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Incremental expansions for the ground-state energy of the two-dimensional Hubbard model
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A generalization of Faddeev’s approach of the three-body problem to the many-body problem leads to the
method of increments. This method was recently applied to account for the ground-state properties of Hubbard-
Peierls chaingJ. Malek, K. Kladko, and S. Flach, JETP Le87, 1052 (1998]. Here we generalize this
approach to two-dimensional square lattices and explicitly treat the incremental expansion up to third order.
Comparing our numerical results with various other approa@este Carlo, cumulant approachese show
that incremental expansions are very efficient because good accuracy with these approaches is achieved
treating lattice segments composed of eight sites d&19163-182809)50408-9

The understanding of properties of strongly interactingSumming up all increments of first orddor differentn) we
fermions has been an intense topic of research for the pasbtain the ground-state ener§") to first order
decade, in part due to the interest in the properties of high-
temperature superconductors. As exact solutions are known
only for selected integrable models, numerical methods E(1)=E(°)+2 If). ©)
gained importance to provide benchmarks for analytical ap- "

proaches that necessarily use approximations of all kinds. et us now calculate the second-order increments. which
Incremental expansions have been used in quantum cherh— '

istry to account for properties of molecules and sofidis.a ake into account the simultaneous effect of addlng_two
recent work these methods were combined with cumulantterm.SHn andHpy,. Here one has to subtract the corrections
expansions to provide a solid footing for numerical imple-Comlng from adding both terms separately. Denote the
mentations. One result was that incremental expansions cdffound-state energy OHOJ_F Ho+ H) With Enpy. 1;51)en }?)e
be interpreted as approximative ways to solve Faddeev—likéecoond'OrOIer increment is given B{)=E I Sl
equations for the many-body problem. —E(®. The ground-state energy to second o€ is then

To explain this in more detail, let us consider a Hamil- 9iven by(see Chap. 5.2.3 in Ref) 1
tonian
E@=g@+> 10+ > 12, (4)
H:H0+2 Hn_ (l) n n<m

n

) . . ) This procedure can be easily continued to higher orders, and
Assume that we can find the eigenenergies and eigenvectofige ground-state energy will be a sum over increments of all
of Ho and ofHo+H, for any n. Suppose further thel, is  orders. It requires the exact calculationEf,, when going to
the scattering operator associated withy+H,. Then  second ordefrespectivelyE,,, When going to third order,

Faddeev-like equations read’as etc). Clearly this procedure does not imply certain topologi-
cal structures induced ky,H,,, so that we are not restricted
_ _ to certain space dimensions if considering spatially extended
T.,= 1+ Twl, S= T,, 2 , )
n=Sn n;n m ; " @ systems. Note that there are many ways to split a full Hamil-

) ) o tonianH into a trivially solvable part, and the termsd, .
whereS is the scattering operator of the full Hamiltoni&i Each of these ways would generate its own incremental ex-
Assuming theS, to be small, one obtains in lowest order pansions. Finally, these expansions are not restricted to the
T,=S, andS=X,S, . Having theS operator one can calcu- calculation of the ground-state energy only, but can also be
late, e.g., the ground-state energytbf(for details see Ref. applied to other ground-state properties and to excited

2). states’
The ground-state enerdy in zero order of the incremen-  This method was successfully applied to one-dimensional
tal expansion is equal to the ground-state en&@y of Ho.  (1D) lattices® There the special topology of a 1D system

In first order we take into account the effect coming from|ead to the successive cancellation of lower order increments
adding one singleH,,. Denote the ground-state energy of when proceeding to higher orders. Here we use this method
Ho+H, by E,,. Then the first-order increment to the ground-to account for the ground-state energy of the two-
state energy is given b)?,l)= E,—E®©. This increment mea- dimensional Hubbard model on a square lattice at half filling.
sures the change of addind,, to the ground-state energy. The Hamiltonian in dimensionless units is given by
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o o . FIG. 2. Different configurationgésee text
Iinel;lf.bcl)hdssclr(lggaf\:ié:n;le.presentation ldf. Circles—lattice sites, 1(C1)=E(Cy)+(N—2)E(Cgy)—NE(Co)
=E(Cq1)—2E(Cy). (8)
Ho=— > (CiT,j,gCi+1,j,g+CiT,j,gCi,jﬂ,ng H.c) We will encode all configurations of linked dimers to be

bhe considered byC,. Note that all increments are independent
of the given position of the returned bond because we as-
+UZ Nij1Nij, - 5) sumed periodic boundary conditions. Next we need to ac-
b count for the weight factow(C,) of I(C,), i.e., the number
of increments per dimer dfl; having the same energy. It is
easy to see thaw(C;)=3 (all possible realizations are
shown in Fig. 2. The ground-state energy in first order is
then

