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DC currents in Hamiltonian systems by Lévy flights
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Abstract

We study the mechanism leading to directed transport in the stochastic layer of AC-driven Hamiltonian systems. We show
that current rectification is obtained by breaking the symmetry of Lévy flights in ballistic channels which exist due to reso-
nance islands with nonzero winding numbers. In the framework of the continuous time random walk (CTRW) approach, we
construct a generalized asymmetric flights model and derive an expression for the current in terms of the characteristics of the
relevant ballistic channels. We find very good agreement between the results of direct integration of the dynamical equations
and the CTRW formulation.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

Transport properties of dynamical systems have been a subject of interest over a long period of time [1]. Recently,
a new feature of such transport has been discussed: directed current (DC) which is produced by breaking time and/or
spatial symmetries in dynamical systems, without applying an external constant bias and gradients [2–6]. Initially,
inspired by studies of ratchets [7], the phenomenon of DC currents produced by dynamical asymmetries covers a
broad class of physical systems, e.g. underdamped Josepshon junctions [8], cold atoms systems [9,10], etc. For these
systems inertia effects are essential, in contrast to canonical overdamped models, in which inertia contributions are
negligible due to high viscosity at the microscopic scale [7].

The presence of inertia may qualitatively change the picture: (a) low-dimensional chaos in underdamped nonlinear
systems can play effectively the role of thermodynamic fluctuations, as in the case of deterministic diffusion [11];
(b) inertia terms induce dynamical correlations which may lead to new mechanisms of current rectification [12].

The mechanisms of current generation in dissipative nonlinear systems have been studied in detail [3,4,6]. It
has been shown that these effects are determined by breaking the symmetry of limit cycle attractors basins [3], the
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existence of uncompensated ballistic limit cycles [6] and the asymmetry of chaotic attractors [4]. In contrast, the
case of Hamiltonian dynamical systems is much less understood [13]. In Ref. [3], it has been shown that breaking of
time and/or spatial symmetries leads to the appearance of a strong DC current in the chaotic layer of an AC-driven
Hamiltonian system. Recently, an approach has been proposed that allows to estimate the mean value of a DC current
[14]. Moreover, the analysis of the corresponding kinetic equations shows that upon approaching the dissipationless
(Hamiltonian) limit, the value of the induced DC current is enhanced by several orders of magnitude [15].

In this work, we study the microscopic dynamical mechanism of current rectification in an AC-driven Hamiltonian
system. Detailing the conclusions briefly exposed in Ref. [16], we demonstrate that directed current is induced by
breaking of symmetry of Lévy flights which are induced by the presence of resonance islands embedded into the
chaotic layer (these are basically Lévy walks due to presence of velocity [17,18]). Thus, like in the case of anomalous
Hamiltonian diffusion [18,19], the direction and magnitude of the current are determined by the structure of ballistic
resonances, namely by resonances with nonzero winding numbers υ. The quantitative measure of the asymmetry
of the resonance structure is given by probability distribution functions (PDFs) of sticking times calculated for
resonances embedded into the chaotic layer. The lack of symmetries means that these PDFs cannot be ordered
in pairs {ψi(t) = ψj (t), υi = −υj }. Using the notion of ballistic flights and the continuous time random walk
(CTRW) framework, we construct an asymmetric Lévy flights model, from which we derive an expression for the
current as a sum over all relevant resonances.

The paper is organized as follows. In Section 2, we introduce the model and discuss relevant symmetries. Section 3
is devoted to the analysis of the relationship between current generation and flights, induced by ballistic resonances.
Using the propagator for a given time, we detect the relevant resonances which form ballistic channels inside of
chaotic layer. In Section 4, we introduce a generalized asymmetric CTRW approach and derive an expression
for the current value as a sum over all ballistic channels (the details are given in Appendix A). We find a very
good agreement between the results of CTRW formulation and the direct numerical integration of the dynamical
equations. The main results are summarized in Section 5, together with a discussion of possible applications of this
model to physical phenomena.

