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CHAPTER 1
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This chapter provides a description of the main computational tools for
the study of discrete breathers. It starts with the observation of breathers
through simple numerical runs, their study using targeted initial con-
ditions, and discrete breather impact on transient processesand ther-
mal equilibrium. Next we describe a set of numerical methods to obtain
breathers up to machine precision, including the Newton method. We
explain the basic approaches of computing the linear stabilit y properties
of theseexcitations, and proceedto compute wave scattering by discrete
breathers, and to brie
y discusscomputational aspects of studying dissi-
pativ e breathers. In a �nal part of this chapter wepresent computational
approaches of studying quantum discrete breathers.

1. In tro duction

The past decadewitnessedremarkable developments in the study of non-
linear localized modes in di�eren t physical systems.One of the most ex-
citing results has been the discovery of stable highly localized modes in
spatial lattices,1;2;3 coined discrete breathers (DB) or intrinsic localized
modes.4;5;6;7 The discretenessof space- i.e. the usageof a spatial lattice
- is crucial in order to provide structural stabilit y for spatially localized
excitations. Spatial discretenessis a very commonsituation for various ap-
plications from e.g. solid state physics. Recent studies have shown that
e�ects of spatial discretenesscan be important in many other systems,in-
cluding photonic crystals, coupled optical wave guides,coupled Josephson
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junctions, Bose-Einsteincondensatesin optically induced lattices and mi-
cromechanical cantilever systems(seethe more detailed discussionbelow).

Discretenessis useful for avoiding resonanceswith plane wave spectra,
which are bounded for spatial lattices, as opposed to the typical caseof
a spacecontin uous �eld equation. DBs are spatially localized and time-
periodic excitations in nonlinear lattices. Their structural stabilit y and
generic existence is due to the fact that all multiples of their fundamen-
tal frequency are out of resonancewith plane waves. Thus localization is
obtained in a systemwithout additional inhomogeneities.Notably theseex-
citations exist independent of the lattice dimension, number of degreesof
freedomper lattice site and other details of the systemunder consideration
(see[6] and referencestherein).

While during the �rst years studies of intrinsic localized modes have
beenmostly of mathematical nature, experimental results soon moved into
the game.The discrete breather concept has beenrecently applied to vari-
ous experimental situations. Light injected into a narrow waveguidewhich
is weakly coupled to parallel waveguides(characteristic diameter and dis-
tances of order of micrometers, nonlinear optical medium basedon GaAs
materials) dispersesto the neighboring channels for small �eld intensities,
but localizesin the initially injected wave guide for large �eld intensities.8

Notably the waveguidesmay be ordered both in a one-dimensionalarray
as well as in a two-dimensional structure.9 Furthermore it was shown in
accord with theoretical predictions, that self-defocusing Kerr nonlineari-
ties (which would not provide soliton formation in a spatially homogeneous
medium) when combined with the spatial discretenessallow for the forma-
tion of DBs.9 Bound phonon states (up to seven participating phonons)
have been observed by overtone resonanceRaman spectroscopy in PtCl
mixed valencemetal compounds.10 Bound states are quantum versionsof
classicaldiscretebreather solutions.Spatially localizedvoltagedrops in Nb-
basedJosephsonjunction ladders have beenobserved and characterized11

(t ypical size of a junction is a few micrometers). These states correspond
to generalizations of discrete breathers in dissipative systems. Localized
modes in anti-ferromagnetic quasi-one-dimensionalcrystals have beenob-
served in [12]. And �nally recent observations of localizedvibrational modes
in micromechanical cantilever oscillators arrays have beenreported in [13].

All these activities demonstrate that the concept of intrinsic localized
modes, or discrete breathers, as predicted more than 10 years ago, has a
strong potential for generalizationsto and applications in various areasof
science.At the sametime we are facing a dramatic enlargement of physics
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research areas to arti�cial or man-made devices on the micrometer and
nanometer scales(of both optical and solid state nature), together with
a huge interest growing in the area of quantum information processing.
We may safely expect interesting new developments in these areas,which
will be connectedin various ways to the understanding of the concept of
nonlinear localizedmodes.One exampleis the recent connectionof discrete
breathers and the physicsof Bose-Einsteincondensatesin optical traps.14

We stresshere that the research on DBs was initially purely theoreti-
cal, while experiments moved into the gameat a later stage. It turned out
that it needsa bit of curiosity, a simple computer, and a bit of surprise
after observing that localized excitations in perfectly ordered lattices do
not decay into extended states. The reasonwhy theory could evolve that
fast and that far during a couple of years, is becausethe systemsunder
study are described using coupled ordinary di�eren tial equations (ODE),
and becausethe objects of interest are highly localized on the lattice, i.e.
often a few lattice sites (or ODEs respectively) are enoughto capture the
main properties. The rest of the lattice (or of the many ODEs) can be
taken into account using analytical considerationswith reasonableapprox-
imations, which are always systematically tested afterwards in numerical
simulations. This fruitful combination of analytical and numerical meth-
ods has lead to an enormousnumber of key results on DB properties. At
the prominent edge of this spectrum we now �nd a whole set of rigor-
ousmethods to prove DB existenceimplicitly .15;16;17;18;19;20;21 Remarkably
even such rigorous mathematical existenceproofs15 have beenimmediately
turned into highly e�cien t numerical tools for computing DB solutionswith
machine precision.A large part of the DB studiescanbe thus characterized
truly ascomputational ones.This chapter is written in order to provide the
interested reader with knowledge about the main computational tools to
study DB properties. We will usually refer to the simplest model systems,
and comment on expectedor known problemswhich may occur when more
complicated systemsare chosen.

Weimplicitly assumedthat the abovediscussionof computational meth-
ods is concernedwith classicalphysics.OnceDBs are identi�ed for a given
system or class of systems,a natural question is what sort of eigenfunc-
tions of the corresponding quantum Hamiltonian operator may be coined
quantum DBs. While the quantum problem seemsto be just an eigenvalue
problem, it is much harder to bestudied numerically ascomparedto its clas-
sical counterpart. The reasonis that in many caseseven the Hilb ert space
of a single lattice site may be in�nite dimensional.But even for �nite local
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dimensions,the dimension of the lattice Hilb ert spaceis typically growing
exponentially with the system size. In addition straightforward solving of
the quantum problem implies diagonalization of the Hamiltonian. So the
successof computational studies of classicalDBs ends abruptly when we
enter the quantum world. Neverthelessthe hugeaccumulated knowledgeon
classicalDBs can be used to help formulate predictions for quantum DB
properties. But to con�rm thesepredictions we have to solve the quantum
problem numerically, and are thus typically restricted either to small sys-
tems (two or three lattice sites,which makesthe problem more an abstract
model for moleculesrather than for extendedlattices) or to the low energy
domain of larger lattices (however note that even in the caseof a spin one-
half lattice exact diagonalizations are restricted to a maximum of about
twenty sites).

Let us set the stage now by choosing a generic class of Hamiltonian
lattices:

H =
X

l

�
1
2

p2
l + V (x l ) + W(x l � x l � 1)

�
: (1)

The sum index integer l marks the lattice site number of a possibly in�-
nite chain, and x l and pl are the canonically conjugated coordinate and
momentum of a degreeof freedom associated with site number l. The on-
site potential V and the interaction potential W satisfy V (0) = W(0) =
V 0(0) = W 0(0) = 0 and V 00(0); W 00(0) � 0. This choice ensuresthat the
classical ground state x l = pl = 0 is a minimum of the energy H . The
equationsof motion read

_x l = pl ; _pl = � V 0(x l ) � W 0(x l � x l � 1) + W 0(x l+1 � x l ) : (2)

If we linearize the equations of motion around the classicalground state,
we obtain a set of linear coupleddi�eren tial equationswith solutions being
small amplitude plane waves:

x l (t) � ei( ! q t � ql ) ; ! 2
q = V 00(0) + 4W 00(0) sin2

� q
2

�
: (3)

The dispersionrelation ! q is shown in Fig. 1 for the caseof an optical plane
wave spectrum V 00(0) > 0 and for an acoustic spectrum V 00(0) = 0. While
the �rst one is characterized by a nonzero frequency gap below the spec-
trum, the latter one is gaplessdue to the conservation of total mechanical
momentum (at least for the linearized equations of motion). Both cases
share the common and most important feature that the dispersion rela-
tion is periodic in the wave number q and possessesa �nite upper bound.
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Fig. 1. The dispersion relation of small amplitude plane waves of model (1).

Another important feature of this dispersion is the group velocity of plane
wavesvg(q):

vg(q) =
d! q

dq
; (4)

which vanishesat the nonzeroband edgesof ! q.
When studying the properties of the original Hamiltonian problem (1)

numerically for say N sites,wethus dealwith a 2N dimensionalphasespace
and as much coupled �rst order ODEs (2). The chosen system is rather
simple. Neverthelessfor most of the results discussedbelow complications
like larger interaction range,increaseof the lattice dimension,more degrees
of freedomper site (or a better unit cell) are not of crucial importance and
can be straightforwardly incorporated. We will provide with useful hints
whenever such generalizationsmay lead to lesstrivial obstacles.

To give a 
a vour of what discrete breathers are in such simple models,
we plot three di�eren t types of them schematically in Fig. 2. CaseA cor-
responds to an acoustic chain with V = 0 and nonlinear functions W 0.
Typically simplest stable breathers involve two neighbors oscillating out
of phasewith large amplitudes. CaseB is similar to A, but W is a peri-
odic function. In this caseroto-breathers exist, i.e. in the simplest caseone
degreeof freedom is rotating, while the rest is oscillating. Finally caseC
corresponds to an optical chain with nonzeroV . In this caseeach degreeof
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Fig. 2. Three di�eren t discrete breather typ es. Seetext for details.

freedom corresponds to an oscillator moving in V and coupled to nearest
neighbors by W. A simple breather solution consistsof oneoscillator oscil-
lating with a large amplitude. In all three casesthe oscillations in the tails
will have lessamplitude with growing distance from the center, and vanish
exactly if an in�nite chain is considered.Note that similar excitations can
be easily constructed for large lattice dimension.

2. A bit on numerics of solving ODEs

As mentioned in the introduction, DB studies in classical systems are
mainly about solving coupled ODEs. So before coming to the actual topic
of this chapter, let us discussbrie
y somerelevant informations concerning
integrating ODEs. The basicproblem is not the coupling betweendi�eren t
ODEs, but �rst the integration of a single ODE. If we are heading for a
speci�c solution like time-periodic oscillations, it may be appropriate to
expand the yet unknown solution in a Fourier seriesand then to compute
the solutions of the equationsfor the resulting Fourier coe�cien ts. We will
come to this aspect later. Here we are interested in a brute force integra-
tion of the ODEs without prior knowledgeof what we may expect. In such
a casethe standard procedure is to replace the di�eren tials by di�erences
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and to replacethe contin uous variable (say time t) by a set of grid points.
While a good choice is to make the grid or mesh�ne enough,there are still
subtle choicesonecan make which are or are not appropriate depending on
the concretesituation one is interested in.

For Hamiltonian systemsor more general systemswhich preserve the
phasespacevolume, a number of so called symplectic routines is available.
For system(1) we may rewrite the Hamiltonian equationsof motion (2) in
a Newtonian way

•x l = � V 0(x l ) � W 0(x l � x l � 1) + W 0(x l+1 � x l ) � f l (x(t)) : (5)

In that casea standard symplectic routine is the so-calledVerlet or leap-frog
method:22

x l (t + h) � 2x l (t) + x l (t � h) =
1
2

h2f l (x(t)) : (6)

The time step h de�nes the grid in time, and the error per step is O(h4).
The advantage of this method is that only one calculation of the force f l

is needed per step. A slight disadvantage is that we need not only the
coordinates at someinitial time t0, but alsothe coordinates at the previous
time step t0 � h when starting the integration. However this problem can
be easilycircumvented by using approximate expressionswhich connectthe
positions at various times and the velocities (or momenta), e.g. pl (t0) =
(x l (t0 + h) � x l (t0 � h))=2h. Inserting this into (6) at time t0 we obtain

x l (t0 + h) � x l (t0) � hpl (t0) = h2f l (x(t0)) : (7)

While the error in this �rst step is of order O(h3), this is typically not
crucial, as one should return to (6) after the �rst step.

A much more often used method is the Runge-Kutta method of 4th
order.23 The error per step is of order O(h5). This method integrates 1st
order ODEs and is used also for dissipative systemswithout phasespace
volumeconservation. However this method is not symplectic, so integration
of Hamiltonian systemsmay lead in generalto a systematic drift of conser-
vation laws like energy on large time scales.Another disadvantage is that
we needfour force calculations per one time step, so routines may become
computing-time consuming.

Before choosing a speci�c algorithm we should decide i) whether the
total simulation time is large comparedto the characteristic internal time
scalesor not, ii) what the maximum allowed error is, and iii) whether we
do care about overall stabilit y w.r.t. integrals of motion or not. Given the
above choice of two algorithms the thumb rule would be to use the Verlet
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algorithm for long time simulations with maximum stabilit y, and the Runge-
Kutta algorithm for short time simulations or those where we do not care
about overall stabilit y.

