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A generalization of Faddeev’s approach of the three-body problem to the many-body problem leads to the
method of increments. This method was recently applied to account for the ground-state properties of Hubbard-
Peierls chains@J. Malek, K. Kladko, and S. Flach, JETP Lett.67, 1052 ~1998!#. Here we generalize this
approach to two-dimensional square lattices and explicitly treat the incremental expansion up to third order.
Comparing our numerical results with various other approaches~Monte Carlo, cumulant approaches! we show
that incremental expansions are very efficient because good accuracy with these approaches is achieved
treating lattice segments composed of eight sites only.@S0163-1829~99!50408-6#

The understanding of properties of strongly interacting
fermions has been an intense topic of research for the past
decade, in part due to the interest in the properties of high-
temperature superconductors. As exact solutions are known
only for selected integrable models, numerical methods
gained importance to provide benchmarks for analytical ap-
proaches that necessarily use approximations of all kinds.

Incremental expansions have been used in quantum chem-
istry to account for properties of molecules and solids.1 In a
recent work2 these methods were combined with cumulant
expansions to provide a solid footing for numerical imple-
mentations. One result was that incremental expansions can
be interpreted as approximative ways to solve Faddeev-like
equations for the many-body problem.

To explain this in more detail, let us consider a Hamil-
tonian

H5H01(
n

Hn . ~1!

Assume that we can find the eigenenergies and eigenvectors
of H0 and ofH01Hn for any n. Suppose further thatSn is
the scattering operator associated withH01Hn . Then
Faddeev-like equations read as2

Tn5SnS 11 (
mÞn

TmD , S5(
n

Tn , ~2!

whereS is the scattering operator of the full HamiltonianH.
Assuming theSn to be small, one obtains in lowest order
Tn5Sn andS5(nSn . Having theS operator one can calcu-
late, e.g., the ground-state energy ofH ~for details see Ref.
2!.

The ground-state energyE in zero order of the incremen-
tal expansion is equal to the ground-state energyE (0) of H0 .
In first order we take into account the effect coming from
adding one singleHn . Denote the ground-state energy of
H01Hn by En . Then the first-order increment to the ground-
state energy is given byIn

(1)
5En2E (0). This increment mea-

sures the change of addingHn to the ground-state energy.

Summing up all increments of first order~for differentn) we
obtain the ground-state energyE (1) to first order

E ~1!
5E ~0!

1(
n

In
~1! . ~3!

Let us now calculate the second-order increments, which
take into account the simultaneous effect of adding two
termsHn andHm . Here one has to subtract the corrections
coming from adding both terms separately. Denote the
ground-state energy of (H01Hn1Hm) with Enm . Then the
second-order increment is given byInm

(2)
5Enm2In

(1)
2Im

(1)

2E (0). The ground-state energy to second orderE (2) is then
given by ~see Chap. 5.2.3 in Ref. 1!

E ~2!
5E ~0!

1(
n

In
~1!

1 (
n,m

Inm
~2! . ~4!

This procedure can be easily continued to higher orders, and
the ground-state energy will be a sum over increments of all
orders. It requires the exact calculation ofEnm when going to
second order~respectively,Enml when going to third order,
etc.!. Clearly this procedure does not imply certain topologi-
cal structures induced by(nHn , so that we are not restricted
to certain space dimensions if considering spatially extended
systems. Note that there are many ways to split a full Hamil-
tonianH into a trivially solvable partH0 and the termsHn .
Each of these ways would generate its own incremental ex-
pansions. Finally, these expansions are not restricted to the
calculation of the ground-state energy only, but can also be
applied to other ground-state properties and to excited
states.2

This method was successfully applied to one-dimensional
~1D! lattices.3 There the special topology of a 1D system
lead to the successive cancellation of lower order increments
when proceeding to higher orders. Here we use this method
to account for the ground-state energy of the two-
dimensional Hubbard model on a square lattice at half filling.
The Hamiltonian in dimensionless units is given by
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Hel52 (
i, j ,s

~c i, j ,s
† c i11,j ,s1c i, j ,s

† c i, j11,s1H.c.!

1U(
i, j

n i, j ,↑n i, j ,↓ . ~5!

Here i and j are integers~which denote thex andy coordi-
nates of the lattice points!. To proceed we have to define a
splitting of Hel into H0 and(nHn . Here we considerH0 as
given byHel when all vertical bonds and each second hori-
zontal bond are missing~see also Fig. 1!:

H052 (
i, j ,s

~c2i1 j , j ,s
† c2i1 j11,j ,s1H.c.!1U(

i, j
n i, j ,↑n i, j ,↓ .