2. The model and relevant symmetries

A relatively simple Hamiltonian model, which can be used to demonstrate the presence of an asymptotically
constant current without any constant bias and gradients, is the system of a particle moving in a spatially periodic
potential U(x), U(x + L) = U(x) under the influence of time-periodic zero-mean force E(t), E(t + T ) =
E(t), 〈E(t)〉 = 0:1

H = p2

2
+ U(x)− xE(t), ẍ = −∂U(x)

∂x
+ E(t), (1)

where L and T are the spatial and temporal periods.
The Hamiltonian in Eq. (1), with a three-dimensional phase space, is generically non-integrable and is thus

characterized by the presence of a stochastic layer which replaces the separatrix of the undriven integrable system.
At the same time it contains regular trajectories, which are ballistic-like for large particle energies. The existence of
these trajectories, which can be easily obtained when neglecting the potentialU(x) in Eq. (1), means that unbounded
pumping of energy into the system through the fieldE(t) is impossible. We will be interested in the dynamical
properties of trajectories in the above-mentioned main stochastic layer, which corresponds to the dynamical states
with the lowest energy.

1 For another example of driving Hamiltonian see, e.g. [20].
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As argued in Ref. [3], the ergodic properties of the stochastic layer allow to apply symmetry considerations
which can be used to predict whether the trajectories have a zero average velocity. Note that symmetry breaking is
a necessary but not a sufficient condition for the appearance of a DC current. The simple idea behind the symmetry
analysis is to find all the symmetries ofEq. (1) which leave the equations of motion invariant but change the sign
of the velocity ẋ. Since such symmetry operations map a given trajectory onto another one, by making sure that
both trajectories belong to the same stochastic layer, and recalling the ergodic properties of the layer, we may
immediately conclude that the average velocity in each trajectory from the chaotic area will be exactly zero. This
symmetry approach has in fact been successfully applied to the general case of dissipative systems [3] which are
also coupled to a heat bath [16].

For the system in Eq. (1), the possible symmetries are [3]

Ŝ1 : x → −x, t → t + 1
2T , {F(−x) = −F(x), E(t + 1

2T ) = −E(t)}, (2)

Ŝ2 : x → x, t → −t, {E(−t) = E(t)}, (3)

where F(x) = −∂U(x)/∂x.

Fig. 1. (a) x(t) versus t for different values of the third harmonic amplitude (E1 = 0.2, E2 = −0.4, φ2 = 0.4, φ3 = 0): E3 = 0, J ≈ −0.1
(case A); E3 = 0.143, J = 0 (case B); E3 = 0.3, J ≈ 0.12 (case C). Left upper inset: zooming of x(t) for the case C. Right inset shows the
Poincaré section which corresponds to the longest flight in the blown up part of trajectory. The dashed curve corresponds to a filtered trajectory
without flights (see text) and the dotted one corresponds to the CTRW simulation. (b) Spatial distribution of a particle ensemble N = 104 (see
text) after time t = 500T . The mean velocities are determined as vm = (1/500T )

∑N
i=1 xi(t = 500T ).
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The conditions in the brackets are the requirements for the periodic functions U(x) and E(t). The way to break
the symmetries is to choose functionsU(x) andE(t)which violate the listed requirements. In general, we deal here
with a broader definition ofratchet transport, which can be obtained by breaking the reflection symmetry in space,
or the reflection and shift symmetries in time. Notably this is possible by a proper choice of E(t) alone. Thus, it
turns out not to be necessary to break the reflection symmetry of the periodic potential U(x). Of course one can
also break all symmetries in time and space simultaneously, which may lead to a quantitative change of the results.

We consider the case of a simple potential U(x) = − cos (2πx) and a driving force which contains three
harmonics:

E(t) = E1 cos (ωt)+ E2 cos (2ωt + φ2)+ E3 cos (3ωt + φ3). (4)

Here and in the following we choose T = 2π and ω = 1.
ForE2 = E3 = 0 both symmetries, Ŝ1 and Ŝ2, are present and the total current equals zero. ForE2 = 0, symmetry

Ŝ1 is present and we have again zero current. For E3 = 0 and E2 �≡ 0 all symmetries are broken, except for the
specific valuesφ2 = kπ, k = 0, 1, 2, . . . , and, in general, we can expect a nonzero current in the system (1). In
Fig. 1a, we show the time dependence of the coordinate x(t) for several values of E3 and nonzero values of E1, E2.
The initial conditions are chosen to be within the main stochastic layer (see [16] and Figs. 2 and 3). An interesting
effect results from the variation of E3: the increase of E3 from 0 to 0.3 leads to a current reversal, which is the
result of a nonlinear interaction of harmonics. Thus, for some value of E3 between E3 = 0 and 0.3, the average

Fig. 2. (a) Poincaré section and (b) the propagator for a fixed time(t = 100T ) for E3 = 0.143 (case B).
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Fig. 3. Same as in Fig. 2 forE3 = 0.3 (case C). Dashed line corresponds to the propagator for a dynamical process without flights in the ballistic
channels R1, R2 and R3 (see text). The right upper inset displays zooming of the corresponding trajectory.

velocity of any trajectory in the layer should be equal to zero. This is the case for E3 ≈ 0.143. Thus, while all
symmetries (2) and (3) are broken, we find zero current as the result of a balance between all microscopic dynamical
mechanisms.

