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Discrete breathers ~nonlinear localized modes! have been shown to exist in various nonlinear Hamiltonian
lattice systems. In the present paper, we study the dynamics of classical spins interacting via the Heisenberg
exchange on spatial d-dimensional lattices ~with and without presence of single-ion anisotropy!. We show that
discrete breathers exist for the cases when the continuum theory does not allow for their presence ~easy-axis
ferromagnets with anisotropic exchange and easy-plane ferromagnets!. We prove the existence of localized
excitations, using the implicit function theorem, and obtain necessary conditions for this existence. The most
interesting case is the easy-plane one, which yields excitations with locally tilted magnetization. There is no
continuum analog for such a solution and there exists an energy threshold for it, which is estimated analyti-
cally. We support our analytical results with numerical high-precision computations, including also a stability
analysis for the excitations.
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I. INTRODUCTION

The phenomenon of dynamical localization has been a
subject of intense theoretical research. It is well known that
classical Hamiltonian lattices possess periodic-in-time and
localized-in-space solutions called discrete breathers or in-
trinsic localized modes. A recent explosion of interest in dis-
crete breathers has occurred due to the fact that they may
exist in lattice models of interacting identical particles.
Breathers in continuum models ~for example, the well-
known sine-Gordon equation! exist only due to high symme-
try of the system, and therefore they are structurally unstable.
Discrete breathers are generic solutions of nonlinear lattice
equations. The existence of discrete breathers is based on the
following fact. The band of small amplitude plane waves
~BSAPW! above the classical ground state is bounded from
above, and therefore it is possible that neither breather fre-
quency nor any of its multiples will resonate with the
BSAPW. So far, discrete breathers have been proven to be
generic solutions in both Hamiltonian1,2 and dissipative3 sys-
tems. Several cases of experimental observation of discrete
breathers have been reported @in Josephson junction arrays,4

arrays of weakly coupled waveguides,5 low-dimensional
crystals,6 and biological systems ~myoglobin!7#.

Due to spatial periodicity, the lattices of interacting spins
are ideal systems to observe discrete breathers as well. Here,
we will concentrate on large spins, which may be described
classically. Nonlinear waves in magnetic systems have ex-
tensively been studied during the last three decades.8,9 The
results of these studies provide a lot of information about the
properties of solitary waves ~particularly, breathers! in mag-
nets, since it is possible in many cases to obtain explicit
solutions to them. However, neglecting discreteness effects
may lead to loosing important features of nonlinear wave
dynamics. For instance, since only high-symmetry continu-
ous systems possess breather solutions, the area of poten-

tially interesting models is artificially reduced. Another
drawback of continuous systems is that the consideration of
nontopological localized excitations is typically restricted to
one-dimensional space.

In the last decade, a number of papers have appeared,
where localized modes in magnets were treated as essentially
discrete objects10–12 ~also, the attempt of experimental obser-
vation of discrete breathers in antiferromagnets has been
made recently.13! However, no rigorous existence proofs
have been given, and only the simplest cases ~from the point
of view of symmetries! have been considered. Preserving
these symmetries, one can continue those solutions to the
spatially continuous limit.

The aim of this work is to present breather excitations for
spin lattices, for which the symmetries will not allow for a
similar mode construction in spatially continuous cases.
Also, we will not restrict the consideration to one-
dimensional systems. Below, we present a rigorous existence
proof for the discrete breathers in magnetic systems, using
the anticontinuum limit. With the help of this proof and of
the Newton iteration method, we show the existence of dis-
crete breathers in ferromagnetic lattices with anisotropic ex-
change interaction. We also consider an easy-plane ferro-
magnet and find a new type of discrete breathers, with
several spins precessing around the hard ~single-ion anisot-
ropy! axis, while all the others precess around an axis that
lies in the easy plane. Note that only the simplest case of
monochromatic-in-time breathers has been investigated in
most of previous papers. This situation simplifies consider-
ably the treatment of the system, and important families of
solutions can be lost. Our studies do not depend in any way
on the number of higher harmonics in the time evolution of a
breather.

This paper is organized as follows. The next section pre-
sents the model Hamiltonian and the equations of motion. In
Sec. III, we consider an easy-axis ferromagnet, discuss the
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implementation of the anticontinuum limit, and give a rigor-
ous proof for the existence of discrete breathers. In Sec. IV,
we study an easy-plane ferromagnet. Section V presents the
study of a two-dimensional lattice with easy-plane anisot-
ropy. Discussions and conclusions are given in Sec. VI.

II. HAMILTONIAN AND EQUATIONS OF MOTION

We consider a lattice of classical spins described by the
Hamiltonian with Heisenberg XYZ exchange interaction and
single-ion anisotropy

H52
1
2 (

nÞn8
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a5~x ,y ,z !
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nn8Sn
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n
Sn

z2. ~1!

Here Sn
x ,Sn

y ,Sn
z are the nth spin components ~n labels lattice

sites! that satisfy the normalization condition
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1Sn
y2
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z2

5S2. ~2!

For simplicity, the total spin magnitude can be normalized to
unity: S51. The constants Jx ,Jy ,Jz.0 are the exchange
integrals and D is the on-site anisotropy constant.

The equations of motion for the spin components in the
one-dimensional spin chain with nearest-neighbor interac-
tions are the well-known Landau-Lifshitz equations:
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The generalization to higher lattice dimensions is straightfor-
ward.