Another set of related questions concerns �nite temperature simula-
tions. Here in addition to the choice of the algorithm we have to worry
about the most e�cien t way to emulate a statistical ensemble. Typically
there are two methods one may use - deterministic and stochastic ones.22

Among deterministic methods there is the simplemicrocanonicalsimulation
of a large enoughsystem,and the so-calledNose-Hoover thermostat, which
consistsof coupling an additional arti�cial degreeof freedomto the system
of N degreesof freedom and performing the microcanonical simulation of
the (N + 1) degreesof freedom system. Among the stochastic algorithms
two main onesare Monte-Carlo methods (random sampling) and solving
of Langevin equations obtained by extending the original equations which
incorporate damping and random forcing. Typically oneheadsfor the com-
putation of averages,i.e. in the most generalcasefor correlation functions
which may depend both on spacedistanceand on distancein time, e.g. the
displacement-displacement correlation function

Slk (t) = hx l (t + � )xk (� )i � : (8)

Such functions are analyzed with the help of temporal and spatial trans-
forms

A(! ) =
Z 1

0
cos(! t)A(t) ; Aq =

X

l

eiq( l � k ) A lk : (9)

To decide which method is the most useful for a given problem, we have
again to decide whether we head for short time correlations, i.e. for the
statistics of excitations, or for long time correlations, i.e. for the properties
of slow relaxations. Sincestochastic methods unavoidably introducecuto�s
in the correlation times of the original dynamical system,thesemethods are
best if one headsfor the statistics of excitations, as they may replace the
probably very slow relaxation of the dynamical system by a faster mixing
due to the incorporated stochasticity. On the other hand, the statistics of
slow relaxations of the dynamical systemcall for deterministic methods, as
the optional additional stochasticity would have to becomeactive anyway
on much larger time scalesthan the internal relaxation times (such as not
to spoil the statistics) and can be thus safely neglectedall together.

Regardingthe spatial correlations,weshouldcarefully choosethe system
sizesuch as to avoid �nite sizee�ects. A way to check this is to compute a
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correlation length

� 2 = �

h
d2

dq2 Sq(t = 0)
i

q=0

2Sq=0 (t = 0)
(10)

and to compare it with the system size.
While the spatial transform in (9) is a simple sum, temporal transforms

as in (9) are again integrals. For a correlation function which has a short
time (high frequency)oscillatory contribution aswell asa slow long time re-
laxation stretched over several decades,usethe Filon integration formula24

Z t 2n

t 0

f (t) cos(! t)dt = h[� (! h) (f 2n sin(! t2n ) � f 0 sin(! t0)) + � (! h)C2n

+ 
 (! h)C2n � 1] + O(nh4f (3) )

with

C2n =
nX

i =0

f 2i cos(! t2i ) �
1
2

[f 2n cos(! t2n ) + f 0 cos(! t0)]

C2n � 1 =
nX

i =1

f 2i � 1 cos(! t2i � 1) ; � (z) =
1
z

+
sin2z
2z2 �

2sin2 z
z3

� (z) = 2
�

1 + cos2 z
z2

�
sin2z

z3

�
; 
 (z) = 4

�
sinz
z3

�
cosz
z2

�
:

By dividing the whole accessibletime interval into di�eren t sub-partswhich
aresampledwith di�eren t grid points (with grid point distanceswhich could
vary by ordersof magnitude) it is straightforward to computea reproducible
high-qualit y spectrum covering several decadesin frequency.

Contrary, if we areconcernedwith the Fourier transform of an analytical
time-periodic function

A(t) = A(t + T) ; ! =
2�
T

the simple trapezoidal rule23 does the job with exponential accuracy, pro-
vided that the period T is exactly a multiple of the grid sizeh:

A(k! ) =
Z T

0
cos(k! t)A(t)dt = h

m = T =hX

m =1

cos(k! mh)A(mh) + O(e� :::=h ) :
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3. Observing and analyzing breathers in numerical runs

3.1. Tar geted initial conditions

For conveniencewe will sometimesusea Taylor expansionof the potentials
in (1):

V(z) =
X

� =2 ;3;:::

v�

�
z� ; W(z) =

X

� =2 ;3;:::

w�

�
z� : (11)

Let us choosev2 = 1, v3 = � 1, v4 = 1
4 , w2 = 0:1 with all other coe�cien ts

equal to zero.The on-site potential in this casehastwo wells separatedby a
barrier, and the interaction potential is a harmonic one.One of the simplest
numerical experiments to observe localized excitations then is to choose
initial conditions when all oscillators are at rest pl (0) = 0, x l 6=0 (0) = 0
except one at site l = 0 which is displacedby a certain amount x0(0) from
its equilibrium position. Then we integrate the equations of motion e.g.
using the Verlet method. We expect at least a part of the initially localized
energyexcitation to spreadamong the other sites.We choosea systemsize
N = 3000.The maximum group velocity of plane waves(3) is of the order
0.1 here.Finite sizee�ects due to recurrenceof emitted waveswhich travel
around the whole system and return to the original excitation point are
thus not expected for times smaller than tmax = 30000. In other words,
our simulation will emulate the behavior of an in�nite chain with the above
initial conditions up to tmax . To monitor the evolution of the system we
de�ne the discrete energydensity

el =
1
2

p2
l + V (x l ) +

1
2

(W(x l � x l � 1) + W(x l+1 � x l )) : (12)

The sum over all local energydensitiesgivesthe total conserved energy. If
DBs are excited, the initial local energy excitation should mainly remain
at its initial excitation position. Thus de�ning

e(2m +1) =
mX

� m

el (13)

by choosinga proper valueof m in (13) we will control the time dependence
of e(2m +1) . If this function doesnot decay to zeroor doessoon a su�cien tly
slow time scale, the existenceof a breather-like object can be con�rmed.
The term `slowly enough' has to be speci�ed with respect to the group
velocities of small amplitude plane waves(3). We simply have to estimate
the time waveswill needto exit the half volumeof sizem which we monitor
with (13). For the choice m = 2 we concludethat this time scaleis of the
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order of tmin � 20. Thus the relevant times of monitoring the evolution of
the system are still covering three decades

20 � t � 30000: (14)

In Fig. 3 we show the time dependenceof e(5) for an initial condition x0(t =

10
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Fig. 3. e(5) versus time (dashed line). Total energy of the chain, solid line. Inset: energy
distribution el versus particle number for the same solution measured for 1000 < t <
1150.

0) = 2:3456.25 Clearly a localized excitation is observed. After a short
time period of the order of 100 time units nearly constant values of e(5)

are observed. The breather-like object is stable over a long period of time
with some weak indication of energy radiation. The energy distribution
within the object is shown in the inset of Fig. 3. Essentially three lattice
sites are involved in the motion, so we �nd a rather localized solution.
While the central particle performs large amplitude oscillations, the nearest
neighbors oscillatewith small amplitudes. All oscillations take placearound
the groundstate x l = pl = 0. Note that due to the symmetry of the initial
condition the left and right hand parts of the chain should evolve exactly
in phase- a good test for the correctnessof the usednumerical scheme.

To get more insight into the internal dynamics of the found object,
we perform a Fourier transform of x0(t) and x � 1(t) in the time window
1000 � t � 10000 using the Filon algorithm. 25 The result is shown in
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Fig. 4. We observe that there are essentially two frequenciesdetermining
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Fig. 4. Fourier transformed FT[ x l (t � 1000)] (! ) with initial condition as in Fig. 3 for
l = 0. Inset: for l = � 1.

the motion of the central particle ! 1 = 0:822 ; ! 2 = 1:34. All peak
positions in Fig. 4 can be obtained through linear combinations of these
two frequencies.To that end we may concludethat we observe a long-lived
strongly localizedexcitation with oscillatory dynamics described by quasi-
periodic motion. To proceedin the understanding of the phenomenon,we
plot in the inset in Fig. 4 the Fourier transformation of the motion of the
nearestneighbor(s) to the central particle. As expected,wenot only observe
the two frequencyspectrum, but the peak with the highest intensity is not
at ! 1 as for the central particle, but at ! 2. Becauseof the symmetry of
the initial condition the two nearest neighbors move in phase.Thus and
becausethe other particles are practically not excited, we are left with an
e�ectiv e 2 degreeof freedom problem (cf. inset in Fig. 3).

Instead of getting lost in the possibilities of initial condition choices
for the whole system, we may now expect that as it stands the observed
excitation must be closely related to a tra jectory or solution of a reduced
problem with a low-dimensionalphasespace.Indeed,�xing all but the three
oscillators l = � 1; 0; 1 at their groundstate positions reducesthe dynamical
problem to a three degreeof freedom system, and restricting ourselves to
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the symmetric casex � 1 = x1 and p� 1 = p1 in fact to a two degreeof
freedomproblem:

•x0 = � V 0(x0) � 2w2(x0 � x � 1) ; (15)

•x � 1 = � V 0(x � 1) � w2(x � 1 � x0) : (16)

First we may choosethe sameinitial condition in the reducedproblem as
done before in the full chain, and observe that indeed the two tra jecto-
ries are very similar. Following this way of reduction we may then perform
Poincar�e maps of (15,16) and formally get full insight into the dynamical
properties of this reduced problem. This has been done e.g. in [26]. The
samemap has been then performed in the extended lattice itself, and the
two results werecompared.Not only wasthe existenceof regular motion on
a two-dimensional torus found in both cases,but the tori intersectionsfor
the reducedand full problems were practically identical. 25 Thus we arrive
at two conclusions:i) the breather-like object corresponds to a tra jectory in
the phasespaceof the full systemwhich is for the times observed practically
embeddedon a two-dimensional torus manifold, thus being quasi-periodic
in time; ii) the breather-like object can be reproduced within a reduced
problem, where all particles but the central one and its two neighbors are
�xed at their groundstate positions, thereby reducing the number of rele-
vant degreesof freedom.

Intuitiv ely it is evident, that noneof the observed frequenciesdescribing
the dynamics of the local entit y should resonatewith the linear spectrum
(3), sinceone expects radiation then, which would violate the assumption
that the object stays local without essential change.In truth the conditions
are much stricter, as we will discussbelow. Sincethe reducedproblem de-
�ned above can not be expected to be integrable in general,we expect its
phasespacestructure to contain regular islands �lled with nearly regular
motion (tori) embeddedin a seaof chaotic tra jectories. Note that this pic-
ture will strongly depend on the energyshell on which the map is applied.
Chaotic tra jectories have contin uous (as opposedto discrete) Fourier spec-
tra (with respect to time), and so we should always expect that parts of
this spectrum overlap with the linear spectrum of the in�nite lattice. Thus
chaotic tra jectories of the reducedproblem do not appear ascandidatesfor
breather-like entities. The regular islands have to be checked with respect
to their set of frequencies.If the island frequenciesare located outside the
linear spectrum of the in�nite lattice, we can expect localization - i.e. that
a tra jectory with the sameinitial conditions if launched in the lattice will
essentially form a localized object. Islands which do not ful�ll this non-
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resonancecriterion should be rejected as candidates for localized objects.
Thus we arrive at a selection rule for initial conditions in the lattice by
studying the low-dimensionaldynamics of a reducedproblem. This conjec-
ture hasbeensuccessfullytested in [26]. In Fig. 5 we show a representativ e
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.

Fig. 5. Poincar �e intersection between the tra jectory and
the subspace [ _x1 ; x1 ; x0 = 0; _x0 > 0] for the symmetric reduced three-partic le problem
and energy E = 0:58. Note that u instead of x is used in the axis labels.

Poincar�e map of the reducedproblem. In Fig. 6 the time dependenceof the
above de�ned local energy e(5) (t) is shown for di�eren t initial conditions
which correspond to di�eren t tra jectories of the reducedproblem. The ini-
tial conditions of regular islands 1,2 of the reducedproblem yield localized
patterns in the lattice, whereasregular island 3 and the chaotic tra jectory,
if launched into the lattice, lead to a fast decay of the local energydue to
strong radiation of plane waves. It is interesting to note that the energy
decay of the latter objects stops around e(5) = 0:35. In [26] it was noted
that the fraction of chaotic tra jectories in the reducedproblem practically
vanishesfor energiesbelow that value.

Another observation, which comesfrom this systematic analysis is that
the �xed points in the Poincar�e map of the reducedproblem (in the middle
of the regular islands in Fig. 5) correspond to periodic orbits. A careful
analysis of the decay properties in Fig. 6 has shown that all objects were
slightly radiating - but some stronger and some less. The objects corre-
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Fig. 6. e(5) (t ) dependence. Upp er short dashed line - total energy of all simulations;
solid lines (4) - initial conditions of �xed points in islands 1,2 from Fig. 5 and larger
torus in island 1 and torus in island 2 from Fig. 5; long dashed line - initial condition of
torus in island 3 in Fig. 5; dashed-dott ed line - initial condition of chaotic tra jectory in
Fig. 5.

sponding to the periodic orbits of the regular islands 1,2 of the reduced
problem showed the weakest decay.26 Thus we arrive at the suggestionthat
time-periodic local objects could be free of any radiation - i.e. be exact so-
lutions of the equationsof motion on the lattice! It makesthen senseto go
beyond the present level of analysisand to look for a way of understanding
why discrete breatherscan be exact solutions of the dynamical equations-
provided they are periodic in time. Further the question arises,why their
quasi-periodic extensionsappear to decay - i.e. why do quasi-periodic dis-
crete breathers seem not to persist for in�nite times. We can also ask:
supposequasi-periodic DBs do not exist - what are then their patterns of
decay; what about their life-times; what about moving DBs (certainly they
can not be represented as time-periodic solutions)? And we may already
state, that if time-periodic DBs areexact localizedsolutions, then they may
be also stable with respect to small perturbations, as observed here.