The dynamics of trajectories in the stochastic layer appears to be complex. The insets in Fig. 1a show that in parts
the particle evolves in seemingly free ballistic flights of different lengths. A Poincaré map of one such flight shows
that the trajectory in the stochastic layer sticks to resonances. Since any reasonable statistics for a single trajectory
can be obtained only after very long simulation times, a natural next step would be to consider the evolution of the
distributions of many different trajectories. While the computational efforts will not be significantly lowered, such
an analysis may in fact elucidate some peculiarities of the dynamics in a clear way. A first step would be to study
an ensemble of trajectories which are described by a certain distribution function ρ(p, x, t). We choose an initial
distribution which is Maxwellian in p and homogeneous in x inside one spatial period of U(x):

ρ(p, x, 0) = 1

L

√

β

2π
e−(β/2)p2

Θ(x)Θ(L− x) (5)
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with β = 10. This choice ensures that almost all trajectories are located inside the main stochastic layer. In
Fig. 1b, we show the resulting reduced distributions ρx(x, t) =

∫ ∞
−∞ ρ(p, x, t = 500T ) dp, where 104 trajec-

tories have been simulated. These distributions are characterized by a broad peak which is shifted to nonzero x
values for the cases E3 = 0, 0.3 and by some non-Gaussian tails. Such a representation could suggest that the
above-mentioned ballistic flights are responsible for the tails, while the overall shift of the peak might be due to
some purely diffusive processes. It should also be mentioned that ballistic flights may have different durations.
Thus many trajectories experiencing ballistic flights also contribute to the central peak position. Consequently,
we need more sophisticated statistical techniques to explore the peculiarities of the dynamics and to find the true
sources for the observed transport properties. We conclude this section with stating that the computed average
position X(t) =

∫

xρx(x, t) dx yields a drift velocity X(t)/t which is close to the one obtained from a single long
trajectory.

3. The role of ballistic channels

The nonlinear Hamiltonian system (Eq. (1)) has a mixed phase space, which contains a main stochastic layer
and regular resonance islands [21]. These islands are impermeable for chaotic trajectories and, at a first glance,
can be excluded from the phase space, which would result in a complete separation of the ergodic component of
motion from the non-ergodic one. In reality, such a separation is impossible because of the complex phase space
structure of the boundaries between the chaotic and regular regions. Close to resonances the chaotic layer contains
hierarchical sets of cantori, which form complex bottleneck-like barriers, through which orbits can penetrate. Due
to the cantori structure, a trajectory can be trapped for a long time near the corresponding resonance. The sticking
effect leads to the appearance of long regular flights which alternate with chaotic motion. For a nonzero winding
number υ, these phases correspond to long unidirectional flights. The case of υ = 0 corresponds to a localized
rotating motion [21]. Thus a resonance with υ �≡ 0 forms a set of ballistic channels in the chaotic layer, and sticking
to such a resonance corresponds to a trapping of the particle in this channel. This would lead us later to Lévy flights
[17–19].

A possible way of obtaining a nonzero current can be realized through modes of motion with long-time correla-
tions, where the characteristic time of correlation decay is much larger than the period of external driving T . In the
stochastic layer, such modes can be associated with ballistic flights only. On the basis of these arguments, we may
state that the flights inside ballistic channels play a crucial role in the process of current generation inside the chaotic
layer. The key mechanism of current rectification is thus related to the symmetry breaking of the non-chaotic fraction
of dynamics. Another possibility is that the purely diffusive dynamics inside the stochastic layer also contributes to
a directed current [14]. We will show that this possibility is excluded in the cases under consideration.