III. EASY-AXIS FERROMAGNET

First, we consider spin lattices with the ground state that
corresponds to all spins directed along a given axis ~we as-
sume this axis to be the Z axis!. This can be achieved by
introducing either a strong exchange anisotropy (Jx ,Jy
!Jz), or an on-site anisotropy term D.0. Before we study
the breather solutions of Eqs. ~3!, let us consider the disper-
sion laws for linear spin waves.

A. Dispersion laws

First, we consider the easiest case, the ferromagnetic
chain without ion anisotropy (D50), but with a strong ex-
change anisotropy: 0<Jx ,Jy!Jx . In this case, the ground
state is Sn

z
561, Sn

x
5Sn

y
50. Linearizing the equations of

motion around one of these ground states, e.g., Sn
x

5dx sin(qn2vt), Sn
y
5dy cos(qn2vt), Sn

z
5const'1, we ob-

tain

vL
2
~q !5~Jz2Jx cos q !~Jz2Jy cos q !. ~4!

This dispersion law is shown in Fig. 1, with the edges of the
linear band vL(q) given by

v0
2
5~Jz2Jx!~Jz2Jy!, vp

2
5~Jx1Jz!~Jy1Jz!. ~5!

Let us explain how one can use the properties of the dis-
persion relations in order to formulate an outlook about the
existence or nonexistence of breathers. It has been shown in
Ref. 14 that the breather solutions of full nonlinear equations
bifurcate from certain nonlinear plane-wave solutions. These
specific plane-wave solutions are periodic in time and they
are reduced to band edge plane waves ~BEPW! in the limit of
small amplitudes, linear waves with vL(qBEPW) being an ex-
tremum of vL(q). A necessary prerequisite for the existence
of breathers is that the frequency of these BEPW’s is split
from the linear band vL(q) with an increasing amplitude or
energy density of the wave.

Consider the excitation that corresponds to the wave num-
ber q50. This is a spatially homogeneous excitation Sn

a

5Sa and the Landau-Lifshitz equations yield

Ṡx
5~Jy2Jz!SySz,

Ṡy
5~Jz2Jx!SxSz,

Ṡz
5~Jx2Jy!SxSy. ~6!

As can be seen from these equations, even for Jx5Jy we
have softening in the dispersion law at q50. Then Ṡz

50,
and for Sx

5A cos vt ~here A is the precession amplitude! the
spin precession frequency given by

v2
5~12A2!~Jz2Jx!2

,~Jz2Jx!2
5v0

2 ~7!

appears to lie below the lower edge of the linear band, which
suggests the occurrence of the discrete breathers in the band
gap. Note that for the completely isotropic model Jx5Jy
5Jz[J , there is no gap and consequently no breather solu-
tions are expected.

It is easy to check that a similar analysis of the upper band
edge yields the lowering of the BEPW frequency with an
increasing amplitude, i.e., the frequency is attracted by
vL(q), instead of being repelled. Consequently, we do not
expect breathers that could bifurcate from the upper band
edge.

For DÞ0, there are no qualitative changes. The ground
state of the chain remains the same, whereas the gap in the
dispersion law widens:

FIG. 1. Dispersion law for the ferromagnetic chain with strong
exchange anisotropy.
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vL
2
~q !5~Jz2Jx cos q !~Jz2Jy cos q !

14DS Jz2
Jx1Jy

2
cos q D14D2, ~8!

with

v0
2
5~Jz2Jx!~Jz2Jy!14DS Jz2

Jx1Jy

2 D14D2,

vp
2

5~Jx1Jz!~Jy1Jz!14DS Jx1

Jx1Jy

2 D14D2. ~9!

Note that the band gap exists even in the case of isotropic
exchange ~all Ja’s are equal!. Therefore, the easy axis an-
isotropy increases the changes of the breather existence.

B. Implementation of the anticontinuum limit

Now, following MacKay and Aubry,15 we apply the ap-
proach based on the anticontinuum ~AC! limit to our system.
The main idea of the AC limit consists in decoupling the
lattice sites and exciting only one or a small number of them,
keeping all the other sites in the ground state. Then, upon
switching on the interaction, the persistence of the localized
solution is shown. As a prerequisite for the successful exis-
tence proof and continuation of the breather solution, the
initial ‘‘decoupled’’ periodic orbit must be anharmonic16 and
the breather frequency and all its multiples should not reso-
nate with the linear magnon band. In the case of strongly
anisotropic exchange (Jx ,Jy!Jz), the particular case of the
AC limit means simply setting Jx5Jy50. In this case the Z
component of each spin is conserved. The solution of Eqs.
~3! reduces to the precession of decoupled spins around the Z
axis with the frequencies that depend on the values of the Z
components of nearest-neighbor spins ~due to nonzero Jz!:

Sn
x
1iSn

y
5Ane i~vnt1wn!, Ṡn

z
50, ~10!

where the precession frequency of the nth spin is given by

uvnu5
Jz

2
~Sn21

z
1Sn11

z !12DSn
z , An

2
512Sn

z2. ~11!

Below, we consider the following three particular cases.

1. Single-ion anisotropy is absent „DÄ0…

The initial choice of one precessing spin and all the others
being at rest, i.e.,

Sn
x
5~ . . . ,1,1,1,S0,1,1,1,...! ~12!

with S0,1 cannot be used to generate breathers because the
frequency of this solution v5Jz resonates with the linear
band @more precisely, with the lower edge of the linear band
v0 , see Eq. ~5!#. Therefore it cannot be continued to the
region of nonzero Jx and Jy . A way out is simply to excite
three neighboring spins:

Sn
z
5~ . . . ,1,1,1,S1 ,S0 ,S1,1,1,1,...!. ~13!