The linear spectrum of the model used for the numerical results here
is optical-lik e, with a ratio of the band width to the gap of about 1/10.
However this doesnot imply that the discretebreathersexist merely due to
someweaknessof the interaction. An estimation of the energypart stored
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in the interaction of the DB object presented here yields a value of 0.4.
Compare that to the full energy E � 0:7. Roughly half of the energy is
stored in the interaction. By no meanswe can describe theseexcitations by
completely neglecting the interaction among the di�eren t lattice sites.26

Sincebreather-like excitations can be described by local few-degree-of-
freedom systems(reduced problem), there is not much impact one would
expect from increasing the lattice dimension. We will have an increasein
the number of nearest neighbors, which implies simply some rescaling of
the parametersof the reducedproblem. To seewhether that happens, the
above described method was applied to a two-dimensional analog of the
above consideredchain. The interestedreaderwill �nd details in [27]. Here
we shorten the story by stating that practically the whole local ansatz can
be carried through in the two-dimensional lattice. An analog of Fig. 3 for
the two-dimensionalcaseis shown in Fig. 7 where the energydistribution

Fig. 7. Energy distribution for the breather solution with initial energy E = 0:3 after
waiting time t = 3000. The �lled circles represent the energy values for each particle; the
solid lines are guides to the eye. Inset: Time dependence of the breather energy e(5) .

in a discrete breather solution is shown, and the inset displays the time
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dependenceof a local energysimilar to e(5) (t). The readerwill ask how we
deal with radiation in this case.Indeed, the systemin Fig. 7 hasdimension
20 � 20 (only a subpart of size 10 � 10 is actually shown), which implies
a characteristic time tmax � 100. The necessarytrick is to add to the
Hamiltonian part of the lattice a dissipative boundary, here of 10 more
sites on each edge, increasing the total size of the system to 40 � 40. In
thesedissipative boundariessimple friction is applied in order to dissipate
as much energy radiation as possible.Sinceboth zero and in�nite friction
will lead to total re
ection of wavesinsteadof absorption, the next step is to
imposea friction gradient from small to large valuesas one penetratesthe
dissipative layer coming from the Hamiltonian core. By simple variation
of the friction gradient and the maximum friction value it is possible to
optimize the absorption properties of this layer.27

3.2. Br eathers in tr ansient pr ocesses

If breather-like states are easily excited by a local perturbation, then we
expect that these objects may be also relevant in systemswith a nonzero
energy density which is nonuniformly distributed among the lattice. One
possibility is to excite a uniform energydensity distribution which is how-
ever unstable with respect to small perturbations - something known as
modulational instabilit y, Benjamin-Feir instabilit y etc. Analytical predic-
tions for such instabilities can be obtained by �nding an exact solution of
a plane wave of nonzero amplitude and linearizing the equations of mo-
tion around the solution. If the result indicates instabilit y, it can be easily
implemented numerically by taking initial conditions which correspond to
such a plane wave and adding a weaknoiseto them. Typically the outcome
is the evolution of the energy density into spatially nonuniform patterns.
Even if the outcome of a very long time simulation would not show up
with breather-like states, the transient into such equilibria may take a lot
of time, and on this path breathers can be observed. The formation of
breather-like states through modulational instabilit y was reported in sev-
eral publications.28;29;30;31;32

While a number of publications hasbeendevoted to theseproblems,for
reasonsof coherence(staying within one model class) below we will show
recent numerical results done by Ivanchenko and Kanakov.33 The model
parametersare v2 = 1, v4 = 0:25 and w2 = 0:1. The initial conditions can
be encoded as

x l (0) = (a + � ) cos(ql) ; _x l (0) = ! (a + � ) sin(ql) (17)
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for the one-dimensionalcase with ! 2 = ! 2
q + 0:75a2, the wave number

q = 3� =4, the amplitude a = 0:5 and the noise � being uniformly distrib-
uted in the interval 0 � � � 0:001.The systemsizeis N = 400,and periodic
boundary conditions are used. In Fig. 8 we plot the energydensity evolu-
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Fig. 8. Energy density evolution in a chain with parameters given in the text. Horizon tal
axis - chain site, vertical axis - time. Energy density is plotted in a gray scale coding
from white (zero) to maxim um observed values (blac k).

tion up to a time t = 5000.Note that on short time scalesthe modulational
instabilit y is observed, both with a characteristic regular distance between
the evolving maxima of the energy density and with a characteristic shift
of the maxima positions in time due to the nonzerogroup velocity of the
plane wave. Discrete breather-like objects are formed in the next part of
the evolution, when some of these energy lumps start to collide and ex-
changeenergy,34 leaving the system over long times with immobile highly
localized excitations, which coexist with a diluted gas of plane waves or
small amplitude solitons. These plane waves and solitons are observed to
sometimesscatter from a breather, sometimespenetrate it, and surely their
presencewill lead to a further thermalization of the lattice on much larger
time scalesthan the numerically studied. Indeedextending the observation
time by two orders of magnitude we observe further focusing of energy in
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Fig. 9. Energy density evolution in a chain with parameters given in the text. Horizon tal
axis - chain site, vertical axis - time. Energy density is plotted in a gray scale coding
from white (zero) to maxim um observed values (blac k).

high energy breathers (Fig. 9). Note that the results of Fig. 8 are not ob-
servable herebecausethey cover onepercent of time here, and becausethe
gray scalecoding is signi�cantly changed.

In somestudies thermalization leads ultimately to a disappearanceof
large amplitude breathers (or better to a negligible probabilit y to observe
formation again). In other cases(see below) breather formation is even
observed in what is believed to be thermal equilibrium. The outcome sen-
sitively depends both on model parameters but most importantly on the
temperature, which is implicitly de�ned by the averageenergy density of
the initial conditions. Too low temperature will on onehand still show mod-
ulational instabilit y and breather formation, and very long transient times
into a �nal equilibrium state without breathers, but only plane waves. In-
termediate temperatures will again provide with modulational instabilit y,
but transient times areshorter, and breathersmay now be expectedeven in
thermal equilibrium (simply becauseprobabilit y of large local 
uctuations
increases).Note that in general the temperature, i.e. the averageenergy
density, is given by both the amplitude of the plane wave and the way the
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initial conditions are noised. Here we assumethat the noise contribution
is always weak, so the energy density is mainly given by the plane wave
amplitude.

The samescenariocan be also observed in two-dimensional lattices.33

With the same parameters as above but replacing the argument (ql) by
(q(l + m)), where l and m are the lattice indices of a squarelattice of size
80 � 80 with periodic boundary conditions, we show the energy density
distributions at four di�eren t times in Fig. 10. Note the increasing grey
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Fig. 10. Energy density distribution in a square lattice with parameters given in the
text. Energy density is plotted in a gray scale coding from white (zero) to maxim um
observed values (blac k). Times of observation are t = 400; 450; 500; 5000.

scalecoding limit due to more energy getting attracted into high energy
breathers.

Another way to observe breathers in transient processesis to randomly
excite a given sub-part of a lattice, with the rest of the lattice being not
excited. Then, as in the caseof targeted initial conditions, one may expect
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that all plane waveswill be radiated into the in�nite nonexcited part, and
only breathers will stay.35 In that senseone could even try to measurethe
energyfraction stored in breathersfor a givenlattice at a giventemperature.
Weshow experiments for a systemsize50� 50plus friction boundaries,with
model parametersas above.33 In Fig. 11 the energydensity distribution is
shown at four times t = 0; 4900; 11900; 19900 and c = 3. We observe that
even at theselow temperatures about 5% of the total energywas stored on
long-livedbreathers,simply dueto 
uctuations in the initial conditions. The
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Fig. 11. Energy density evolution in a two-dimensional lattice. Seetext for details.

above mentioned method, however, cannot be applied to one-dimensional
lattices. The reasonis that while a single breather-like excitation by one
local perturbation is easilydetectable(see3.1) in one-dimensionalsystems,
we have to worry about the interaction betweenbreathers and plane wave
radiation when exciting the whole lattice or a big part of it. It turns out
(seesection6.2) that breathers in one-dimensionalsystemsusually very ef-
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fectively backscatter plane waves.Consequently exciting e.g. two breathers
in a one-dimensionalsystemand someplane wavesbetweenthem, will lead
to a trapping of the radiation between the two breathers and also to some
enhancedretarded interaction betweenthe breathersmediated by the radi-
ation. In contrast, in systemswith dimension d � 2 breathersas point-lik e
(zero dimensional) objects may scatter plane waves but not trap them.
Consequently plane waves will still easily exit the excited lattice volume,
and breathers left will practically not interact with each other (the only
interaction channel left are spatially decaying breather tails, which may
becomeexponentially small with growing distance from a breather core).
Indeed, repeating the above experiment in a one-dimensionalanalog (same

Fig. 12. Energy density evolution in a one-dimensional lattice. Seetext for details.

parameters except c = 2) we �nd in Fig. 12 that the energy distribution
is trapped between two large amplitude breathers (seealso [36,37]). With
increasingtime someradiation escapes,and the two guarding breathersare
slowly shifting towards each other.
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3.3. Br eathers in thermal equilibrium

Finally breathers have been also
observed in thermal equilibrium. 32;38;39;40;41 In Fig. 13 we show the evo-
lution of a one-dimensionalchain with sameparametersas in the preceding
section. Periodic boundary conditions are applied, and the initial condi-
tions for x l and _x l being randomly uniformly distributed between � c=2
and c=2. We clearly observe the formation of breather-like highly localized
objects, and more of them for larger energydensities.The sameprocedure

Fig. 13. Energy density evolution in a one-dimensional lattice for a time windo w after
giving the system time to equilibrate. Left upp er picture - c = 1, righ t upp er picture -
c = 3, second row - c = 4.

can be applied to a similar two-dimensional square lattice. In Fig. 14 we
show the evolution of the energy density distribution using a simple cut
procedure, where black dots are plotted if the energy density at a given
lattice point exceeds�v e times the averageenergy density. Nearly all the
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observed spots and especially the long vertical lines correspond to breather
excitations. All these results con�rm that breather-like objects are easily

Fig. 14. Energy density evolution in a two-dimensional lattice for various time windo ws.
For both casesc = 5 was chosen.

excited in lattices, that they canbe obtained both with targeted initial con-
ditions, during transient processesand in thermal equilibrium. We are only
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beginning to developa reliable quantitativ eway to compute their statistical
contribution and weights. Another important aspect - interaction between
breathers - is also waiting further clari�cation. Already such straightfor-
ward studies as the onesdiscussedshow that this problem depends both
on the dimensionality of the system and on the relative contributions of
phonon mediated interaction and tail-tail interactions.

4. Obtaining breathers up to machine precision: Part I

From section 3 we learned that breather-like objects exist due to weak
resonancewith the plane wave spectrum ! q. Also these studies suggested
that time-periodic breatherscould be exact solutions, i.e. do not radiate at
all. If so, let us try to obtain a time-periodic solution with period Tb = 2�


 b

which is localized in space

x l (t) = x l (t + Tb) ; x j l j!1 ! 0 : (18)

By de�nition we can expand it into a Fourier series

x l (t) =
X

k

Ak l eik 
 bt : (19)

The Fourier coe�cien ts by assumptionare also localized in space

Ak ;j l j!1 ! 0 : (20)

This ansatz has to be inserted into the equations of motion of (1,2) which
we rewrite in the following form

•x l = � v2x l � w2(2x l � x l � 1 � x l+1 ) + F nl
l (x l 0) : (21)

Herewehave introducedthe forceterm F nl
l which incorporatesall nonlinear

terms of the equationsof motion. For (1,11) it takesthe form

F (nl )
l = �

X

� =3 ;4;:::

�
v� x � � 1

l + w� ((x l � x l � 1)� � 1 � (x l+1 � x l )� � 1)
�

:

(22)
With ansatz (19), F nl can be also expandedinto a Fourier series:

F (nl )
l (t) =

+ 1X

k = �1

F (nl )
k l eik 
 b t : (23)

Thus we arrive at a set of coupled nonlinear algebraic equations for the
Fourier coe�cien ts Ak l of the breather solution we search for:

k2
 2
bAk l = v2Ak l + w2(2Ak l � Ak ;l � 1 � Ak ;l +1 ) + F (nl )

k l : (24)



August 4, 2003 14:44 WSPC/T rim Size: 9in x 6in for Review Volume c
ac h

26 S. Flach

If a breather solution exists, then in its spatial tails all amplitudes aresmall.
Thus we can assumethat the nonlinear terms in (24) are negligible in the
tails of a breather. We are then left with the linearized equations

k2
 2
bAk l = v2Ak l + w2(2Ak l � Ak ;l � 1 � Ak ;l +1 ) : (25)

Theseequationsare not much di�eren t from the linearization of the equa-
tions of motion asdiscussedin 1 which lead to the dispersionrelation ! q for
small amplitude plane waves.All it would need is to replacek2
 2

b in (25)
by ! 2

q . Consequently , if k2
 2
b = ! 2

q , small amplitudes of (25) will not decay
in space,in contrast to our initial assumption. However, if k2
 2

b 6= ! 2
q for

any q, no plane wavesexist, and instead we can obtain localization. In the
consideredcaseit is exponential

Ak l � e� � k j l j ; k2
 2
b = v2 + 2w2(1 � cosh� k ) : (26)

Thus we arrive at a generically necessarynonresonancecondition for the
existenceof breathers:?;42

k2
 2
b 6= ! 2

q (27)

for all integer k and any q. Clearly such a condition can be in principle
ful�lled for any lattice, since ! 2

q is bounded from above (in contrast to
spacecontin uous systems). The upper bound or cuto� is a result of the
discretenessof the system. Right on the spot we may also conclude, that
quasi-periodic in time and spatially localized excitations will not be exact
solutions generically, since they will always radiate energy due to reso-
nances.Indeed there is always an in�nite number of pairs of integersk1; k2

which for any choiceof incommensuratefrequencies
 1; 
 2 will lead to res-
onancek1
 1 + k2
 2 = ! q. So we have already an explanation for the weak
but nonzeroradiation observed in 3.1 for quasi-periodic excitations.