Breaking the symmetry of ballistic flights implies that there is an asymmetry of resonance structures and that
the value of the current should provide a quantitative measure of this asymmetry. For the analysis of the system’s
dynamics, we used the propagator P(x, t), i.e. the probability density for a particle to move over distance x during
time t .2 In Figs. 2b and 3b, we show the propagator for a fixed timet = 100T which was obtained using a long
chaotic trajectory with the duration 107T . This trajectory, due to ergodicity condition, covers the stochastic layer
uniformly. The propagator structure has two prominent features: a central “bell-shaped” part and several sharp
asymmetric peaks in the tails. These peaks correspond to flights which a particle performs when it sticks to a
ballistic resonance. The peak location is exactly determined by the corresponding resonance winding number. It

2 There is a difference between the propagator P(x, t) and function ρ(p, x, t) discussed in Section 2: ρ(p, x, t) takes into account trajectories
weighted over the whole phase space (including resonance islands and KAM-tori), whereas the propagator P(x, t) includes only trajectories
initiated at the chaotic layer.
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is easy to identify all relevant ballistic channels using the propagator for a given time and stroboscopic Poincaré
section (see Figs. 2a and 3a). For clarity, we emphasize that also the central part of the propagator at a given
time contains contributions from flights. In other words, the propagator has a quite interesting dependence on
the fixed time t . Nevertheless, it allows to observe the relevant ballistic channels which contribute for the chosen
fixed timet .

ForE3 = 0.3, the resonance structure has a well-pronounced asymmetry, which becomes evident in the asymmetry
of the propagator. There are two ballistic channels for positive direction:R1 with winding numberυ2 = 6/T ≈ 0.955
and R2 with υ1 = 7/T ≈ 1.115 and only one for negative direction, R3 with winding number υ3 = −22/4T ≈
−0.876. As a result we observe a positive current.

Now we show that a nonzero current is indeed fully determined by the sticking to ballistic channels. We simply
eliminate all ballistic flights from the dynamics of any trajectory by using a velocity gated technique. We take into
account the existence of channels R1, R2 and R3. After successive waiting times of 10T , we test whether the spatial
shift corresponds to a sticking in a given ballistic channel with a known winding number and an uncertainty of 5%.
If we apply this filtering to a single trajectory, we observe practically zero currentJ ≈ −0.005 (see dotted line in
Fig. 1). The resulting reduced propagator is shown as a dashed line in Fig. 3. It is clearly symmetrical. Thus, we
conclude that within an uncertainty of 5% purely diffusive motion does not contribute to the induced current. In fact
we argue that even these possible 5% are due to smaller resonances and higher-order ballistic channels embedded
in the stochastic layer.

In contrast to the previous case, the propagator forE3 = 0.143 is symmetrical, which corresponds to zero current.
This is the consequence of the fully symmetrical resonance structure for which the resonances with opposite winding
number compensate each other. Thus, in this case the zero current value is the result of a dynamical symmetry rather
than a geometrical asymmetry E(t) defined inEqs. (2) and (3).

4. Generalized asymmetric CTRW model

In order to quantify our result that the observed current results from ballistic flights (corresponding to long
correlations), while random diffusion (corresponding to fast decay of correlations) gives no contribution to the total
current, we simulate the dynamics by a sequence of alternating processes: flights (sticking to ballistic channels) and
unbiased random walk (chaotic diffusion in random area). It is reasonable to assume that there is no correlation
between flights because successive flights are usually separated by a diffusive component. Using these assumptions,
the dynamics can be effectively modeled within the CTRW formalism [22] as a generalized asymmetrical flight
process [23].

Let as assume that there are N relevant different resonances with winding numbers υi, i = 1, . . . , N . Every
resonance is characterized by a PDF with sticking time ψi(t) and probability of sticking event pi . The random
walk phase is characterized by a PDF ψc(t). Using a standard scheme (see Appendix A for details), we obtain the
following expression for the current:

J =
∑N
i=1 pivi〈ti〉

∑N
i pi〈ti〉 + 〈tc〉

, (6)

where 〈ti〉 =
∫ ∞

0 tψi(t) dt and 〈tc〉 =
∫ ∞

0 tψc(t) dt . All the first moments are finite due to the Kac theorem on the
finiteness of recurrence times in Hamiltonian systems[21].