Herei and]j are integergwhich denote thex andy coordi-
nates of the lattice pointsTo proceed we have to define a
splitting of H into Hy andXH,,. Here we consideH as
given byH, when all vertical bonds and each second hori-

zontal bond are missinsee also Fig.
& g-2 EV=E®@+3NI(C;)=N(3E(C;)—5E(Cy)),

Ho= _i; (C£i+j,j,aC2i+j+1,j,a-+ H'C')+Ui§;’ NNy -
(6)

Thus H, is a set of horizontally aligned noninteracting Already at this stage, though the considered configurations
dimers. Note thaH, already contains all correlation terms of are equivalent to those of a 1D chain at the same order of
Eq. (5). The termsH, are then the missing bonds, i.e., all incremental expansiohsve find a difference in the energy
vertical bond§:i,j(cif,j,aci,j+l,o+ H.c.) and the missing hori- Per site du_e to the increased number of nearest neighbors of
zontal bO”dSEi,j(C;iﬂ_lj oCaitj.j.atH-C). the 2D lattice as compared to the 1D case. o

For the sake of concreteness let us assume that our initial !N Sécond order we have to add two of the missing bonds.

model Hamiltonian(5) has an even and finite number dfi2 Nonzero contributions come from cases when the two re-
sites, and periodic boundary conditions. In zero order thdumed bonds are linketdThen we have two nonzero con-

figurationsC, (open chain with six sitgsand C; (which is
already incorporating topological effects of the 2D system
in this order(see Fig. 3 Their weight factors arav(C,)
=9 andw(C3)=6. The corresponding increments are

1
e!V=7 (3E(C1)~5E(Co)). ©

ground-state energlf of the whole system and the energy
per sitee are given by

1
E@=NE(Cy), e(°)=§E(CO), 7
1(Cy)=E(Cy)—3E(Cy)—2I(Cy)

whereE(C,) is the ground-state energy of the zeroth con- =E(C,)—2E(C,)+E(Cy), (10
figurationC, that per definition is a dimer with two electrons
(Fig. 2. I(C4)=E(C3)—3E(Cq)—21(C

The first-order increment is given by adding one of the (Co)=E(Cq) (Co) (C1)
missing bonds. The ground-state energy of this case is given =E(C3)—2E(C4) +E(Cy). (11

by sum over the ground-state energiesNof 2 dimers C;)
and of an open segment of two coupled diméss(see Fig. The ground-state energy can be evaluated according to Eq.
2): (4):
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FIG. 3. Same as Fig. 2. FIG. 5. € versusU. Solid line—result from third incremental

order; filled circle—exact value & =0; open squares—QMC re-
sults(Ref. 4); filled diamonds—projection operator resuliRef. 5.
Inset: Dependence of incremental contributionseton U. Solid
line—zeroth order; thick dashed line—first order; thick long-dashed
=5E(Cy) —13.56(C,) +4.55(C,) +3E(Cy). line—second order; dotted line—third order.

(12
Since the topology of the configurations starts to be differen{(cg) B(Co)1{C2)=1{Co) =31 (Co) ~ 4R(Co). 18
from those appearing in a 1D systén trivial cancellation [t is too lengthy to explicitly write down the formula for the
of lower order increments takes place anymore. ground-state energy. In the following we will present the
In third order we add three missing bon¢gain only  results of numerical calculations.
configurations when all three returned bonds are linked do We use a Lanczos algorithm to compute the ground-state
contributg. We obtain six different configurations energies of our considered configurations. In Fig. 5 we show
C,4,C5,C4,C;,C45,Cqy with corresponding weight factors the dependence of the ground-state energy peresiie the
2,27,2,10,18,32. They are shown in Figs. 3 and 4. The corinteraction parametet) in third order of the incremental
responding increments are expansion. In the inset of Fig. 5 we show thHedependence
of the different incremental contributions. We find that the
1(C4)=E(C4)—1(C2) —21(C3) —31(C1) =3E(Cq), (13 contributions coming from second and third order are small
compared to the zeroth and first order. For free electtdns
1(C5)=E(Cs)—2I(C2)~31(C1) —4E(Cp), (14 =0 we compare: for zeroth, first, second, and third orders:
—1; —1.708204;—-1.768700; - 1.6335775 with the exact
I(Cg)=E(Cg)—3I(C3)—3I(C1) —4E(Cy), (15  numbere(U=0)=—1.621139see also Table | and Fig).5
This gives a relative error of only 0.8%! F&fr=1,2,4 we
[(C;)=E(C7)—2I(C3)—3I(Cy)—4E(Cy), (16) comparee in third order in Table | with quantum Monte
Carlo (QMC) calculations of Morecet al.,* where lattices
[(Cg)=E(Cg)—1(C3)—2I(C5)—3I(C;)—4E(Cy), (170  with sizes up to 1& 16 were used and extrapolations were
carried out. The relative differenc&able | is less than 2%.