Here 0,S0,S1,1 and, since the precession frequency of
all the three central spins must be the same, we have S0
52S121. In this case, the precession frequency v5JzS1 ,
allowing for the absence of resonances with the linear spec-
trum frequency v05Jz , must satisfy the condition kv
Þv0 .

2. Single-ion anisotropy is present „DÌ0…

In this case, we may use the AC limit with the ansatz ~12!.
The initial distribution of the Z-spin components are chosen
as

Sn
z
5~ . . . ,1,1,1,S0,1,1,1,...!. ~14!

Here one central spin precesses with the frequency v5Jz
12DS0 , whereas all the other spins are supposed to be at
rest. Small deviations from their equilibrium states yield the
precession with the frequencies

v15v01
1
2 ~S021 !, v05Jz~112D !, ~15!

distributed along the lattice as follows:

vn5~ . . . ,v0 ,v0 ,v1 ,v ,v1 ,v0 ,v0 , . . . !. ~16!

The discrete breathers can be continued from the AC limit if
the following nonresonance conditions are satisfied:

kvÞv0 , kvÞv1 , kPZ . ~17!

Taking into account that S05(v2Jz)/2D and substituting it
into the nonresonance condition vÞv1 , we get

kvÞ
Jz

2
12D2

Jz
2

4D
1

Jz

4D
v

[24DS Jz

4D
21 D S Jz

4D
1

1

2 D1

Jz

4D
v . ~18!

Note that for k51 the resonance will occur for any
breather frequency if Jz54D . For this set of parameters, the
breather continuation from the AC limit is not possible for
any frequency. For this particular case, we try another ansatz,
namely, the even-parity pattern:

Sn
z
5~ . . . ,1,1,1,S0 ,S0,1,1,1,...!,

vn5~ . . . ,v0 ,v0 ,v1 ,v ,v ,v1 ,v0 ,v0 , . . . ! ~19!

with v0 and v1 being the same as in Eq. ~15!, and

v5

Jz

2
~11S0!12DS0 . ~20!

Then, using the nonresonance condition ~17!, which is valid
for this ansatz as well, we obtain

kvÞv15

~Jz14D !2
2Jz

2

2~Jz14D !
1

Jz

Jz14D
v . ~21!
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It follows from this expression that the even-parity AC limit
allows for continuation of the breather solution for all values
of Jz and D.

3. Isotropic exchange „JxÄJyÄJzÆJ…

Here the ansatz ~12! can be used and the frequencies in
the AC limit will be distributed as vn52DSn

z . The eigen-
frequencies of the nonexcited spins do not depend on the
values of the adjacent spins and equal v0 . Thus, the only
nonresonance condition to be fulfilled is kvÞv0 .

C. Existence proof for magnetic breathers

Here we present the rigorous proof of the existence of the
discrete breathers in the particular case of strongly aniso-
tropic exchange and D.0.
Theorem 1. If a periodic orbit of the Hamiltonian ~1! with a
frequency v is nonresonant @kvÞv0,1 , kPZ and vL(q)#
and anharmonic,16 then the periodic orbit of the equations of
motion ~3! at a[$Jx ,Jy%50 given by the spin-precession
distribution ~13! has a locally unique continuation as a pe-
riodic orbit of the equations ~3! with the same period T
52p/v for a sufficiently small a.

Proof: Let SLT be the space of bounded infinite sequences
z[$zn%nPZ of triplets zn5(Sn

x ,Sn
y ,Sn

z ) of continuously dif-
ferentiable functions of a period T52p/v with the symme-
try properties:

Sn
x
~ t !5Sn

x
~2t !, Sn

y
~ t !52Sn

y
~2t !, Sn

z
5Sn

z
~2t !.

~22!

Then, the size of oscillations on the nth site will be measured
by the following norm:

uznu5sup$uSn
x
~ t !u,uSn

y
~ t !u,uṠn

x
~ t !u, Ṡn

y
~ t !u;tPR%. ~23!

Next, the size of zPSLT is given by

uzu5sup$uznu;nPZ% ~24!

and therefore SLT is a Banach space.
Consider now another Banach space SM T of bounded in-

finite sequences w[$wn%nPZ of triplets wn5(M n
x ,M n

y ,M n
z )

of continuous functions of a period T with the symmetry
properties:
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and the norms:
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Define the mapping F: SLT→SM T defined by
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~27!

The symmetric solutions of the equations of motion ~3! are
in one-to-one correspondence with zeros of F, i.e., F(z ,a)
50, especially in the case when a50. Using the implicit
function theorem, we prove this solution to have a locally
unique continuation z(a) for sufficiently small a, such that
F@z(a),a#50 provided FPC1 and its derivative with re-
spect to z, D, is invertible at a50.

To show the invertibility of DF , we linearize the map
around the periodic orbit at a50, so that

dM5DFdS, ~28!

and show that it is invertible simultaneously in the following
three parts of the lattice: the central site n50, its adjacent
sites n561, and the remainder of the lattice. The invertibil-
ity of DF is equivalent to the invertibility of the correspond-
ing matrix in Eq. ~28!.

~i! For nÞ0, 61 we have

dM n
x
52dSn

yv02d Ṡn
x ,

dM n
y
5dSn

xv02d Ṡn
y , ~29!

dM n
z
52d Ṡn

x .

Since the functions dM n
a and dSn

a are periodic in time, one
can expand them into Fourier series

d¯5 (
k52`

1`

d¯~k !e ikvt. ~30!

The time-symmetry requirements ~22! ensure d¯(k>0) to
be either purely real or imaginary, so that

dM n
x
~2k !5dM n

x
~k !, dM n

y
~2k !5dM n

y
~k !,

dM n
z
~2k !52dM n

z
~k !,

dSn
x
~2k !5dSn

x
~k !, dSn

y
~2k !52dSn

y
~k !,

dSn
z
~2k !5dSn

z
~k !. ~31!