Returning to the time-periodic solutions, all we need is to tune the
breather frequency and all its multiples out of resonancewith ! q. The
nonlinear terms in the equationsof motion will be responsible for that.

4.1. Metho d No.1 - designing a map

Wewill now designa map to �nd breather solutionsup to machine accuracy.
This method No.1 is oneof the �rst which have beenusedto perform high
precision computations of DBs. It is instructiv e that one can accomplish
the task with using a bit of intuition and luck.42;43
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Let us rewrite (24) as a map in two di�eren t ways. Map A:

A ( i +1)
k l =

1
k2
 2

b

h
(v2 + 2w2)A ( i )

k l � w2(A ( i )
k ;l � 1 + A ( i )

k ;l +1 ) + F (nl )
k l (A ( i )

k 0l 0)
i

;

(28)
with

� k l =
v2

k2
 2
b

and Map B:

A ( i +1)
k l =

1
v2

h
(k2
 2

b � 2w2)A ( i )
k l + w2(A ( i )

k ;l � 1 + A ( i )
k ;l +1 ) � F (nl )

k l (A ( i )
k 0l 0)

i
;

(29)
with

� k l =
k2
 2

b

v2
:

We can de�ne a lattice map by using any of the two maps for any k and
l, and a solution of (24) will be always a �xed point of the chosenlattice
map. Two questionsarise: is the breather solution a stable �xed point for
the chosenlattice map, and what is a good initial guess?Instead of being
worried about stabilit y as one normally should, we may also approach the
problem inversely. We know that we want to �nd a breather with frequency

 b located e.g.at site l = 0. Let us then put initially all Fourier amplitudes
to zero except A � 1;0 which is small but nonzero.For k = � 1; l = 0 we will
choose the map with � � 1;0 > 1 and the map with � k l < 1 for all other
coe�cien ts. Thus we will imposea local instabilit y (growth) at k = � 1; l =
0 when we start the iteration. At the sametime all other coe�cien ts will
tend to stay at zero,sincetheir mapsare chosento be locally stable around
the value zero. Thus we expect a breather to grow during the iteration. All
we now have to do is to hope that the breather solution is a stable �xed
point. For low order polynomial potential functions we can compute

F (nl )
k l =

X

� =3 ;4;:::

v�

+ 1X

k1 ;k 2 ;:::;k � � 1 = �1

Ak1 l Ak2 l :::A k � � 1 l � k ;(k1+ k2 + ::: + k � � 1 )

(30)
very e�cien tly during each iteration. Otherwise we can take all A ( i )

k l at a
given step, compute x l (t) and by numerical integration obtain

F (nl )
k l =

1
T1

Z T2

� T =2
F (nl )

l (t)e� ik ! 1 t dt : (31)



August 4, 2003 14:44 WSPC/T rim Size: 9in x 6in for Review Volume c
ac h

28 S. Flach

Of course we have to impose a cuto� in k-space,which can be justi�ed
afterwards by checking that the Fourier amplitudes closeto the cuto� are
reasonablysmall. The iteration can be stopped when e.g.

X

k ;l

jA ( i )
k l � A ( i � 1)

k l j < 10� 10 : (32)

The following results have been obtained along these lines for a breather
with frequency
 b = 1:3. In Fig. 15 the solution for the Fourier coe�cien ts
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Fig. 15. Breather solution by metho d No.1. Left picture: v2 = 2 ; v3 = � 3 ; v4 =
1 ; w2 = 0:1; righ t picture: v2 = 1 ; v4 = 1 ; w2 = 0:1.

is plotted for two di�eren t systems.Absolute valuesof A k l are plotted on
a logarithmic scaleversuslattice site number l. The non-�lled squaresare
the actual numerical data. Coe�cien ts with samevaluesof k are connected
with lines. We�nd the expectedexponential decay in space,with exponents
(slopes)clearly beingdependent on k. A surprising numerical fact is that the
computedamplitudes seemto be correct down to values10� 20, although the
Fortran compiler usesdouble precision 
oating point numbers (16 decimal
digits). Moreover, the limit of the computation here would be actually at
10� 307. The reasonis that wesearch for solutionswhich are localizedaround
zero, and the issue is not numerical precision, but the encoding of small
numbers. If however we would shift the classicalground state position to
say x l = 1, then the samecomputation would be restricted by the numerical
precision.

To check whether the numerically computed exponential decay in space
is in accord with the predicted one (26) from the linearized equations(25)
we simply measurethe slopes in Fig. 15 and comparethem with the solu-
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tions of (26) for the left picture in Fig. 15

k num:result linearization
0 � 1:3202 � 1:3415
1 � 0:6904 � 0:6898
2 � 1:3796 � 1:6588
3 � 2:0748 � 2:1143
4 � 2:3957 � 2:3951
5 � 2:6018 � 2:6026
6 � 2:7663 � 2:7682
...

...
...

While most of the numbers do coincide, clear deviations are observed for
k = 2; 3. Note that the numerical slope is weaker than the predicted one.
The obvious reasonis that for theseFourier numbersweakly decaying non-
linear correctionshave to be taken into account, 43 which decay slower than
the predicted linearized result. Here thesecorrections are simply � A 2

1l for
k = 2 and � A3

1l for k = 3. The analytically predicted slopes are then
simply 2 � 0:6898 = 1:3796 for k = 2 and 3 � 0:6898 = 2:0694 for k = 3.
A full treatment of nonlinear corrections is given in [43]. Note that the
nonresonancecondition (27) is not a�ected by thesecorrections. Also im-
portant is, that the Fourier amplitude with the weakest spatial decay is
always correctly described by the linearized equationsin the breather tails.

For the right picture in Fig. 15 we �nd respectively

k num:result linearization
1 � 0:6722 � 0:6709
3 � 1:9910 � 2:1464
5 � 2:6103 � 2:6133
7 � 2:9114 � 2:9117
9 � 3:1324 � 3:1325
...

...
...

Only the k = 3 valuesdi�er, and the correct slope is again given by terms
� A3

1l : 3 � 0:6709= 2:0127.
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4.2. Metho d No.2 - sadd les on the rim with space-time
separ ation

A subclass of systems(1) is characterized by space-time separation (see
[44], [16] and [45]). Consider

H =
X

l

�
1
2

p2
l +

v2

2
x2

l

�
+ POT ; (33)

with

POT =
X

l

hv2m

2m
x2m

l +
w2m

2m
(x l � x l � 1)2m

i
; m = 2; 3; 4; ::: (34)

being a homogeneousfunction of the coordinates. The equationsof motion
take the form

•x l + v2x l = � v2m x2m � 1
l � w2m (x l � x l � 1)2m � 1 + w2m (x l+1 � x l )2m � 1 : (35)

These systems allow for time spaceseparation for a sub-manifold of all
possibletra jectories:

x l (t) = A l G(t) : (36)

Inserting (36) into (35) we obtain

•G + v2G
G2m � 1 = � � ; (37)

� � =
1
A l

�
� v2m A2m � 1

l � w2m (A l � A l � 1)2m � 1 + w2m (A l+1 � A l )2m � 1�
:

(38)
Here � > 0 is a separation parameter, which can be chosen freely. The
master function G obeys a trivial di�eren tial equation for an anharmonic
oscillator

•G = � v2G � �G 2m � 1 : (39)

Its solution sets the temporary evolution of the breather.
The spatial pro�le is given by

�A l =
@POT

@x l
j f x l 0� A l 0g ; (40)

or better by the extrema of a function S:

@S
@A l

= 0 ; S =
1
2

�
X

l

A2
l � POT(f x0

l � A0
l g) : (41)
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Fig. 16. Schematic representation of function S (41) and the path way to a breather
being a saddle.

Let us discusssomeproperties of S. This function has a minimum at A l =
0 for all l with height S = 0 (point P0 in Fig. 16). When choosing a
certain direction in the A l spacestarting from P0, S will �rst increase,then
passthrough a maximum and further decreaseto �1 . So there is a rim
surrounding the minimum A l = 0. Since breathers are spatially localized
solutions, variation of the amplitudes A l in the tails of a breather around
zero will increase S. At the same time the breather corresponds to an
extremum of S, but there is only one trivial minimum of S located at
P0. Thus breathersare saddlesof S.

It is remarkably easyto compute such a saddle.First choosedirection
in the N -dimensionalspaceof all A l , e.g. (:::0001000:::) ; (:::0001001000:::)
etc. Then start from spaceorigin P0, A l = 0, depart with small stepsin the
chosendirection, compute S. It will �rst increaseand then passthrough a
maximum P1. Now we are on the rim. Compute the gradient of S hereand
make a small step in opposite direction, to arrive at P2. Maximize S on
the line P0 � P2 to be on the rim again. Repeat until you reach a saddle
with required accuracy.

This method has beenusedto compute various types of breathers and
multi-breathers. Note that it is very simple to extend the computation to
two- or three-dimensionallattices.45

4.3. Metho d No.3 - homo clinic orbits with time-sp ace
separ ation

Using again the time-spaceseparability as discussedin 4.2, breathers can
be consideredas homoclinic orbits of a two-dimensionalmap.16 Indeed, we
may rewrite (38) in the following way:

A l+1 = A l +
�
v2m A2m � 1

l + w2m (A l � A l � 1)2m � 1 � �A l
� 1

2m � 1 (42)
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where we can compute a given amplitude pro�le starting with a given pair
of nearestneighbor amplitudes (both to the right and to the left of course).
Using a two-dimensionalvector

~Rl = (x l ; yl ) = (A l � 1 ; A l ) (43)

the procedurecan be cast into the form of a two-dimensionalmap with

x l+1 = yl (44)

yl+1 = yl +
�
v2m y2m � 1

l + w2m (yl � x l )2m � 1 � �y l
� 1

2m � 1 (45)

This map (Fig. 17) has a �xed point ~RF = (0; 0). The �xed point be-

Fig. 17. Schematic representati on of the map (44,45). Red line - stable invarian t man-
ifold, green line - unstable invarian t manifold, black spots - intersection points of both
manifolds for a given breather solution. Dashed blue line - diagonal x = y.

longsboth to a stable (red) and unstable (green) one-dimensionalinvariant
manifolds. Taking a point on the stable manifold and iterating forward,
we will approach the �xed point. The samehappens with a point on the
unstable manifold when iterated backwards. These manifolds intersect in
many points. By de�nition any of these intersection points, when iterated
either forward or backward, will convergeto ~RF and thus corresponds to a
breather solution. Such map tra jectories are also called homoclinic orbits.
Note that many intersection points belong to the samehomoclinic orbit or
to the samebreather, as indicated by the onesmarked with black spots in
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Fig. 17. However since the above map is locally (around ~RF ) volume pre-
serving, the structure of the invariant manifold lines will generically show
up with horseshoe patterns (wiggles in Fig. 17). These patterns generate
additional intersection points. Consequently there will be an in�nite num-
ber of di�eren t homoclinic orbits and thus breathers. They will di�er by
the amplitude distribution inside the breather core, which can becomear-
bitrary complicated, and an exponential tail outside. Thus we already at
this stagearrive at the conclusionthat in addition to single site breathers
discussedso far also so-calledmulti-breather solutions can exist, i.e. local-
ized excitations with a complicated pattern of energy distribution inside
the breather core (seealso [15]).

Due to the space-re
ectionsymmetry of the map there will bealwaysone
intersection point on the line x = y. The position of this point will depend
only parametrically on � . Thus it is possibleto designsimplesearch routines
by e.g. �xing x0 = y0 and varying � (see[16]). The numerical schemehas
been even used for a formal existence proof of breathers as homoclinic
orbits.16

5. Obtaining breathers up to machine precision - Part I I

So far we have searched for discretebreather periodic orbits as solutions of
algebraicequations.The variableswereeither Fourier coe�cien ts or simply
the amplitudes at a given site. Also the methods of solving theseequations
have been quite special, using some particular properties of the system.
What if we don't know or do not want to know any particular system
properties we could use? We could of course use more general methods
of solving algebraic equations, e.g. various gradient methods or Newton
routines.23 For them to convergewe needalways a good initial guess.This
usually implies that we should start computations closeto a casewherewe
know the solution, and then depart from this limit with small parameter
steps.