The contribution of a single flight in the ith channel is given by

Ψi(x, t) = δ(x − υi t)ψi(t). (7)
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The propagator for the random diffusion reads as

Ψc(x, t) = 1√
πDt

e−x2/Dtψc(t). (8)

The total propagator for the time t = MT is a convolution of single motion events (7) and (8):

P(x,MT) = Q

M
∑

n=1

M−n
∑

k=1

· · ·
M−n−···−g

∑

l=1

Ψc(x, (M − n− · · · − l)T )Ψ1(x, nT) · · ·ΨN (x, lT), (9)

where the number of sums equals to the number of ballistic channels N andQ is normalization constant.
Let us consider in details the case when E3 = 0.3 for which there are three relevant ballistic channels, R1, R2

and R3. Since winding numbers of all resonances are known, we can separate those parts of the trajectories, which
correspond to particle flights in a certain channel. This has been done numerically by identifying an elementary
flight using a velocity gate. We use here the same procedure as used above for filtering. The corresponding sticking
time PDF for resonances R1 and R2 are shown in Fig. 4. Sticking to the resonance R3 is extremely rare, and the
characteristic time spent by the particle in this channel is much smaller than the characteristic time for channel
R2. Thus the influence of R3 is negligible. Without any notable loss of precision, we can suggest that transport in
negative direction is determined only by random diffusion.

Fig. 4. The numerically obtained sticking time PDF for: (a) R1, (b) R2, and (c) random walk phase for E3 = 0.3 (see text). Inset in (c) shows
the mean square evolution for the global diffusion into the chaotic layer.
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Both PDFs for R1 and R2 have power-like tails: ψ1,2 ∼ t−α1,2 , α1 ≈ −2.6, α2 ≈ −2.4. Thus, we are confronted
with the appearance of Lévy flights. Resonance R1 has the most dominant contribution (the probability of sticking
p1 = 0.94) and its mean sticking time 〈t1〉 ≈ 286. Resonance R2 has a sticking probability p2 = 0.06 and a mean
sticking time 〈t2〉 ≈ 1673. Thus, though the particle gets relatively seldom into the ballistic channel R2, it spends
there a time which is almost one order of magnitude larger then the characteristic sticking time for channel R1. The
resonance R2 shows up with a stronger anomalous character than R1 and therefore this resonance determines the
asymptotic of the global diffusion in the stochastic layer. The evolution of the corresponding variance of the mean
square displacement 〈x2〉− 〈x〉2 ∼ tγ is shown as an inset in Fig. 4b. The diffusion has strong anomalous character
with a characteristic exponent γ ≈ 1.6, which is in agreement with the exponent α2 (γ = 4 − α2) [22]. Numerical
analysis of the random walk PDF ψc(t) demonstrates a well-pronounced Poissonian distribution:

ψc(t) = 1

τc
e−t/τc (10)

with a time constant τc ≈ 2642, which is equal to the mean time of a random diffusion process. Using the numerical
values of the relevant parameters, Eq. (6) for the current gives Jnum ≈ 0.118, which is very close to the result of
direct numerical integration of (1) (see Fig. 1a).

Using the exponents α1 and α2, we simulate the dynamics within the chaotic layer by a CTRW process with the
following PDF distribution:3

ψ1,2 =







0, t < t
1,2
c ,

A1,2t
−α1,2 , t ≥ t1,2c ,

(11)

where t1c = 115, t2c = 530, and the mean time 〈t〉 = tc(α − 1)/(α − 2). In order to model the diffusional part, we
used a Langevin equation with the diffusion coefficientD = 1.6 and the Poisson distribution (10) for the duration
time of chaotic walking. The obtained trajectory is very close to the real trajectory (dotted line in Fig. 1a).

5. Conclusion

We have studied the mechanism of current rectification in AC-driven Hamiltonian systems. We found that directed
transport inside the main chaotic layer is determined by breaking the symmetry of Lévy flights inside ballistic
channels, which are generated due to the presence of resonance islands with nonzero winding numbers. This
suggests a rather simple algorithm for estimating and controlling the current in the system. Namely, using the
Poincaré section and the propagator P(x, t), one can identify the relevant resonance islands and calculate their
winding numbers. Then, by changing system parameters one can vary the resonance structure by opening and
closing relevant ballistic channels.

We have found also that the nonlinear interaction between different harmonics of the driving force E(t) can
trigger a nontrivial current inversion in Hamiltonian systems. This change of sign is related to the appearance and
disappearance of resonant islands.

In spite of the simple form of the Hamiltonian (1), we believe that the proposed mechanism is general. For example,
the flight mechanism of current rectification can be probably realized in two-dimensional chaotic advection systems
[24]. The phase space of this Hamiltonian system is mixed and shows up with a variety of Lévy flights in its dynamics
[25].