Particularly, dM n
x(0)5dM n

z (0)5dSn
y(0)50. As a result, for

k>0 we obtain
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dM n
x
~k !52v0dSn

y
~k !2ikvdSn

x
~k !,

dM n
y
~k !5v0dSn

x
~k !2ikvdSn

y
~k !,

dM n
z
~k !52ikvdSn

z
~k !. ~32!

These equations appear to be decoupled with respect to k and
they can be inverted in k2v2Þv0

2. The third equation can be
inverted for kÞ0 if vÞ0. For k50 the inversion is impos-
sible, but this degeneracy can be lifted by imposing the nor-
malization condition ~2!. In fact, the third equation can be
dropped because Sn

z is defined by Sn
x and Sn

y with accuracy up

to a sign. All that we have to check is the inequality Sn
x2

1Sn
y2

21<0.
~ii! For n561 we act similarly to the previous case:

dM 1
x
52dS1

yv12d Ṡ1
x ,

dM 1
y
5dS1

xv12d Ṡ1
y ,

dM 1
z
52d Ṡ1

x . ~33!

The similar condition for invertibility can be found: k2v2

Þv1
2.

~iii! Case n50. Using the canonical coordinate y and mo-
mentum p given by

S0
x
5A12y2 cos p , S0

y
5A12y2 sin p , S0

z
5y , ~34!

one obtains the following Hamilton equations:

ẏ5

]H

]p
, ṗ52

]H

]y
. ~35!

Next, we define the pair (u ,v), instead of the set
(M 0

x ,M 0
y ,M 0

z ), with

u5

]H

]p
2 ẏ , v52 ṗ2

]H

]y
. ~36!

The new function y(t) satisfies the following symmetries:

y~ t !5y~2t !, p5vt1h~ t !, h~ t !52h~2t !,

y~ t1T !5y~ t !, h~ t !5h~ t1T !. ~37!

Here h(t) is a periodic function in time. Keeping in mind
that S

21
z and S1

z are fixed by variations of S
61
x ,y , we obtain

du52Ddy2d ṗ52Ddy2d ḣ ,

dv52d ẏ . ~38!

After considering the corresponding Fourier series with re-
spect to time, we find the following inversion conditions:
vÞ0 for kÞ0 and DÞ0 for k50.

Once the invertibility is shown, by the implicit function
theorem, the initial solution z(0) has a locally unique con-
tinuation z(a) in SLT , and thus the theorem has been
proved.

This result can easily be extended to lattices in higher
dimensions, antiferromagnets, and systems with larger inter-
action radius.

D. Method of computation of discrete breathers and linear
stability analysis

For numerical simulations it is convenient to use stereo-
graphic coordinates. The new coordinates incorporate the
normalization condition and reduce the problem with three
unknown real functions per site to the problem with one
unknown complex function per site:

jn5

Sn
x
1iSn

y

11Sn
z . ~39!

The inverse transform is given by

Sn
x
5

jn1jn*

11ujnu2 , Sn
y
5

1

i

jn2jn*

11ujnu2 , Sn
z
5

12ujnu2

11ujnu2 .

~40!

In these new coordinates the Landau-Lifshitz equations take
the form

j̇n5

1

4i F ~Jx1Jy!S jn212jn
2jn21*

11ujn21u2 1

jn112jn
2jn11*

11ujn11u2 D
1~Jx2Jy!S jn21* 2jn

2jn21

11ujn21u2 1

jn11* 2jn
2jn11

11ujn11u2 D
22JzjnS 12ujn21u2

11ujn21u2 1

12ujn11u2

11ujn11u2D28Djn

12ujnu2

11ujnu2 G .

~41!

The computation of the discrete breathers is done, using the
Newton map.1

The linear stability analysis of the discrete breathers is
performed by linearizing Eqs. ~41!: jn(t)5jn

(0)(t)1en(t)
around the breather periodic orbit, and solving afterwards the
eigenvalue problem

S Re en~T !

Im en~T ! D5M̂S Re en~0 !

Im en~0 ! D . ~42!

If the eigenvalues L of the Floquet matrix M̂ are found to be
located on the unit circle of the complex plane, then accord-
ing to the Floquet theorem, the periodic orbit is stable, oth-
erwise it is unstable.

E. Breather solutions in an easy-axis ferromagnet

Breathers in magnetic lattices with an easy-axis anisot-
ropy can be viewed as localized spin excitations with the
spins precessing around one of the ground states of the sys-
tem ~which was chosen in Sec. III to be Sz

51!, so that the
effective radius of this precession decreases to zero as n→

6` . The case of an isotropic exchange in XY (Jx5Jy) is the
simplest one because the Sz component is conserved in the
solution, and therefore the separation of the time and the
space variables
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Sn
1

5Sn
x
1iSn

y
5Ane ivt ~43!

is possible in the Landau-Lifshitz equation @this can easily be
seen also from Eq. ~41!#. The precession amplitudes An do
not depend on time and the Landau-Lifshitz equations ~3! are
reduced to a set of algebraic equations that can be solved by
a simple iteration procedure. This is true both in the case of
strong exchange anisotropy Jx5Jy!Jz and also when the
exchange is isotropic and the on-site anisotropy D.0 is
present.