~6!

Thus H0 is a set of horizontally aligned noninteracting
dimers. Note thatH0 already contains all correlation terms of
Eq. ~5!. The termsHn are then the missing bonds, i.e., all
vertical bonds( i, j(c i, j ,s

† c i, j11,s1H.c.) and the missing hori-
zontal bonds( i, j(c2i1 j21,j ,s

† c2i1 j , j ,s1H.c.).
For the sake of concreteness let us assume that our initial

model Hamiltonian~5! has an even and finite number of 2N
sites, and periodic boundary conditions. In zero order the
ground-state energyE of the whole system and the energy
per sitee are given by

E ~0!
5NE~C0!, e ~0!

5

1

2
E~C0!, ~7!

whereE(C0) is the ground-state energy of the zeroth con-
figurationC0 that per definition is a dimer with two electrons
~Fig. 2!.

The first-order increment is given by adding one of the
missing bonds. The ground-state energy of this case is given
by sum over the ground-state energies ofN22 dimers (C0)
and of an open segment of two coupled dimersC1 ~see Fig.
2!:

I~C1!5E~C1!1~N22!E~C0!2NE~C0!

5E~C1!22E~C0!. ~8!

We will encode all configurations of linked dimers to be
considered byCn . Note that all increments are independent
of the given position of the returned bond because we as-
sumed periodic boundary conditions. Next we need to ac-
count for the weight factorw(C1) of I(C1), i.e., the number
of increments per dimer ofH0 having the same energy. It is
easy to see thatw(C1)53 ~all possible realizations are
shown in Fig. 2!. The ground-state energy in first order is
then

E ~1!
5E ~0!

13NI~C1!5N„3E~C1!25E~C0!…,

e ~1!
5

1

2
„3E~C1!25E~C0!…. ~9!

Already at this stage, though the considered configurations
are equivalent to those of a 1D chain at the same order of
incremental expansions3 we find a difference in the energy
per site due to the increased number of nearest neighbors of
the 2D lattice as compared to the 1D case.

In second order we have to add two of the missing bonds.
Nonzero contributions come from cases when the two re-
turned bonds are linked.2 Then we have two nonzero con-
figurationsC2 ~open chain with six sites! and C3 ~which is
already incorporating topological effects of the 2D system!
in this order ~see Fig. 3!. Their weight factors arew(C2)
59 andw(C3)56. The corresponding increments are

I~C2!5E~C2!23E~C0!22I~C1!

5E~C2!22E~C1!1E~C0!, ~10!

I~C3!5E~C3!23E~C0!22I~C1!

5E~C3!22E~C1!1E~C0!. ~11!

The ground-state energy can be evaluated according to Eq.
~4!:

FIG. 1. Schematic representation ofH0 . Circles—lattice sites,
lines—bonds kept fromH.

FIG. 2. Different configurations~see text!.
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e ~2!
5

1

2
E~C0!1

3

2
I~C1!1

9

2
I~C2!16I~C3!

55E~C0!213.5E~C1!14.5E~C2!13E~C3!.

~12!

Since the topology of the configurations starts to be different
from those appearing in a 1D system3 no trivial cancellation
of lower order increments takes place anymore.

In third order we add three missing bonds~again only
configurations when all three returned bonds are linked do
contribute!. We obtain six different configurations
C4 ,C5 ,C6 ,C7 ,C8 ,C9 with corresponding weight factors
2,27,2,10,18,32. They are shown in Figs. 3 and 4. The cor-
responding increments are

I~C4!5E~C4!2I~C2!22I~C3!23I~C1!23E~C0!, ~13!

I~C5!5E~C5!22I~C2!23I~C1!24E~C0!, ~14!

I~C6!5E~C6!23I~C3!23I~C1!24E~C0!, ~15!

I~C7!5E~C7!22I~C3!23I~C1!24E~C0!, ~16!

I~C8!5E~C8!2I~C3!22I~C2!23I~C1!24E~C0!, ~17!

I~C9!5E~C9!2I~C2!2I~C3!23I~C1!24E~C0!. ~18!

It is too lengthy to explicitly write down the formula for the
ground-state energy. In the following we will present the
results of numerical calculations.