Gradient methods are more sophisticated in programming, while New-
ton routines may su�er from the long times that may be neededto invert
matrices, and also from the danger of coming closeto a noninvertible case
due to bifurcations. Recall herethat the Newton map for �nding the zeroof
a known function f (x) (meaning that we can compute its value) is givenby
f (x = s) = 0 ; f (x) = f (x0)+ f 0(x0)(x� x0)+ :::, xn +1 = xn � f (xn )=f 0(xn ).
In our casesf will be a vector function and its derivative a matrix.

Instead of solving algebraic equations for amplitudes, we may also try
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to compute the periodic breather orbit directly in the phasespaceof our
system.Recall that a periodic orbit (PO) is a loop in phasespace.Generic
POs of generic nonintegrable Hamiltonian systems are isolated ones, i.e.
in a small neighborhood in phasespacewe will generically not �nd other
slightly deformed POs with identical values of conserved quantities like
energy. This is in contrast to POs on resonant tori of integrableHamiltonian
systems.However isolated POs have generically slightly deformed POs in

Fig. 18. Schematic representat ion of a family of isolated POs. Green sector - stable
POs, red sector - unstable POs, blue line - bifurcation location of additional PO family
detaching.

their neighborhood with slightly di�eren t values of conserved quantities
(see Fig. 18). So we can think of isolated POs residing on cylinders in
phasespace,whereeach point on a cylinder belongsto a closedloop which
is a PO. Sliding along the cylinder we changeall the parametersof the PO.
In particular, a PO can turn from stable to unstable, due to a bifurcation,
possibly resulting in new families of POs, as indicated in Fig. 18.
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5.1. Metho d No.4 - Newton in phase space

Now we may proceed in describing the most popular method of �nding
discrete breathers - a Newton map in phase space.46 Let us integrate a

given initial condition ~~R with

x l (t = 0) � X l ; pl (t = 0) � Pl (46)

over a certain time T:

x l (T) � I x
l (f X l 0; Pl 0g; T) ; (47)

pl (T) � I p
l (f X l 0; Pl 0g; T) : (48)

Consider the functions

F x
l = I x

l � X l ; F p
l = I p

l � Pl : (49)

If ~~R belongsto a PO with period T then

F x
l = F p

l = 0 : (50)

Now we can implement a Newton map such that all functions in (50) will
vanish. Our variablesare simply the phasespacevariableswhich de�ne the
initial conditions. Since the Newton map needsinversion of a derivative
matrix, we have to remove all possible degeneracieswhich lead to zero

eigenvaluesof the newton matrix. Indeed, if ~~R belongsto the PO, then a
1d manifold of points belong to the PO. This is a degeneracydue to the
phaseof the PO. It can be removed by one additional condition, e.g.

PM = 0 : (51)

So for N degreesof freedom we will search for zeros in 2N � 1 coupled
equationsof 2N � 1 variables.

A lessobvious obstaclewe have to take care of is to make sure that a
zeroof these2N � 1 equationswith the additional initial condition PM = 0
uniquely �xes pM (T) = 0, e.g. through energyconservation. If that will be
not the case,we can not ensurethat our procedurecomputesa PO.

Let us de�ne

~R = (X 1; X 2; :::; X M ; :::; X N ; P1; :::; PM � 2; PM � 1; PM +1 ; PM +2 ; :::; PN ) ;
(52)

~F = (F x
1 ; F x

2 ; :::; F x
M ; :::; F x

N ; F p
1 ; :::; F p

M � 2; F p
M � 1; F p

M +1 ; F p
M +2 ; :::; F p

N ) ;
(53)

~F = ~R(T) � ~R : (54)
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Given an initial guess~R(0) expand

Fn ( ~R) = Fn ( ~R(0) ) +
X

m

@Fn

@Rm
j ~R (0) (Rm � R(0)

m ) ; (55)

~F ( ~R) = ~F ( ~R(0) ) + M ( ~R � ~R(0) ) ; (56)

M nm =
@Fn

@Rm
j ~R (0) =

@Rn (T)
@Rm

j ~R (0) � � nm : (57)

Now we may perform one Newton step, i.e. �nd an ~R such that ~F = 0:

~R = ~R(0) � M � 1 ~F ( ~R(0) ) : (58)

This procedurecan be repeateduntil someprecisionis obtained: j ~F j < � or
maxjFn j < � .

What remains is to explain how to compute the Newton matrix M . For
the special caseof a two-dimensional spaceof variables the notations in
Fig. 19 will help to understand the following points. Given an initial guess

Fig. 19. Schematic representat ion of the computation of the Newton matrix in a two-
dimensional space of variables. Seetext for details.

~R(0) and integrating over time T, we arrive at ~R(0) (T). Generally the two
points will di�er in phasespace.Now we perturb ~R(0) in the direction m
by �:

~R(0 ;m ) = ~R(0) + � ~em : (59)
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Here ~em denotesa unit vector in direction m. Integrating ~R(0 ;m ) over the
period T we arrive at ~R(0 ;m ) (T). Then the Newton matrix elements are
given by

M nm =
1
�

�
Fn ( ~R(0 ;m ) ) � Fn ( ~R(0) )

�
: (60)

For computational purposesit might be more convenient to usethe alter-
native expressiondirectly through the vectors:

M nm =
1
�

�
R(0 ;m )

n (T) � R(0)
n (T)

�
� � nm : (61)

The advantagesof Newton mapsarethat they arerelatively easyto program
oncewe already have a good integrator. The map convergesexponentially
fast. Furthermore we may use one Newton matrix for several iterations,
which may be useful when matrices get large. Disadvantages of Newton
maps may be due to relatively large computational time � N 2 becauseof
matrix inversion. Matrix inversions are sensitive to bifurcations, because
at bifurcations additional degeneraciestake place, which may lead to zero
eigenvaluesof M . Sometimeswe may needmore subtle inversion routines
using singular value decomposition etc. Note that at some point the ef-
forts of removing all the obstaclesfrom a Newton map approach might be
equivalent to the onesof using alternativ e methods.

As always we needa good initial guess.Probably we have to deform our
systemparameterssuch that a known solution can be used,and afterwards
system parameters are changed by small steps, tracing the solution. We
should also keep in mind that other speci�c methods may deal with a
certain limiting caseeasily, soa known solution must not beoneweobtained
analytically , but also numerically with various other methods at hand.

5.2. Metho d No. 5 - steepest descent in phase space

Similar to the Newton map we may also usea steepest descent method in
phasespace.47 De�ne the nonnegative function

g( ~~R) =
X

l

[F x
l F x

l + F p
l F p

l ] (62)

and its gradient with components

(r g)n =
@g

@~Rn
: (63)
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Now we simply start at somepoint in phasespace,compute the gradient,
and descent in the direction opposite to the gradient. Then we again com-
pute the gradient etc. A breather solution is found if g comescloseenough
to zero.

The advantages of steepest descent are that the computational time
grows with � N . Furthermore the method is insensitive to bifurcations.
Disadvantagesof steepest descent are that it is more clumsy to program,
that the convergenceis slower than that of Newton maps and that it may
be hard to distinguish zero minima from nearly zero minima.

5.3. Symmetries

Very often the equationsof motion are invariant under somesymmetry op-
erations,e.g.the contin uoustime-shift symmetry t ! t+ � , the time reversal
symmetry t ! � t ; pl ! � pl , someparit y symmetry x l ! � x l ; pl ! � pl ,
the discrete translational symmetry on the lattice and probably other dis-
crete permutational lattice symmetries which leave the lattice invariant,
like spatial re
ections etc.

Each discrete symmetry implies that given a tra jectory in phasespace,
a new tra jectory is generatedby applying the symmetry operation to the
manifold of all points of the original tra jectory. If the new manifold equals
the original one, then the tra jectory is invariant under the symmetry, and
otherwise it is not invariant.

In linear equation systemssymmetry breaking is possible only in the
presenceof degeneracies.In nonlinear equation systemssymmetry breaking
is a commonfeature. For example,a plane wave in a harmonic chain is not
invariant under time reversal symmetry, becauseof degeneracy(of left and
right going waves! q = ! � q).

A breather is by de�nition not invariant under discrete translational
symmetry. If however it is invariant under other symmetries, this can be
usedto substantially lower the numerical e�ort of computing the solution.6

For time-reversal breathers it is possibleto �nd an origin in time when
x l (t) = x l (� t) ; pl (t) = � pl (� t), which saves 50% of computational time.
For time-reversal parit y-invariant breathers x l (t + T=2) = � x l (t) ; pl (t +
T=2) = � pl (t) we may save 75% of computational time.

Higher dimensional lattices may allow for further symmetries.Comput-
ing lattice permutational invariant breathers may substantially lower the
computational e�ort by �nding the irreducible breather section.

At the sametime even in the presenceof additional symmetriesbreather
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solutions may be found which lack thesesymmetries.The simplest example
is again discrete translational symmetry, but also lattice re
ection symme-
tries may be broken. Even breathers which are not invariant under time
reversal and thus possessa nonzero energy 
ux do exist, except for one-
dimensional systems.48

6. Perturbing breathers

Suppose we found a breather solution x l (t). Let us addressthe question
of stabilit y and interaction with plane waves.First we add a perturbation
� l (t) to the breather solution. What can we say about the evolution of this
perturbation? Evidently , if the amplitude of the perturbation is large, we
may expect genericdynamical featuresof a nonintegrablesystem,which are
usually rather complicatedand hard to be addressedanalytically . If however
the perturbation size is small, we may linearize the resulting equations for
� l (t):5;49

•� l = �
X

m

@2H
@x l @xm

j f x l 0( t )g� m : (64)

This problem corresponds to a time-dependent Hamiltonian ~H (t)

~H (t) =
X

l

"
1
2

� 2
l +

1
2

X

m

@2H
@x l @xm

j f x l 0( t )g� l � m

#

; (65)

_� l =
@~H
@� l

; _� l = �
@~H
@� l

: (66)

The evolution of this time-dependent Hamiltonian is characterized by a
conservation law _I = 0, where the symplectic product I is formed between
two tra jectories (with and without prime respectively):

I =
X

l

[� 0
l (t)� l (t) � � l (t)� 0

l (t)] : (67)

The reader can verify that I is constant in time by straightforward di�er-
entiation with respect to time and by using the equations of motion (66).
Let us brie
y discussthe consequencesof this conservation law.

For simplicit y we drop the lattice index for the next lines. De�ne the
matrix J

J =
�

0 1
� 1 0

�
(68)
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and the evolution matrix U(t)
�

� (t)
� (t)

�
= U(t)

�
� (0)
� (0)

�
(69)

which maps the phasespaceof the perturbations onto itself by integrating
each point over a given time t. It follows that we can express I in the
following form

I = (� (t); � (t)) J
�

� 0(t)
� 0(t)

�
(70)

and using (69) as

I = (� (0); � (0)) UT (t)J U(t)
�

� 0(0)
� 0(0)

�
: (71)

SinceI is conserved, and U(t = 0) is the identit y matrix, we conclude

UT (t)J U(t) = J : (72)

Wehave obtained that U(t) is symplectic. Then it follows(and canbe easily
derived with the help of the obtained relations) that if y is an eigenvector
of U with eigenvalue �

Uy = �y ; UT y = �y ; (73)

then y0 is a related eigenvector with eigenvalue 1=� :

Uy0 =
1
�

y0 ; y0 = J � 1y = �J y : (74)

If U is real and (�; y) are an eigenvalue and eigenvector, so are

(� � ; y� ) ; (
1
�

; J y) ; (
1

� �
; J y� ) : (75)

Note that even though U is real, both eigenvectors and eigenvalueswill be
complex in general.

6.1. Line ar stability analysis

Consider now the mapping over one period for a breather, which de�nes
the real valued Floquet Matrix F

U(Tb) � F : (76)

The eigenvalues and eigenvectors of F completely de�ne the dynamics of
small amplitude perturbations of a breather, or the dynamics of the lin-
earized phase space
o w around a breather solution. We can now study
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whether a breather is unstable or stable, how strongly plane waves are
scattered by the breather, etc.

Before starting to addressthese questions, let us discussthe meaning
of a nondegeneratecomplex eigenvalue � and eigenvector y of F for the
dynamics of the real valued phasespacevariables � l ; � l . For that purpose
we write

� = � r + i� i ; y = yr + iy i (77)

where � r ; � i ; yr ; yi are the real and imaginary parts of the eigenvalue and
eigenvector. Then using F y = �y we obtain

F yr = � r yr � � i yi ; (78)

F yi = � i yr + � r yi : (79)

Thus taking any linear combination of yr and yi as an initial condition for
� l ; � l , the Floquet map will perform some unitary transformation in the
subspacespannedby yr and yi , and in addition change the length of the
new vector by j� j. We also know that if both yr and yi are nonzero,so are
� r and � i . Then there existsanother eigenvaluewith � r and � � i and yr and
� yi . But from the point of view of the dynamics of the real-valued phase
spacevariables this complex conjugated eigenstatedoesnot add much new
results. So we conclude that if a pair of complex eigenvectors y and y�

hasbeencomputed, their real and imaginary parts spana two-dimensional
subspacein the phasespace(of the perturbations) which is invariant under
applying the Floquet mapping. The mapping performs simply a rotation
only if j� j = 1, otherwise it adds a contraction j� j < 1 or an expansion
j� j > 1.