3 For generation of random variable x with distribution (11) we have used the random variable ξ with uniform distribution in unit interval and
transformation x = tcξ

−1/(α−1).
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The resonance sticking mechanism can be important for the semi-classical quantum version of Hamiltonian
systems. In this case sticking can be also realized, which is due to the presence of a new class of hierarchical
eigenstates [26,27]. The resonance structure asymmetry can lead to the appearance of a nonzero current in this case.
These effects can be implemented experimentally, e.g. in a system of cold cesium atoms [8,28]. The dynamics of an
atomic ensemble under the influence of a laser radiation can be described rather well by a classical Hamiltonian, and
the quantum–classical correspondence time is about 50T [8], which is sufficient for the observation of the effects
discussed above.

The system coordinate x(t) can represent not only a translational degree of freedom but also a rotational one. In
that case, a Hamiltonian similar to (1) is capable of describing the dynamics of single molecules under the influence of
electromagnetic radiation. If the corresponding molecular gas density is low enough, a cloud of spinning molecules
can serve as a high-frequency modulator with controlled chirality.
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Appendix A

Let P(x, t) be a propagator for a random walker position for large times. The first moment ofx is obtained from
the Fourier transform of P(x, t):

i
∂P (k, t)

∂k

∣

∣

∣

∣

k=0
= 〈x(t)〉. (A.1)

We now introduce some relevant definitions.
The probability density that a flight event has a distance of x and duration t :

ξ(x, t) =
N

∑

i=1

piδ(x − υi t)ψi(t).

The probability that the particle has moved a distance x in time t in a single flight (not necessarily stopping):

Γ (x, t) =
N

∑

i=1

piδ(x − υi t)
∫ ∞

t

ψi(τ ) dτ.

The probability that the particle performs a random walk for at least time t (and remains walking):

Φ(t) =
∫ t

∞
ψc(τ ) dτ.

The probability of just starting a random walk at (x, t):

Y (x, t) = 1

2
δ(t)δ(x)+

∫ ∞

−∞
dx′

∫ t

0
dt ′ Z(x′, t ′)ξ(x − x′, t − t ′),
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where Z(x, t) describes the probability of just starting a flight at (x, t):

Z(x, t) = 1

2
δ(t)δ(x)+

∫ t

0
dt ′ Y (x′, t ′)ψc(t − t ′).

The final equation forP(x, t) is therefore

P(x, t) =
∫ t

0
dt ′Φ(t − t ′)Y (x, t ′)+

∫ ∞

0
dx′

∫ t

0
Γ (x − x′, t − t ′)Z(x′, t ′). (A.2)

The integral equation (A.2) can be solved by Fourier transforming space and Laplace transforming time. Thus

P(k, s) = {s−1[1 − ψs(s)]}
[

1
2 + 1

2ξ(k, s)

1 − ξ(k, s)ψs(s)

]

+
[

N
∑

i=1

piλi

] [

1
2 + 1

2ψs(s)

1 − ξ(k, s)ψs(s)

]

,

where ξ(k, s) =
∑N
i=1 piψi(s + jkυi), λi(k, s) = pi(s + jkυi)−1[1 − ψi(s + jkυi)], and j is the imaginary unit.

Thus

〈x〉 = (1 + ψc)
∑N
i=1 pivi(1 − ψi(s))

2s2(1 − ξψc)
. (A.3)

All functions ψi(t) and ψc(t) must have a finite first moment (because of the Kac theorem about finiteness of
recurrence times in Hamiltonian systems [21]). Thus, for small s (that corresponds to t → ∞)

ψi(s) = 1 − s〈ti〉 + · · · , ψc(s) = 1 − s〈ts〉 + · · · . (A.4)

Using expansion (A.4) we obtain from (A.3):

〈x(s)〉 =
∑N
i=1 pivi〈ti〉

∑N
i pi〈ti〉 + 〈tc〉

2 − s〈tc〉
2s2

≈
∑N
i=1 pivi〈ti〉

∑N
i pi〈ti〉 + 〈tc〉

1

s2
.

This leads to

〈x(t)〉 =
∑N
i=1 pivi〈ti〉

∑N
i pi〈ti〉 + 〈tc〉

t,

and, finally, we obtain for the asymptotic current

J =
∑N
i=1 pivi〈ti〉

∑N
i pi〈ti〉 + 〈tc〉

. (A.5)
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