We use a Lanczos algorithm to compute the ground-state
energies of our considered configurations. In Fig. 5 we show
the dependence of the ground-state energy per sitee on the
interaction parameterU in third order of the incremental
expansion. In the inset of Fig. 5 we show theU dependence
of the different incremental contributions. We find that the
contributions coming from second and third order are small
compared to the zeroth and first order. For free electronsU
50 we comparee for zeroth, first, second, and third orders:
21; 21.708204;21.768700;21.6335775 with the exact
numbere(U50)521.621139~see also Table I and Fig. 5!.
This gives a relative error of only 0.8%! ForU51,2,4 we
comparee in third order in Table I with quantum Monte
Carlo ~QMC! calculations of Moreoet al.,4 where lattices
with sizes up to 16316 were used and extrapolations were
carried out. The relative difference~Table I! is less than 2%.
Note that the slight increase in the relative error with increas-
ing U at least partially has to be attributed to the circum-
stance that the QMC calculations become less exact with
increasingU. Also in Fig. 5 the results of Polatsek and
Becker on related projection operator techniques using cu-

FIG. 3. Same as Fig. 2.

FIG. 4. Same as Fig. 2.

FIG. 5. e versusU. Solid line—result from third incremental
order; filled circle—exact value atU50; open squares—QMC re-
sults~Ref. 4!; filled diamonds—projection operator results~Ref. 5!.
Inset: Dependence of incremental contributions toe on U. Solid
line—zeroth order; thick dashed line—first order; thick long-dashed
line—second order; dotted line—third order.

TABLE I. Comparison ofe in third order with QMC results and
exact value forU50.

U e ~Ref.! e ~third order inc.!

0 21.621~exact! 21.634
1 21.376~4! 21.400
2 21.172~4! 21.191
4 20.841~4! 20.856
` ~Heisenberg! 20.669~6! 20.670
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mulants are shown.5 These calculations take spin flips up to
second order and charge fluctuations up to second order~in
terms of our notations! into account. The agreement is very
good in a broad range ofU values. The exception is the limit
of small U, where the projection technique becomes less
accurate. Finally, for largeU the Hubbard model transforms
into the Heisenberg model. Doing the same calculations for
the Heisenberg model withJ51 we comparee for zeroth,
first, second, and third orders:20.375; 20.5490375;
20.578994;20.6695330 with the results of QMC calcula-
tions of the ground-state energy of the Heisenberg modele
'20.669 by Runge6 ~see also Refs. 5 and 7–9 with similar
results!. The relative difference is less than 0.08%~see also
Table I!. To conclude this part, we emphasize that our results
yield a high precision~relative differences of the order of 2%
and less! in the wholeU range, which has not been achieved
by any of the other methods discussed.

Let us emphasize that the presented method is not just a
clever way of making finite size extrapolations. To show
that, we consider the two-dimensional antiferromagnetic
Ising modelH5( i jS i

zS j
z on a square lattice with spin 1/2.

The ground-state energy per site is given by21/2, which is
simply the result of each site having two bonds, each bond
contributing with an energy of21/4. Any finite size calcu-
lation of this energy would deviate from the exact value,
because it would involve the energy of spins at the boundary
of the finite size cluster, where the number of contributing
bonds per site is less than 2. However, it is an easy task to

check, that our method givesE(C0)521/4, I(C1)521/4,
I(Cn)50 for nÞ0,1. Thus our expansion terminates after
the first order, and in this order we obtain preciselye
521/2. This should make clear that incremental expansions
are at any stage yielding results for the infinite lattice.

Using exact diagonalizations we could extend the calcu-
lations even further up to sixth order, i.e., up to adding six
missing bonds. This needs a careful classification of all con-
tributing configurations and their weight factors. We are cur-
rently working on this project. Notice the extremely high
precision that we achieve already in 3D order, where the
largest systems we have to deal with consist of eight sites.
Without any extrapolation we obtain a precision which, e.g.,
in QMC is achieved by considering systems with size up to
163165256 sites and additional extrapolations~cf. Fig. 5 in
Ref. 10!. The reason for this is the fact that we use a scheme
that at each level describes an infinite system, and accounts
for the important topological structures through the weight
factors. This appears to be much better than just to consider
a finite lattice with a certain size. Having the ground-state
energy with that accuracy, we plan next to account for the
dimerization of a two-dimensional Hubbard-Peierls system.
Work is in progress.
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