The breather existence in the Jx ,y-D plane is governed by
the nonresonance conditions given in Sec. III B for the single
harmonic k51. With the growth of Jx ,y , the breather fre-
quency may hit the linear spectrum that marks the boundary
of the breather existence on this plane. The nature of the
other nonresonance condition ~18! is different, e.g., we can-
not continue the breather solution for small Jx ,y when Jz
54D , however, the breathers exist for larger values of Jx ,y .
Note that in the case of Jx5Jy , the discrete breathers have a
continuum equivalent that is the breather solution of the in-
tegrable nonlinear Schrödinger equation. The reason is that
the XY exchange symmetry allows one to find solutions that
are monochromatic in time @see Eq. ~43!#. As long as the
linear band provides a gap and the nonlinearity allows for
pushing the breather frequency into the gap, localized exci-
tations may be found regardless of the degree of discreteness
of the system, which can be characterized by the ratio of the
gap to the bandwidth of the spin wave spectrum.

Now we consider a rhombic chain with JxÞJy,Jz .
Breaking isotropy in the XY plane implies that Sz is not con-
served in the solution anymore, and according to the Landau-
Lifshitz equations, it is impossible to represent the breather
solution in the form ~43!. This implies that the breathers will
have an infinite number of harmonics in time, and conse-
quently the spin dynamics is more complicated. Each spin
now draws an ‘‘elliptic’’ trajectory on the unit sphere, elon-
gated toward the larger component of Jx or Jy . Figure 2
shows the dynamics of the central spin n0511 of the
breather in the chain consisting of N521 spins. The breather
profile at some instant of time is shown in Fig. 3.

Due to the broken symmetry in the XY plane, we are not
able to find the breathers in the corresponding continuum
problem. The reason simply is that the linear band of con-
tinuum equations may still have a gap, but will be un-

bounded from above. Consequently, there will be unavoid-
able resonances of higher harmonics of the breather with the
linear band, causing in general nonexistence of the breather
solution itself. Here we have a nontrivial case, where the
discreteness of the lattice provides the necessary support for
the breather existence, which is missing in the continuum
case. The computation of the breather periodic orbits in this
case cannot be reduced to solving a system of algebraic
equations and we have to work in the full phase space, using,
e.g., a generalized Newton map.1

Let us briefly discuss now the stability of the obtained
breather solutions. The previous stability studies17 have
shown that the stability depends on the breather parity ~i.e.,
its spatial symmetry!. The Floquet analysis of the eigenval-
ues of the stability matrix for our solutions confirms these
findings. We obtain that the site-centered breathers ~contin-
ued from the one-site breather! are stable in the limit of small
exchange @see Fig. 4~a!#, whereas the bond-centered breath-
ers @continued from the two-site breathers, see the ansatz
~19# are unstable arbitrarily close the AC limit, with the un-
stable eigenvalue being located on the positive half or the
real axis outside the unit circle @see Fig. 4~b!#.

IV. EASY-PLANE FERROMAGNET

In the case of an easy-plane anisotropy, we choose D
,0 and Jx5Jy5Jz[J . Without loss of generality, the
ground state of the system can be assumed to be

FIG. 2. Dynamics of the central spin with site number n0511 in
the chain of N521 spins with Jx50.1, Jy50.23, Jz51, and
D50.

FIG. 3. Discrete breather profile at a fixed instant of time for the
parameters described in Fig. 2.
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Sn
x
51, Sn

y
5Sn

z
50. ~44!

Note that the ground state is degenerate, so that the spins can
be oriented arbitrarily in the XY plane, but they must stay
parallelly to each other.

A. Linear dispersion law and the anticontinuum limit

Linearizing the equations of motion in the vicinity of the
ground state ~44!, we obtain the following dispersion law:

v2~q !5J2~12cos q !2
12JuDu~12cos q !. ~45!

This is an ‘‘acoustic’’-type dispersion law with

v0
2
5v2~0 !50, vp

2
5v2~p !54J~J1uDu!, ~46!

and therefore the breather frequencies in this case should lie
above the linear band.

The implementation of the AC limit can be achieved by
setting J50 and exciting one or several spins, so that they
should start to precess around the hard axis with the fre-
quency v52uDuS0 , where S0 is the z projection of the spin.

If the nonresonance condition vÞvp50 is satisfied, the
breather solution can be continued.

In the continuum limit, breathers are not known to exist in
ferromagnets with easy plane anisotropy.18,19 The reason is
again that the corresponding linear band is gapless and un-
bounded, so that it covers the whole real axis. Correspond-
ingly, there is no place for the frequency of a localized ex-
citation on the real axis that does not resonate with the linear
band. An essentially discrete model11 has been studied only
in the case of a strong magnetic field directed along the hard
axis. In this case, the hard axis effectively becomes an easy
axis and, as a result, the spins precess around the Z axis with
a constant Sz component. Here the separation of the variables
~43! is possible that simplifies the treatment of the system.

B. Breather solutions of the easy-plane ferromagnet

As stated above, we do not apply an external magnetic
field, and therefore we do not change the ground state. As in
the previous case of easy-axis, we compute the breather pe-
riodic orbits from the AC limit, using a generalized Newton
method. As a result, we obtain the solutions for one or two
parallelly precessing ‘‘out-of-plane’’ spins shown in Figs. 5
and 6, respectively.

For nonzero J, initially nonexcited spins start to precess
with small amplitudes around the X axis, while the plane of
precession of the out-of-plane spin is no longer parallel to
the easy plane, being slightly tilted. The breathers with more
than two precessing spins can also be created.