If there is an eigenvalue with j� j < 1, due to (73,74) there is an eigen-
value with j� j > 1 and vice versa.Consequently whenever we �nd eigenval-
ues with j� j 6= 1, there are directions in the phasespaceof perturbations
where we will observe growth, which implies linear instabilit y. So we con-
clude that the only possibility for breathers to be marginally stable is to
have all Floquet eigenvaluesbeing located on the unit circle j� j = 1.

All eigenstateswhich reside on the unit circle ful�ll Bloch's Theorem,
i.e. eigenstateswith � = ei! � Tb when taken as initial conditions correspond
to

� l (t) = ei! � t � ( � )
l (t) ; � ( � )

l (t) = � ( � )
l (t + Tb) : (80)

One Floquet eigenvalue is always located at � = +1. Its eigenvector is
tangent to the periodic orbit of the original breather. As eigenvaluescomein
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pairs, there is another eigenvalueat � = +1. It correspondsto perturbations
tangent to the breather family of POs. Upon changing a control parameter
the other Floquet eigenvalues may move on the unit circle, collide and
leave the circle. Then a breather turns from being linearly stable to linearly
unstable. A schematic outcomeof the Floquet eigenvaluesfor a marginally
stable and unstable breather solutions is shown in Fig. 20.

Fig. 20. Schematic view of an outcome of the Flo quet analysis of a breather. Flo quet
eigenvalues (�lled circles) and the unit circle are plotted in the complex plane. Left
picture: marginally stable breather (all eigenvalues are located on the unit circle). Righ t
picture: unstable breather (t wo eigenvaluesare located outside the unit circle). Note that
the group of closely nearby lying eigenvalues on the unit circle correspond to the plane
wave contin uum (extended Flo quet eigenstates), while the separated eigenvalues on the
circle correspond to localized Flo quet eigenstates.

Floquet eigenvectors (i.e. the perturbations at time t = 0: ~F =
(� 1; � 2; :::; � N ; � 1; � 2; :::; � N )) can be localized or delocalized in the lattice
space.Becausethe breather is localized, for large enough lattice size N
there will be a large number � 2N of delocalized Floquet eigenvectors,
and only a �nite number of localizedones.DelocalizedFloquet eigenstates
correspond to plane wavesfar from the breather core.

The numerical computation of a Floquet matrix is similar to the
above described way to compute the Newton matrix. 50 Using the re-
sults of 5.1 we choose a starting point on the breather orbit ~R(b) with
~R = (X 1; X 2; :::; X N � 1; X N ; P1; P2; :::; PN � 1; PN ) and compute in analogy
to (61)

Fnm =
1
�

�
R(b;m )

n (Tb) � R(b)
n (Tb)

�
; (81)
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keeping in mind that all 2N phase spacedirections are used here. Note
that most of the elements of the Floquet matrix are also contained in the
Newton matrix of the last step of a Newton map, i.e. when beingreasonably
closeto an exact DB solution.

Before diagonalizing F we could check all possiblesymmetries in order
to reducethe Floquet matrix to its noninteracting irreducible parts. A good
test of the qualit y of the numerically obtained spectrum is to con�rm the
double degeneracyof � = 1 and the relations (75). The results are usedin
order to characterize stabilit y of a given breather, to trace bifurcations of
breathers, to make contact with possiblemoving breathersetc.

6.2. Plane wave scattering

The knowledgeof the Floquet eigenvaluesprovides with stabilit y informa-
tion, and the Floquet eigenvectorstell us which directions in phasespaceare
causingpossibleinstabilities, and the nature of the eigenvector (localizedor
delocalized)provideswith further information. However there is another in-
formation hidden in the extended eigenstates,namely their phases.These
phasesprovide with information about the scattering of plane waves by
discrete breathers. Such a scattering has been indeed observed in simple
numerical runs, when an extendedplane wave was sent into a breather, to
show up with an energy density distribution as the one in Fig. 21.51 We
observe that most of the plane wave coming from the left is re
ected back,
and only a small fraction of about one percent is transmitted through the
breather. This implies that breathersmay act asvery strong scattering cen-
ters. Computational studies of wave scattering have been so far done for
one-dimensionallattices. 52;53;54;55;56 This is causedon onehand by the fact
that scattering in higher lattice dimensionsis more hard to be handled. On
the other hand breathers in higher lattice dimensionsare interacting much
weaker with radiation.

For one-dimensionallattices we needto �nd the transmissioncoe�cien t
as a function of the wave number of a plane wave which is sent into the
breather from say the left end of the system. Since such a plane wave
corresponds to an extendedFloquet eigenstate,we may write it in its Bloch
representation as

� l (t) =
1X

k = �1

elk ei( ! q + k 
 b) t : (82)

We �nd that inside the breather new frequencies! q + k
 b are generated.
These new frequenciesare also frequently coined as channels (seeFig. 22
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Fig. 21. Scattering of a plane wave with q = 0:2� by a breather located at site 1500.
The energy density distribution is shown. The inciden t wave comes from the left. The
standing wave pattern on the left side of the DB is due to interferences between the
inciden t and re
ected waves.

for a schematic view). Can any of thesenew channelsagain resonatewith
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Fig. 22. Schematic view of a plane wave scattered by a discrete breathers. The plane
wave with frequency ! q is injected from the left. Inside the breather new frequency
channels are excited.

the spectrum � ! q (note the � sign indicating that we have to considerthe
frequency spectrum itself and not its squaredanalog or absolute values)?
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Sincethe breather frequency 
 b has to be in general larger than the width
of the band ! q, at maximum one of the additional channels can resonate
with another plane wave frequency � ! q0 = ! q + k
 b. Such a caseis called
two-channel scattering, and channels which match plane wave frequencies
are called open channels, while all others are called closedchannels. It is
straightforward to seethat for m di�eren t plane wave bands at most 2m
channelscan be open. Returning to the casem = 1, two-channel scattering
can be obtained under certain circumstances,but it is much easierto real-
ize one-channel scattering, when all of the additionally generatedchannels
inside the breather are closed.We also note here that one-channel scatter-
ing is always elastic, i.e. the energy
ux of the outgoing waves(transmitted
and re
ected) equalsthe energy 
ux of the incoming wave.52 Two-channel
scattering is inelastic, with more energy carried away from the breather
than sent inside. Thus in a real simulation two-channel scattering will lead
to a linear in time decreaseof the breather energy.52 In the following we
will focus on the caseof elastic one-channel scattering only.

To compute the transmission coe�cien t for a plane wave, we need to
know how large our chosensystemshould be. The systemsizeN should be
large comparedto the localization length 1=� k in (26) for any k. In addition
we have to compute the localization length 1=&k of all closedchannels in a
similar way

(! q + k
 b)2 = v2 + 2w2(1 � cosh&k ) (83)

for all nonzero k and request that the system size is larger. Then we can
approximate the extended Floquet state (82) by a simple plane wave for
larger distances from the breather, with exponential accuracy. Assuming
that this is done,we choosethe labeling of the sizesof our �nite system

� N; (� N + 1); :::; � 1; 0; 1; :::(N � 1); N (84)

where the breather is located in the center around site l = 0.
Solving the Floquet problem would provide only with a discrete set

of extended eigenstatesdue to the �niteness of the system. Also we do
not need all Floquet states, but are interested only in the transmission
properties of a given extended state. Thus we simply emulate an in�nite
system by imposing the following boundary conditions:

� N +1 = e� i! q t ; � � N � 1 = (A + iB )e� i! q t : (85)

While we assumethat the transmitted wave on the right end has ampli-
tude j� N +1 j = 1, the amplitude and relative phaseon the left end are still
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undetermined and implicitly encoded in the real numbers A and B. Let
us �x thesenumbers in somearbitrary way. The next step is to perform a
Newton map (not a Floquet calculation!) in order to �nd the zerosof G
which is de�ned as

G(~� (0); _~� (0)) =
�

~� (0)
_~� (0)

�
� ei! q Tb

�
~� (Tb)
_~� (Tb)

�
: (86)

Contrary to the Floquet approach, we thus obtain an extended Floquet
eigenstatewith an eigenvaluebeing locatedexactly on the unit circle. More-
over, in the ideal casewe needonly onestep of the Newton map to converge
to the solution, becausethe equations of motion are linear. Sometimesa
secondstep is neededdue to numerical errors done during the �rst step.

The obtained eigenstateis however in generalnot corresponding to the
desiredscattering setup, sincewe do not know whether on the right end of
our system the obtained state corresponds to plane wave traveling to the
right only. The reasonfor that is that extendedFloquet eigenstatesare two-
fold degeneratedfor in�nite systems.In order to proceedwe add another
Newton map with just two variables A and B such that the eigenstate
solution from the �rst map satis�es

� N = e� iq � i! q t ; (87)

which now implies that we have selecteda Floquet eigenstatewhich corre-
spondsto a plane wave traveling to the right at the right endof our system,
and thus satisfying our scattering setup. With the notation

� l (t) = � l (t)e� i! q t (88)

and remembering that at the ends of our system � l is a time-independent
complexnumber, the transmissioncoe�cien t can be expressedthrough the
obtained numbers A and B:

tq =
4sin2 q

j(A + iB )e� iq � � � N j2
: (89)

The described method55 is remarkably easy to handle, provides with ma-
chine precision computations, doesn't care about any symmetry and struc-
ture of the underlying breather solution and can be applied as well to any
related problem of scattering by a time-periodic scattering potential. In
Fig. 23 we plot 55 the computed transmission coe�cien t versus q and 
 b

for an acoustic system with V = 0 and w2 = w4 = 1. As expected the
transmissioncoe�cien t vanishesat q = � (plane wave band edgewith zero
group velocity), but also in this special caseof an acoustic system it takes
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Fig. 23. Transmission coe�cien t versus wave number q and breather frequency 
 b for
an acoustic chain (see text for details).

value t = 1 at q = 0 due to mechanical momentum conservation. Note the
two peaks in Fig. 23 where t = 1 again, due to bifurcations of localized
Floquet states from the contin uouspart of the Floquet spectrum.52;57

In Fig. 24 the above casefor 
 b = 4:5 is comparedwith the result for
a chain with additional w3 = 1.55 Note the additional resonant perfect
transmissionpeaksdue to additional localizedFloquet eigenstatesand also
the remarkableresonant perfect re
ection minima dueto Fanoresonances.54

Only recently theseFanoresonanceshavebeenexplainedby localizedmodes
of closed channels resonating with the open channel.56 In some limiting
casestheselocalizedmodeshavebeenevencomputednumerically to predict
and observe a Fano resonant re
ection for other systems.56

7. Breathers in dissipativ e systems

So far we have been discussing computational methods of studying
breathers in Hamiltonian lattices. Any experiment will however show up
with some dissipation. When this dissipation is of 
uctuating nature, it
could be simulated using a heat bath. However it is possible to consider
also simple deterministic extensionsof the above problems. In Josephson
junction systems(seethe chapters by Mazo and Ustinov in this volume)
this is actually even implemented experimentally . Herewewill only mention
someof the basicnewfeaturesoneis facedwith whencomputing dissipative
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Fig. 24. Transmission coe�cien t versus wave number q for 
 b = 4:5 for an acoustic
chain with w2 = w4 = 1 (dotted line) and additional w3 = 1 (solid line). (see text for
details).

breathers and their properties.46;58

7.1. Obtaining dissip ative breathers

Consider the following set of equationsof motion:

•x l = �
@H
@x l

� 
 _x l � I (90)

with

H =
X

l

[1 � cosx l � C (1 � cos(x l � x l � 1))] : (91)

For 
 = I = 0 this system is Hamiltonian and corresponds to the Takeno-
Peyrard model of coupled pendula.46;59 This model allows both for usual
discrete breathers, but also for so-calledroto-breathers. While for a usual
breather x l (t+ Tb) = x l (t) for all l , for the simplestversionof a roto-breather
one pendulum is performing rotations

x0(t + Tb) = x0(t) + 2� m : (92)

Here m is a winding number characterizing the roto-breather (again the
simplest realization is m = 1). Note that at variancewith a usual breather
(m = 0), roto-breathers are not invariant under time reversal.
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For nonzero
 and I = 0 the nonzerodissipation will lead to a decay of
all breather and roto-breather solutions. But for nonzerotime-independent
I roto-breathers may still exist. The reasonis that the rotating pendulum
will both gain energydue to the nonzerotorque I and dissipateenergydue
to the nonzerofriction 
 , so an energybalanceis possible(whereasthat is
impossiblefor breatherswith m = 0).

Instead of families of breather periodic orbits in Hamiltonian systems,
dissipative roto-breathers will be attractors in the phasespace.Attractors
are characterizedby a �nite volume basin of attraction surrounding them.
Any tra jectory which starts inside this basin, will be ultimately attracted
by the roto-breather. Thus dissipative breathers form a countable set of
solutions.