(2)—EE(C)+§I(C)+2I(C)+6I(C)
€ =5 0T 5 UT5 2 3

—e —e Note that the slight increase in the relative error with increas-

C ing U at least partially has to be attributed to the circum-

Cs i stance that the QMC calculations become less exact with
st | S increasingU. Also in Fig. 5 the results of Polatsek and

Becker on related projection operator techniques using cu-

——d —e ——db
TABLE I. Comparison ofe in third order with QMC results and
exact value folU =0.
*—9 . .
U € (Ref) € (third order inc)
C, 0 —1.621(exac) -1.634
— 1 —1.376(4) —1.400
C, 2 —-1.172(4) -1.191
—$b o—o--o—90--90o—2 4 —0.841(4) —0.856
 (Heisenbery —0.669(6) —-0.670

FIG. 4. Same as Fig. 2.
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mulants are shownThese calculations take spin flips up to check, that our method gives(Co) = —1/4, 1(C,) = —1/4,
second order and charge fluctuations up to second dimler |(C,)=0 for n+#0,1. Thus our expansion terminates after
terms of our notationsinto account. The agreement is very the first order, and in this order we obtain precisely
good in a broad range &f values. The exception is the limit = —1/2. This should make clear that incremental expansions
of small U, where the projection technique becomes lesgre at any stage yielding results for the infinite lattice.
accurate. Finally, for large) the Hubbard model transforms Using exact diagonalizations we could extend the calcu-
into the Heisenberg model. Doing the same calculations fofations even further up to sixth order, i.e., up to adding six
the Heisenberg model witi=1 we comparee for zeroth,  missing bonds. This needs a careful classification of all con-
first, second, and third orders:-0.375; —0.5490375;  yihyting configurations and their weight factors. We are cur-
—0.578994;—0.6695330 with the results of QMC calcula- o4y working on this project. Notice the extremely high
tions of the ground-state energy of the Helsenbe_rg ”.‘99'9' precision that we achieve already in 3D order, where the
~—0.669 by Rung®(see also Refs. 5 and 7-9 with similar largest systems we have to deal with consist of eight sites.

results. The relative difference is less than 0.08%ee also . . . - ;
Table |). To conclude this part, we emphasize that our resulté’vIthout any extrapolation we obtain a precision which, e.g.,

yield a high precisiorirelative differences of the order of 2% N QMCiIS achleved by co_n_S|der|ng systems Wlth.S'Ze.Up to
and lesgin the wholeU range, which has not been achieved 16X 16= 256 sites and add_'t'(_mal extrapolatiows. Fig. 5 in
by any of the other methods discussed. Ref. 10. The reason for_thls is th_e f_af:t that we use a scheme
Let us emphasize that the presented method is not justtgat at (_aach level descrlb_es an infinite system, and acc_ounts
clever way of making finite size extrapolations. To showfor the |mportant topological structures through the welght
that, we consider the two-dimensional antiferromagnetid@ctors. This appears to be much better than just to consider
Ising modeIH=EijS,ZSJ-Z on a square lattice with spin 1/2. finite Igttlce with a certain size. Having the ground-state
The ground-state energy per site is given-bg/2, which is ~ €nergy with that accuracy, we plan next to account for the
simply the result of each site having two bonds, each bonghmerl'za'non of a two-dimensional Hubbard-Peierls system.
contributing with an energy of- 1/4. Any finite size calcu- Work is in progress.
lation of this energy would deviate from the exact value, .
because it would ir?\yolve the energy of spins at the bounda We thank P.‘ Fulde for continuous support and K. W
of the finite size cluster, where the number of contributing ecKer, S- Denisov, P. Fulde, and R. Hetzel for helpful dis-
bonds per site is less than 2. However, it is an easy task tB4SSIONS:
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