Depending on its frequency, the breather width changes.
When the frequency approaches the upper edge of the linear
band, the breather becomes more delocalized. However, this
does not qualitatively influence its core structure, i.e., the
effective precessing axis of the central spin is not continu-
ously tilted toward the X-axis upon lowering the breather
frequency down the linear band edge. The central spin dy-
namics can be viewed as a periodic ~closed orbit of a point
confined to the unit sphere. Let the XY plane be the equato-

FIG. 4. Eigenvalues $L% of the Floquet matrix for ~a! site-
centered breather and ~b! bond-centered breather in the easy-axis
chain of N532 spins with D51, J50.01, and v51.3. Arrows
show direction of motion of eigenvalues when J increases.

FIG. 5. Schematic representation of the discrete breather with
one ‘‘out-of-plane’’ spin in easy-plane ferromagnet.

FIG. 6. Schematic representation of the discrete breather with
two parallel out-of-plane spins in easy-plane ferromagnet.
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rial one. Then for large breather frequencies, the point per-
forms small circles around the north ~or south! pole. Lower-
ing the breather frequency does not change the fact that the
loop still encircles the Z axis. Thus, the breather solution
cannot be deformed into a slightly perturbed and weakly
localized BEPW. This makes clear that the easy-plane ferro-
magnet lattice supports the breather solutions with a local
magnetization tilt that have no analog in the continuum
theory. The situation is illustrated by Fig. 7, where the pro-
files of two breathers are represented: one corresponds to the
frequency vwide50.6649, which is very close to the upper
edge of the linear band with vp50.6633, and the other one
has the frequency vnarrow51.1967, which is far above the
linear band ~see the insert in Fig. 7!.

The first solution is more delocalized, which can be seen
in Fig. 7. However, the central spin still precesses in a way
similar to the ‘‘narrow’’ breather, i.e., it encircles the north
pole on some lower latitude as compared to the narrow
breather ~see Fig. 8, where the two curves on the unit sphere
correspond to the two breather-periodic orbits discussed
above!.

Hence, even when very close to the linear band, our
breather solutions have the structure that has no analog in the
continuum case. Moreover, we have investigated the depen-
dence of the breather energy on the breather frequency ~see
Fig. 9!. We observe that there exists an energy threshold,
since the breather energy attains a nonzero minimum, when
its frequency is still not equal to the edge of the linear-spin-
wave spectrum. Note that for lattices of interacting scalar
degrees of freedom, the discrete breathers have typically zero
lower-energy bounds in spatial dimension d51 and become

nonzero only for d52,3.20 The reason for the appearance of
a nonzero lower bound in the present case is due to the
already mentioned fact that the breather of the easy-plane
ferromagnet system is not deformed into a perturbed-band-
edge magnon wave. Instead, the central spin ~s! is precessing
around the Z axis. This topological difference is the reason
for the appearance of nonzero lower energy bounds. Such
energy thresholds may be very important as they show up in
contributions to thermodynamic quantities that depend expo-
nentially on temperature. To eliminate possible size effects,
we repeated the calculations demonstrated in Fig. 9 for a
chain with N550 spins. The difference between the curves
was negligibly small.

Energy thresholds can be estimated analytically in the
limit of small exchange J. Ignoring the displacements of all
in-plane spins, we obtain the threshold energy for the
breather with M out-of-plane precessing spins, normalized to
the ground state with

E~v !'2M uDuS0
z2, ~47!

where S0
z
5v/2uDu is the Z component of the precessing spin

in the AC limit @see Eq. ~3!#. The factor 2 comes from the
fact that we should take into account the contribution of the
breather tails.

FIG. 7. Discrete breather profile J50.1, D521, vnarrow

51.1967 ~diamonds!, and vwide50.6649 ~crosses!. Inset shows the
linear dispersion law and the location of breather frequencies.

FIG. 8. Dynamics of the central spin with site number n0515 in
the chain described in Fig. 7.

FIG. 9. Normalized energy E5H1JN/2 as a function of the
detuning frequency n5v2vp for a discrete breather with one out-
of-plane spin ~curve 1! and with two out-of-plane spins ~curve 2!

for J50.1. The size of the system is N530 spins.
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Equation ~47! can be obtained, using the following argu-
ments. For large values of n in Fig. 9, the main contribution
to the breather energy comes from the M out-of-plane pre-
cessing spins because the tail amplitudes of the breather are
small ~see, for example, Fig. 7!. For n→0, the energy con-
tribution from the tails is actually diverging. Thus, the height
of the minima of the curves in Fig. 9 can be estimated as two
times the contribution coming from the central spins. The
substitution into the above formula for the band edge fre-
quency vp yields E5E(vp)'2MJ1O(J2). For the case
considered in Fig. 7, for M51 ~one precessing spin! the
analytic result yields E'0.2, while the numerics give the
value 0.33. In the case of two precessing spins (M52), the
numerical result yields E'0.44, whereas the analytical esti-
mate predicts the value 0.4.

Increase of the frequency leads to decrease of the preces-
sion radius of the central spin. In the AC limit, the upper
bound for the breather frequency is determined by v52D
that corresponds to the central ~precessing! spin being paral-
lel to the Z axis. This bound continues to exist when the
exchange is switched on. After reaching this frequency
threshold, the breather becomes a stationary ~time-
independent! solution. The existence of such a solution has
been verified numerically by solving the time-independent
Landau-Lifshitz equations.

