be checked that the relation between the
frequency, velocity and localization length (22) and
(23) is fulfilled. Note that in this case we have only
one Fourier component which is a specific property
of models of the nonlinear Schrödinger type which do
not generate higher Fourier harmonics with respect to
time if a single Fourier component is excited.

Now let us consider the following model, which al-
lows for a continuous tuning between ALM and DNLS
(this is a realization of the ideas in [20,21]):

Ψ̇n = i[Ψn−1 + Ψn+1 + |Ψn|2[(1 − α)(Ψn−1

+Ψn+1) + αΨn]] . (37)

Here 0≤ α ≤ 1.
Let us look for a solution in the form

Ψn(t) = eiΩbtgn(t). (38)

Then we have

ġn = i[gn−1 + gn+1 − 2Ωbgn

+|gn|2[(1 − α)(gn−1 + gn+1) + αgn]] .

(39)

For a moving breather we have

gn(t) = g(n − V t). (40)

The moving breather is a fixed point of the map
RGT , T = 1/V . We look for a zero minimum of the
functionalF = |RGT X − X|, whereX is a point in
the phase space of (39).

We proceed in the following way. First, the para-
meterα is put to zero. The initial point in the phase
space is chosen to be the ALM moving breather (34).
Thenα is incremented by a small value1α. A mini-
mization of the functionalF is performed. Againα is
incremented by a small value1α, etc. The algorithm
stops whenα reaches 1.

We were able to generate moving DNLS breathers
with the value of the minimized functional less then
10−6 and1α = 10−5. An example is shown in Fig. 5
(µ = 0.5, k = 1, V = 0.0364).

Let us mention an important point found during
the numerical calculations which is the existence of
a large (infinite?) number of very (infinitesimally?)
close local nonzero minima of the functionalF near
the true fixed point. When a step1α is made, the
algorithm minimizes the functionalF , and we hope
that the value of the functional in the minimum will
be zero. Surprisingly (and in contrast to the numerical
calculations on stationary breathers), we found that the
value of the functional at the minimum for a givenα
is not zerono matter how small1α is.

On the other hand when1α is decreased (thereby
increasing the computation time) the minimum value
of the functional at a givenα tends to zero, although
not being zero for any finite1α. From this we con-
clude that the true fixed point trajectory is surrounded
by a dense set of other nonzero minima ofF . The
structure of the phase space near the moving breather
is therefore highly nontrivial in contrast to station-
ary breathers where none of the above effects were
found.

These findings are maybe connected to the fact
that the spectrum of Floquet multipliers of a mov-
ing breather has unusual properties as compared to
the Floquet spectrum of stationary breathers. Namely,
the Floquet multipliers of the linearized map around
a moving breather fill the unit circle densely. Espe-
cially, there exist Floquet multipliers with value+1,
which would in general make continuation impossible
for stationary breathers. The existence of these mul-
tipliers can be simply explained. Linearizing the map
around a moving breather fixed point, we obtain an in-
finite set of eigenvalues with spatially extended eigen-
vectors. At large distances from the breather center
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Fig. 5. A moving breather solution for DNLS (see text).

these eigenvectors will correspond to normal phonons.
A phonon is given by

ei(Ωq t−qn). (41)

It is always possible to cast it into the form

eiΩbte−iq(n−V t) (42)

with arbitrary numbersΩb, V by solving

Ωq = Ωb + V q. (43)

Indeed, we can always findq-values which will do
the job. For the case of a stationary breatherV =
0, we essentially recover the nonresonance condition,
which can be fulfilled by choosingΩb to be outside
the phonon band.

5. Conclusion

There are results reporting on a transition from mov-
ing to trapped breathers upon changing the parameters

of lattice Hamiltonians [16,20]. We have not been able
to trace these transitions in the tail analysis. Conse-
quently, the origin of these transitions should be con-
nected to the dynamics in the breather center. It is in-
teresting to note that numerical observation of super-
sonic shock waves was reported for acoustic chains in
[15] in accord with our results which allow the exis-
tence of the tails of such solutions.

Our main results can be summarized as follows. The
nonresonance condition for the localization condition
in the tails of stationary breathers is not present if one
considers moving breathers. The problem of finding
moving breathers can be transformed into the calcu-
lation of fixed points of a map which differs from the
map of the original phase space onto itself, but is un-
ambiguously related to that map. The numerical eval-
uation shows that continuation of fixed points of the
map for moving breathers is not simple. We argue that
this is related to the fact that the Floquet spectrum
of the map for moving breathers contains a dense set
surrounding+1 on the unit circle.
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