To computesuch a dissipativeroto-breather, we cansimply makea good
guessin the initial conditions and then integrate the equations of motion
until the roto-breather is reached. This method is very simple, but may
su�er from long transient times, and also from complicated structures of
the boundariesof the basin of attraction.

The Newton method can be applied here as well. Although we do not
know the precise period of the roto-breather, we do not need it either.
Instead of de�ning a map which integrates the phasespaceover a given
time Tb, we may de�ne a map which integrates the phasespaceof all but
the rotating pendulum coordinate from its initial value x 0(t = 0) = 0 to
x0(tmap ) = 2� m. Di�eren t tra jectories will have di�eren t values of t map

which is not a problem. The only two things we have to worry about are:
to �nd a tra jectory which leads to a rotation of x0 and as usual to be
su�cien tly close to the desired solution in order for the Newton map to
converge.Once the solution is found, Tb = tmap .

7.2. Perturbing dissip ative breathers

As long as a dissipative roto-breather is stable, the volume of its basin of
attraction is �nite, and small deviations will return the perturbed tra jec-
tory back to the breather. Upon the changeof somecontrol parameter the
breather may still persist but get unstable. Consider the linearized phase
space
o w around a roto-breather of (90,91):

•� l = �
X

m

@2H
@x l @xm

j f x l 0( t )g� m � 
 _� l : (93)

In analogy with 6.1 we may introducea (quasi-symplectic) matrix R which
mapsthe phasespaceof the perturbations onto itself by integration of (93)
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Fig. 25. Schematic view of an outcome of the Flo quet analysis of a dissipativ ebreather.
Flo quet eigenvalues (�lled circles), the unit circle (large radius) and the inner circle
of radius R (96) are plotted in the complex plane. Left picture: stable breather (all
eigenvaluesare located on the circle with radius R). Righ t picture: stable breather closeto
instabilit y (t wo eigenvalueshave collided on the inner circle, and one is departing outside
towards the unit circle). Note that the group of closely nearby lying eigenvalues on the
unit circle correspond to the plane wave contin uum (extended Flo quet eigenstates), while
the separated eigenvalues on the inner circle correspond to localized Flo quet eigenstates.

over one breather period.58 By using the transformation

� l (t) = e� 1
2 
 t � l (t) (94)

we obtain

•� l = �
X

m

@2H
@x l @xm

j f x l 0( t )g� m �
1
4


 2� l : (95)

Equations (95) de�ne a Floquet problem with a symplectic matrix F with
properties discussedabove. By backtransforming to R we �nd that those
eigenvalueswhich are located on the unit circle for F residenow on a circle
with lessradius

R(
 ) = e� 
 Tb =2 : (96)

If � is an eigenvalue of R, so are

� � ; e� 
 Tb
1
�

; e� 
 Tb
1

� � : (97)

There is still one eigenvalue � = 1 which corresponds to perturbations
tangent to the breather orbit. The related second eigenvalue is located
at e� 
 Tb , contrary to the Hamiltonian case.The schematic outcome of a
Floquet analysisof a dissipative breather is shown in Fig. 25.
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8. Computing quan tum breathers

A natural question is what remainsof discrete breathers if the correspond-
ing quantum problem is considered.60 Since the Schr•odinger equation is
linear and translationally invariant all eigenstatesmust obey the Bloch the-
orem. Thus we cannot expect eigenstatesof the Hamiltonian to be spatially
localized(on the lattice). On the other sidethe correspondencebetweenthe
quantum eigenvalue problem and the classicaldynamical evolution needs
an answer.

The concept of tunneling is a possible answer to this puzzle. Naively
speaking we quantize the family of periodic orbits associated with a dis-
crete breather located somewhereon the lattice. Notice that there are as
many such families as there are lattice sites. The quantization (e.g., Bohr-
Sommerfeld)yields someeigenvalues.Sincewe can perform the samepro-
cedurewith any family of discretebreather periodic orbits which di�er only
in their location on the lattice, we obtain N -fold degeneracyfor every thus
obtained eigenvalue, whereN stands for the number of lattice sites.Unless
we consider the trivial caseof, say, uncoupled lattice sites, these degen-
eracieswill be lifted. Consequently , we will instead obtain bands of states
with �nite band width which can even hybridize with other states. These
bands will be called quantum breather bands. The inversetunneling time
of a semiclassicalbreather from one site to a neighboring one is a measure
of the bandwidth.

We can then formulate the following expectation: if a classicalnonlinear
Hamiltonian lattice possessesdiscrete breathers, its quantum counterpart
should show up with nearly degeneratebandsof eigenstates,if the classical
limit is considered.The number of states in such a band is N , and the
eigenfunctions are given by Bloch-like superpositions of the semiclassical
eigenfunctions obtained using the mentioned Bohr-Sommerfeld quantiza-
tion of the classicalperiodic orbits. By nearly degeneratewe meanthat the
bandwidth of a quantum breather band is much smaller than the spacing
betweendi�eren t breather bandsand the averagelevel spacingin the given
energydomain, and the classicallimit implies large eigenvalues.

Another property of a quantum breather state is that such a state shows
up with exponential localization in appropriate correlation functions.61 This
approach selectsall particle-lik e states, no matter how deep one is in the
quantum regime. In this sensequantum breather statesbelong to the class
of particle-lik e bound states.

Intuitiv ely it is evident that for largeenergiesand N the density of states
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becomeslarge too. What will happen to the expected quantum breather
bands then? Will the hybridization with other non-breather states destroy
the particle-lik enature of the quantum breather, or not? What is the impact
of the nonintegrabilit y of most systemsallowing for classicalbreather solu-
tions? Sincethe quantum casecorresponds to a quantization of the classical
phasespace,we could expect that chaotic tra jectories lying nearby classical
breather solutions might a�ect the corresponding quantum eigenstates.

From a computational point of view we are very much restricted in
our abilities to study quantum breathers. Ideally we would like to study
quantum properties of a lattice problem in the large energy domain (to
make contact with classicalstates) and for large lattices. This is typically
impossible, since solving the quantum problem amounts to diagonalizing
the Hamiltonian matrix with rank bN where b is the number of states per
site, which should be large to make contact with classicaldynamics. Thus
typically quantum breather states have been so far obtained numerically
for small one-dimensionalsystems(N � 8).61;62;63

One of the few exceptionsis the quantum discretenonlinear Schr•odinger
equation with the Hamiltonian 64

H = �
NX

l=1

�
1
2

(ay
l al )2 + C(ay

l al+1 + h:c:)
�

(98)

and the commutation relations

al ay
m � ay

m al = � lm (99)

with � lm being the standard Kronecker symbol. This Hamiltonian conserves
the total number of particles

B =
X

l

nl ; nl = ay
l al : (100)

For b particles and N sites the number of basisstates is

(b+ N � 1)!
b!(N � 1)!

: (101)

For b = 0 there is just one trivial state of an empty lattice. For b = 1
there are N stateswhich correspond to one-bosonexcitations. Thesestates
behavepretty much asclassicalextendedwavestates.For b = 2 the problem
is still exactly solvable, becauseit corresponds to a two-body problem on
a lattice. A corresponding numerical solution is sketched in Fig. 26.64 Note
the wide two-particle contin uum, and a single band located below. This
single band corresponds to quasiparticle states characterized by one single
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Fig. 26. Spectrum of the quantum DNLS with b = 2 and N = 101. The energy eigen-
values are plotted versus the wavenumber of the eigenstate.

quantum number (related to the wavenumber q). These states are two-
particle bound states. The dispersion of this band is given64 by

E = �

r

1 + 16C2 cos2
� q

2

�
: (102)

Any eigenstatefrom this two-particle bound state band is characterizedby
exponential localization of correlations, i.e. when represented in someset
of basisstates, the amplitude or overlap with a basis state where the two
particles are separatedby somenumber of sites is exponentially decreasing
with increasing separation distance. Note that a compact bound state is
obtained for q = � � , i.e. for thesewave numbers basisstates with nonzero
separation distance do not contribute to the eigenstateat all.

Increasing the number of particles to b = 3 or larger calls for computa-
tional tools. Eilb eck65 has recently provided with updated codes in Maple
in order to deal with systemswith up to b = 4 and N = 14, implying a
Hilb ert spacedimension of 2380 (there are

�
N + b� 1

b

�
ways to distribute b

identical particles on N sites). While these studies revealed a lot of new
structures of the corresponding spectra, we still have to wait for more sys-
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tematic studies. Since the classicalregime is still not easily reachable for
theselarge systems,we will discussin the next sectionssystematic studies
of small systems,which allow to boost the energiesinto the semiclassical
domain.

8.1. The dimer

A series of papers was devoted to the properties of the quantum
dimer.66;67;68 This systemdescribes the dynamicsof bosons
uctuating be-
tweentwo sites.The number of bosonsis conserved, and together with the
conservation of energythe system appearsto be integrable. Of course,one
cannot consider spatial localization in such a model. However, a reduced
form of the discrete translational symmetry - namely the permutational
symmetry of the two sites - can be imposed.Togetherwith the addition of
nonlinear terms in the classicalequations of motion the dimer allows for
classicaltra jectorieswhich are not invariant under permutation. The phase
spacecan be completely analyzed,all isolated periodic orbits can be found.
There appearsexactly onebifurcation on onefamily of isolated periodic or-
bits, which leadsto the appearanceof a separatrix in phasespace.The sep-
aratrix separatesthree regions- one invariant and two non-invariant under
permutations. The subsequent analysisof the quantum dimer demonstrated
the existenceof pairs of eigenstateswith nearly equal eigenenergies.66 The
separatrix and the bifurcation in the classicalphasespacecan be traced in
the spectrum of the quantum dimer.68

The classicalHamiltonian may be written as

H = 	 �
1	 1 + 	 �

2 	 2 +
1
2

�
(	 �

1	 1)2 + (	 �
2	 2)2

�
+ C (	 �

1	 2 + 	 �
2	 1) : (103)

with the equationsof motion _	 1;2 = i@H =@	 �
1;2. The model conserves the

norm (or number of particles) B = j	 1 j2 + j	 2j2.
Isolated periodic orbits (IPO) satisfy the relation gradH jj gradB. Let

us parameterizethe phasespaceof (103) with 	 1;2 = A1;2ei� 1; 2 , A1;2 � 0.
It follows that A1;2 is time independent and � 1 = � 2 + � with � = 0; �
and _� 1;2 = ! being also time independent. Solving the algebraic equations
for the amplitudes of the IPO's we obtain

I : A2
1;2 =

1
2

B ; � = 0 ; ! = 1 + C +
1
2

B ; (104)

I I : A2
1;2 =

1
2

B ; � = � ; ! = 1 � C +
1
2

B ; (105)

I I I : A2
1 =

1
2

B
�

1 �
p

1 � 4C2=B2
�

; � = 0 ; ! = 1 + B : (106)
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IPO II I corresponds to two elliptic solutions which break the permutational
symmetry. IPO II I exist for B � Bb with Bb = 2C and occur through a
bifurcation from IPO I. The corresponding separatrix manifold is uniquely
de�ned by the energy of IPO I at a given value of B � Bb. This manifold
separatesthree regions in phasespace- two with symmetry broken solu-
tions, each one containing one of the IPO's I I I, and one with symmetry
conserving solutions containing the elliptic IPO II. The separatrix mani-
fold itself contains the hyperbolic IPO I. For B � Bb only two IPO's exist
- IPO I and I I, with both of them being of elliptic character. Remarkably
there exist no other IPO's, and the mentioned bifurcation and separatrix
manifolds are the only onespresent in the classicalphasespaceof (103).

To concludethe analysisof the classicalpart, we list the energyproper-
ties of the di�eren t phasespaceparts separatedby the separatrix manifold.
First it is straightforward to show that the IPO's (104)-(106) correspond to
maxima, minima or saddlepoints of the energyin the allowedenergyinter-
val for a given value of B , with no other extrema or saddlepoints present.
It follows

E1 = H (IPO I) = B +
1
4

B 2 + CB ; (107)

E2 = H (IPO II) = B +
1
4

B 2 � CB ; (108)

E3 = H (IPO II I) = B +
1
2

B 2 + C2 : (109)

For B < Bb we have E1 > E2 (IPO I - maximum, IPO II - minimum). For
B � Bb it follows E3 > E1 > E2 (IPO II I - maxima, IPO I - saddle, IPO
II - minimum). If B < Bb, then all tra jectories are symmetry conserving.
If B � Bb, then tra jectories with energiesE1 < E � E3 are symmetry
breaking, and tra jectories with E2 � E � E1 are symmetry conserving.