C. Stability of breather solutions and their asymptotic
properties

We have investigated the stability of our solutions with
the help of the Floquet analysis ~for details, see Sec. III D!,
using direct Runge-Kutta simulations. For small J, the
breathers with one precessing spin appear to be unstable ~see
Fig. 5!, whereas the configuration that corresponds to two
parallel precessing spins ~see Fig. 6! is stable. Note that simi-
lar results have been obtained for the FPU-type lattices.21

Stability tests also included the following numer-
ical experiment. The periodic breather orbit
$Sn

x(t) (0),Sn
y(t) (0),Sn

z (t) (0)% is perturbed by deviating one of
the central spins Sn

z (0) (0)
2Sn

z (0) (0)
1« and simulating the

equations of motion ~3!. The error function

D~ t !5 min
tP@0,T#

S (
n51

N

(
a5~x ,y ,z !

@Sn
a
~ t !2Sn

a~0 !~t !#2D 1/2

~48!

was calculated on each breather oscillation period T. In Fig.
10, such a function ~with «520.0025, in a chain consisting
of N51000 spins with periodic boundary conditions! is
shown for the breather solution with two in-phase precessing
spins ~see Fig. 6!.

The error function is bounded during significant time pe-
riod ~more than 10 000 breather oscillation periods! and the
breather structure remains preserved. The similar numerical
experiments have been performed for other types of breath-
ers. They yield similar results. This demonstrates the stabil-
ity of the discussed excitation.

For better understanding of the internal breather dynam-
ics, the data are represented through the Fourier expansion of
the breather periodic orbit

Sn
a
~ t !5C0

a
~v;n !1 (

k51

`

@Ak
a
~v;n !cos kvt

1Bk
a
~v;n !sin kvt# ,

a5x ,y ,z . ~49!

We plot the space configuration of C0 and Cn5AAn
2
1Bn

2.
The ‘‘logarithmic’’ profile of such a solution is shown in Fig.
11. We have plotted the space dependence of its Fourier
harmonics ~from the zeroth to the fifth one! for one particular
stable solution.

Let us analyze now the behavior and the exponential spa-
tial decay of these harmonics. As can be seen from Fig. 11,
the zeroth ~static! component is present. According to this
figure, the zeroth component decays exponentially in space.
This seems to be surprising because the corresponding zero
frequency resonates with the bottom of the acoustic-type lin-
ear band @see Eqs. ~45! and ~46!#.

To understand the results illustrated by Fig. 11, we linear-
ize the equations of motion ~3! around the ground state ~44!
in the breather tails. As a result, we obtain the following
equations for the Sy and Sz components ~Sx is assumed to be
equal to 1 with higher-than-linear corrections!:

2

J

2uDu
~Sn11

z
22Sn

z
1Sn21

z !12Sn
z
50,

Sn11
y

22Sn
y
1Sn21

y
50. ~50!

The numerical results suggest that the static Sn
y compo-

nent is zero. This satisfies the second equation in Eq. ~50!.
The first equation in Eq. ~50! allows for an exponential decay
on the static Sn

z component. Its decay can be characterized by
the value l0

z if C0
z (v;n);exp(2l0

zunu),unu→`,l0
z
.0. The

substitution of this ansatz into Eq. ~45! yields

FIG. 10. Time dependence of effective error D for the breather
solution with J50.1, D521, and oscillation period T54.4248.

DISCRETE BREATHERS IN CLASSICAL SPIN LATTICES PHYSICAL REVIEW B 63 214422

214422-9



l0
z
5lnF11

2uDu

J
1H S 11

2uDu

J D 2

21J 2G . ~51!

The spatial decay of all the other ~nonzero! harmonics of
the breather solution can be obtained from the dispersion law
~45! by substituting q5p2ilz and solving this equation
with respect to l with the frequencies Vk5kv . As a result,
we get

lk
z
5ln@z1Az2

21#

z5

AD2
1Vk

2
2uDu

J
21, k51,2,... . ~52!

Since the Fourier components for Sn
y decay in space as Sn

z

~except for the static one!, we have omitted them. The spatial
decay of the Fourier components of Sn

x can be obtained, us-
ing the normalization condition ~2!, and therefore for small
deviations from the ground state ~44!, the following expan-

sion is valid: Sn
x
512Sn

y2/22Sn
z2/21O(Sn

(y ,z)4
). Substituting

here the Fourier expansion for Sn
y and Sn

z , one can see that
only the product of terms containing harmonics kv and (m
6k)v of Sy ,z will contribute to the decay of the mth har-
monic of Sx. We have to choose the smallest exponent of all
possible ones, in order to obtain the leading-order decay rate:

lm
x

5 min
k50,1,...,m

@lk
z
1lm6k

z
# . ~53!

As a result, the following relations have been obtained for
the first five harmonics of the Sx component: l0

x
52l1

z , l1
x

5l1
z
1l2

z , l2
x
52l1

z , l3
x
5l1

z
1l2

z , and l4
x
5l1

z
1l3

z . The
comparison of these theoretical results with the values of l
extracted from the numerical data is given in Table I.

As can be seen from Table I, the agreement between the
numerical and analytical values of l decreases with the order
of the Fourier components, which can be thought to occur
due to the smallness of the higher-order components.

V. TWO-DIMENSIONAL LATTICE WITH EASY-PLANE
ANISOTROPY

Finally, we briefly consider a two-dimensional system,
namely, an easy-plane ferromagnet with nearest-neighbor ex-
change interactions. We have numerically simulated the
Landau-Lifshitz equations for this system given by

Ṡmn
x

5JySmn
z

~Sm21,n
y

1Sm11,n
y

1Sm ,n21
y

1Sm ,n11
y !

2JzSn
y
~Sm21,n

z
1Sm11,n

z
1Sm ,n21

z
1Sm ,n11

z !

22DSmn
y Smn

z ,

Ṡmn
y

5JzSmn
x

~Sm21,n
z

1Sm11,n
z

1Sm ,n21
z

1Sm ,n11
z !

2JxSmn
z

~Sm21,n
x

1Sm11,n
x

1Sm ,n21
x

1Sm ,n11
x !

12DSmn
x Smn

z ,

Ṡmn
z

5JxSmn
y

~Sm21,n
x

1Sm11,n
x

1Sm ,n21
x

1Sm ,n11
x !

2JySmn
x

~Sm21,n
y

1Sm11,n
y

1Sm ,n21
y

1Sm ,n11
y !,

~54!

using again the fourth-order Runge-Kutta scheme with vari-
ous initial-spin configurations. The results of our simulations
to some extent are similar to the one-dimensional problem.
In Fig. 12, we show the simplest possible configurations of
the breathers that involve four out-of-plane precessing spins.
No stable breathers with one precessing spin are possible,
similarly to the one-dimensional model. Also, there are no

FIG. 11. Spatial dependence of the Fourier components of the
discrete breather of the type depicted in Fig. 6 for J50.18, D5

21, and v51.42. Numbers on the panels represent the order of the
harmonic k @see Eq. ~49! for explanation#.

TABLE I. Numerically and analytically computed values of the
decay exponents lk of Fourier harmonics with k50,1,...,4 for dif-
ferent spin components. Parameter values are the same as in Fig.
11.

Order, k

lk
x lk

y ,z

Numerical Analytical Numerical Analytical

0 3.5914 3.5903 3.1846 3.1856
1 4.9463 4.8055 1.8067 1.7951
2 3.5859 3.5903 2.9979 3.0103
3 4.8499 4.8055 3.5597 3.5690
4 5.4393 5.3641 3.9195 3.9309
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stable breathers with two or three precessing spins ~at least,
in the limit of small J!. Among the three possible stable
configurations shown in Fig. 12, the first one @see panel ~a!#
corresponds to four spins precessing parallelly and in-phase,
similar to its one-dimensional counterpart. The second two
configurations do not have analogs in the one-dimensional
case, but they have also similar parity properties. The cases
shown in Figs. 12~b! and 12~c! represent the breathers with
two spins precessing around the Z axis in the positive direc-
tion ~marked by dots! and two spins precessing around the
negative direction ~marked by crosses!. The simulations have
been performed on a lattice of 1503150 spins with J
50.11 and D521.

Here we also would like to note that in two-dimensional
square-lattice ferromagnets vortices may exist. They are to-
pological solutions of the system and have infinite energy.
Since the breathers are excitations whose energy is finite, we
do not expect vortices to appear in our simulations. We have
excited the 2D breathers by turning corresponding spins out
of the easy plane locally and observed only localized excita-
tions accompanied by rapidly decaying radial small-
amplitude waves. Note that the properties of the breathers do
not depend on the size of the system.

VI. SUMMARY AND DISCUSSIONS

Summarizing, we have considered the breathers in differ-
ent ~easy-axis and easy-plane! classical ferromagnetic spin

lattices as essentially discrete objects. We have shown sys-
tematically how to implement the anticontinuum limit for
different types of magnetic lattices ~different types of anisot-
ropy!. Depending on the type of anisotropy, the discrete
breathers have properties similar to the breather solutions for
other nonlinear lattices. In the case of an easy-axis anisot-
ropy, the breather solution appears in the gap of the linear
magnon band as do the breathers of the Klein-Gordon-type
models. In the easy-plane case, there is no gap in the linear
band and the breather frequency lies above the band; these
breathers resemble the breathers of the FPU-type chains ~also
known as the Sievers-Takeno22 modes!.

The concept of the anticontinuum limit helps us, first, to
show rigorously the existence of discrete breathers, and, sec-
ond, to compute the breather solutions numerically. The ex-
istence proof has been performed for the one-dimensional
XYZ Heisenberg ferromagnetic chain with strong exchange
(Jx ,y!Jz). The proof can easily be generalized to the pres-
ence of an easy-axis ion anisotropy and to larger lattice di-
mensions. The numerical continuation of the solutions from
the AC limit has been done with the help of a Newton itera-
tion scheme. Note that so far12 only the breathers with one
nonzero Fourier component in time ~43! have been studied,
due to the fact that it is much easier to treat them both nu-
merically and analytically. The solutions we have studied
allow for the infinite number of harmonics, as in XYZ model,
for example.

Why is it important to study discrete systems if the con-
tinuum approximation can give an analytical solution? First
of all, it is known that the breathers are nongeneric for most
continuous models.23 Therefore many systems may be incor-
rectly referred to as those which do not possess breathers.
We demonstrated this circumstance for the easy-axis ferro-
magnet, where the slightest exchange anisotropy in the hard
plane leads to loss of breathers in the continuum model, but
not in the case of a spatial lattice. In addition, we have ob-
tained the breather solutions for easy-plane ferromagnets,
which have simply no continuum analog. This is due to the
fact that the spins in the center of the excitation precess
around a tilted axis leading to a local tilt of the magnetiza-
tion.

Finally, we would like to address some important unan-
swered questions in this area. The first problem is how to
treat quantum spin lattices ~e.g., when the total spin is too
small to treat the lattices classically! and what is the quantum
analog of the spin breather. Another important question is
the breather’s mobility. So far, there is no rigorous existence
proof for moving breathers,24 however, Lai and Sievers12

have obtained some numerical results for highly mobile spin
breathers. Since their results are concerned only with the
breathers with one Fourier component in time, it is still ques-
tionable whether the breathers with an infinite number of
harmonics can freely propagate along the lattice.
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FIG. 12. Schematical representation of some possible configu-
rations of discrete breathers with four processing spins.
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