The quantum eigenvalue problem amounts to replacing the complex
functions 	 ; 	 � in (7) by the boson annihilation and creation operators
a; ay with the standard commutation relations (to enforce the invariance
under the exchange	 , 	 � the substitution has to be done on rewriting
		 � = 1=2(		 � + 	 � 	)):

H =
5
4

+
3
2

�
ay

1a1 + ay
2a2

�
+

1
2

�
(ay

1a1)2 + (ay
2a2)2

�
+ C

�
ay

1a2 + ay
2a1

�
:

(110)
Note that

�

= 1 here, so the eigenvaluesb of B = ay
1a1 + ay

2a2 are integers.
SinceB commutes with H we can diagonalizethe Hamiltonian in the basis
of eigenfunctionsof B . Each value of b corresponds to a subspaceof the
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dimension(b+ 1) in the spaceof eigenfunctionsof B . Theseeigenfunctions
are products of the number states jni of each degreeof freedomand can be
characterizedby a symbol jn; mi with n bosonsin the site 1 and m bosons
in the site 2. For a given value of b it follows m = b� n. Sowe can actually
label each state by just one number n: jn; (b� n)i � jni . Consequently the
eigenvalue problem at �xed b amounts to diagonalizing the matrix

H nm =

8
>><

>>:

5
4 + 3

2b+ 1
2

�
n2 + (b � n)2

�
n = m

C
p

n(b+ 1 � n) n = m + 1
C

p
(n + 1)(b� n) n = m � 1

0 else

(111)

wheren; m = 0; 1; 2; :::; b. Notice that the matrix H nm is a symmetric band
matrix. The additional symmetry H nm = H (b� n ) ;(b� m ) is a consequenceof
the permutational symmetry of H . For C = 0 the matrix H nm is diagonal,
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Fig. 27. Eigenvalues versus ordered state number ~n for symmetric and antisymmetric
states (0 < ~n < b=2 for both typ es of states). Parameters: b = 600 and C = 50. Inset:
Densit y of states versus energy.

with the property that each eigenvalue is doubly degenerate(except for the
state jb=2) for the even valuesof b). The classicalphasespacecontains only
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symmetry broken tra jectories,with the exceptionof IPO II and the separa-
trix with IPO I (in fact in this limit the separatrix manifold is nothing but
a resonant torus containing both IPO's I and I I). So with the exception of
the separatrix manifold, all tori break permutational symmetry and come
in two groupsseparatedby the separatrix. Then quantizing each group will
lead to pairs of degenerateeigenvalues - one from each group. There is a
clear correspondenceto the spectrum of the diagonal (C = 0) matrix H nm .
The eigenvalues H 00 = H bb correspond to the quantized IPO's I I I. With
increasing n the eigenvalues H nn = H (b� n ) ;(b� n ) correspond to quantized
tori further away from the IPO II I. Finally the states with n = b=2 for
even b or n = (b � 1)=2 for odd b are tori most close to the separatrix.
Switching the side diagonalson by increasingC will lead to a splitting of
all pairs of eigenvalues.In the caseof small valuesof b thesesplittings have
no correspondenceto classicalsystem properties. However, in the limit of
large b we enter the semiclassicalregime,and due to the integrabilit y of the
system,eigenfunctionsshould correspond to tori in the classicalphasespace
which satisfy the Einstein-Brillouin-Keller quantization rules. IncreasingC
from zero will lead to a splitting � En of the eigenvalue doublets of C = 0.
In other words, we �nd pairs of eigenvalues, which are related to each
other through the symmetry of their eigenvectorsand (for small enoughC)
through the small value of the splitting. Thesesplittings have beencalcu-
lated numerically and using perturbation theory.66;68 In the limit of large
b the splittings are exponentially small for the energiesabove the classi-
cal separatrix energy (i.e. for classicaltra jectories which are not invariant
under permutation). If the eigenenergiesare lowered below the classical
separatrix energy, the splittings grow rapidly up to the meanlevel spacing.

In Fig. 27 the results of a diagonalization of a systemwith 600particles
(b = 600) is shown.68 The inset shows the density of states versusenergy,
which nicely con�rms the predicted singularity at the energyof the separa-
trix of the classicalcounterpart. In order to computethe exponentially small
splittings, we may usee.g. a Mathematica routine which allows to choose
arbitrary valuesfor the precisionof computations. Here we choseprecision
512.In Fig. 28 the numerically computed splittings arecomparedto pertur-
bation theory results. As expected, the splittings becomeextremely small
above the separatrix. Consequently these states will follow for long times
the dynamics of a classicalbroken symmetry state.
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Fig. 28. Eigenvalue splittings versus ~n for b = 150 and C = 10. Solid line - numerical
result, dashed line - perturbation theory . Inset: Same for b = 600 and C = 50. Only
numerical results are shown.

8.2. The trimer

The integrabilit y of the dimer does not allow a study of the in
uence of
chaoson the tunneling properties of the mentioned pairs of eigenstates.A
natural extensionof the dimer to a trimer adds a third degreeof freedom
without adding a new integral of motion. Consequently the trimer is nonin-
tegrable. A still comparatively simple numerical quantization of the trimer
allows to study the behavior of many tunneling states in the large-energy
domain of the eigenvalue spectrum.69

Similarly to the dimer, the quantum trimer Hamiltonian is represented
in the form

H =
15
8

+
3
2

(ay
1a1 + ay

2a2 + ay
3a3) +

1
2

h
(ay

1a1)2 + (ay
2a2)2

i

+ C(ay
1a2 + ay

2a1) + � (ay
1a3 + ay

3a1 + ay
2a3 + ay

3a2) : (112)

Again B = ay
1a1 + ay

2a2 + ay
3a3 commutes with the Hamiltonian, thus we

can diagonalize (112) in the basis of eigenfunctions of B . For any �nite
eigenvalue b of B the number of states is �nite, namely (b + 1)(b + 2)=2.
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Thus the in�nite dimensionalHilb ert spaceseparatesinto an in�nite set of
�nite dimensionalsubspaces,each subspacecontaining only vectors with a
given eigenvalue b. Theseeigenfunctionsare products of the number states
jni of each degreeof freedomand canbe characterizedby a symbol jn; m; l i
wherewe have n bosonson site 1, m bosonson site 2, and l bosonson site
3. For a given value b it follows that l = b � m � n. So we can actually
label each state by just two numbers (n; m): jn; m; (b� n � m)i � jn; mi .
Note that the third site added to the dimer is di�eren t from the �rst two
sites. There is no boson-boson interaction on this site. Thus site 3 serves
simply as a bosonreservoir for the dimer. Dimer bosonsmay now 
uctuate
from the dimer to the reservoir. The trimer has the same permutational
symmetry as the dimer.

The matrix elements of (112) betweenstates from di�eren t b subspaces
vanish. Thus for any given b the task amounts to diagonalizing a �nite
dimensionalmatrix. The matrix hasa tridiagonal block structure, with each
diagonal block being a dimer matrix (111). The nonzeroo�-diagonal blocks
contain interaction terms proportional to � . Since H commutes with P̂q

we considersymmetric j	 i s and antisymmetric j	 i a states. The structure
of the corresponding symmetric and antisymmetric decompositions of H
is similar to H itself. In the following we will present results for b = 40.
We will also drop the �rst two terms of the RHS in (112), becausethese
only lead to a shift of the energy spectrum. Sincewe evaluate the matrix
elements explicitly , we needonly a few secondsto obtain all eigenvaluesand
eigenvectors with the help of standard Fortran routines. In Fig. 29 we plot
a part of the energyspectrum as a function of � for C = 2.69 As discussed
above, the Hamiltonian decomposesinto noninteracting blocks for � = 0,
each block corresponding to a dimer with a bosonnumber between0 and b.
For � 6= 0 the nonzeroblock-block interaction leadsto typical featuresin the
spectrum, like, e.g., avoided crossings.The full quantum energy spectrum
extends roughly over 103, which implies an averagedspacingof order 100.
Also the upper third of the spectrum is diluted comparedto the lower two
thirds.

The correspondenceto the classicalmodel is obtained with the use of
the transformation Ecl = Eqm =b2 + 1 and for parametersC=band � =b(the
classicalvalue for B is B = 1).

The main result of this computation so far is that tunneling pairs of
eigenstatesof the dimer persist in the nonintegrable regime� 6= 0. However
at certain pair-dependent values of � a pair breaks up. From the plot in
Fig. 29 we cannot judge how the pair splittings behave. In Fig.30 we plot
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Fig. 29. A part of the eigenenergy spectrum of the quantum trimer as a function of
� with b = 40 and C = 2. Lines connect data points for a given state. Solid lines -
symmetric eigenstates; thic k dashed lines - antisymmetric eigenstates.

the pair splitting of the pair which has energy � 342 at � = 0.70 Denote
with x; y; z the eigenvaluesof the site number operators n1; n2; n3. We may
considerthe quantum states of the trimer at � = 0 when z is a good quan-
tum number and then follow the evolution of thesestateswith increasing� .
The state for � = 0 can be traced back to C = 0 and be thus characterized
in addition by x and y. The chosenpair states are then characterized by
x = 26(0), y = 0(26) and z = 14 for C = � = 0. Note that this pair survives
approximately 30 avoidedcrossingsbeforeit is �nally destroyed at coupling
strength � � 2:67 as seenin Fig. 29.

From Fig. 30 we �nd that the splitting rapidly increasesgaining about
eight ordersof magnitude when � changesfrom 0 to slightly above 0.5.Then
this rapid but neverthelesssmooth rise is interrupted by very sharp spikes
when the splitting � E rises by several orders of magnitude with � chang-
ing by mere percents and then abruptly changesin the opposite direction
sometimeseven overshooting its pre-spike value. Such spikes,somelarger,
somesmaller, repeat with increasing� until the splitting value approaches
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Fig. 30. Level splitting versus � for a level pair as described in the text. Solid line -
numerical result. Dashed line - semiclassical approximation. Filled circles - location of
wave function analysis in Fig. 31.

the mean level spacing(of order one in the �gure). Only then one may say
that the pair is destroyed since it can be hardly distinguished among the
other trimer levels.

Another observation is presented in Fig. 31.70 We plot the intensity
distribution of the logarithm of the squaredsymmetric wave function of our
chosenpair for �v e di�eren t valuesof � = 0 ; 0:3 ; 0:636 ; 1:0 ; 1:8 (their
locations are indicated by �lled circles in Fig. 30). We use the eigenstates
of B as basisstates. They can be represented as jx; y; z > wherex; y; z are
the particle numbers on sites 1, 2, 3, respectively. Due to the commutation
of B with H two site occupation numbers are enough if the total particle
number is �xed. Thusthe �nal encoding of states(for a givenvalueof b) can
be chosenas jx; z) (seealso discussionabove for details). The abscissain
Fig. 31 is x and the ordinate is z. Thus the intensity plots provide us with
information about the order of particle 
o w in the course the tunneling
process.For � = 0 (Fig. 31(a)) the only possibility for the 26 particles
on site 1 is to directly tunnel to site 2. Site 3 is decoupled with its 14
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Fig. 31. Contour plot of the logarithm of the symmetric eigenstate of the chosen tunnel-
ing pair (cf. Fig. 30) for �v e di�eren t values of � = 0; 0:3; 0:636; 1:0; 1:8 (their location
is indicated by �lled circles in Fig. 30). (a): three equidistan t grid lines are used; (b-e):
ten grid lines are used. Minim um value of squared wave function is 10� 30 , maxim um
value is about 1.
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particles not participating in the process.The squaredwave function takes
the form of a compact rim in the (x; z) plane which is parallel to the x axis.
Nonzero values of the wave function are observed only on the rim. This
direct tunneling hasbeendescribed in 8.1.When switching on somenonzero
coupling to the third site, the particle number on the dimer (sites 1,2) is
not conserved anymore. The third site serves as a particle reservoir which
is able either to collect particles from or supply particles to the dimer. This
coupling will allow for nonzerovaluesof the wave function away from the
rim. But most importantly , it will changethe shape of the rim. We observe
that the rim is bended down to smaller z values with increasing � . That
implies that the order of tunneling (when, e.g., going from large to small
x values) is as follows: �rst, someparticles tunnel from site 1 to site 2 and
simultaneously from site 3 to site 2 (Fig. 32(a)). Afterwards particles 
o w
from site 1 to both sites2 and 3 (Fig. 32(b)). With increasing� the structure
of the wave function intensity becomesmore and more complex, possibly
revealing information about the classicalphasespace
o w structure. Thus

===>

==
=>

===>

===>

1 2

3

1 2

3

(a) (b)

Fig. 32. Order of tunneling in the trimer. Filled large circles - sites 1 and 2, �lled small
circle - site 3. Arro ws indicate direction of transfer of particles.

we observe three intriguing features.First, the tunneling splitting increases
by eight ordersof magnitude when � increasesfrom zeroto 0.5. This seems
to be unexpected, since at those values perturbation theory in � should
be applicable (at least Fig. 29 indicates that this should be true for the
levelsthemselves).The semiclassicalexplanation of this result wasobtained
in [70].
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The secondobservation is that the tunneling beginswith a 
o w of par-
ticles from the bath (site 3) directly to the empty site which is to be �lled
(with simultaneous
o w from the �lled dimer site to the empty one). At the
end of the tunneling processthe initially �lled dimer site is giving particles
back to the bath site. Again this is an unexpected result, since it implies
that the particle number on the dimer is increasingduring the tunneling,
which seemsto decreasethe tunneling probabilit y, according to the results
for an isolated dimer. These�rst two results are closelyconnected(see[70]
for a detailed explanation). The third result concernsthe resonant structure
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Fig. 33. Level splitting variation at avoided crossings. Inset: Variation of individual
eigenvalues participatin g in the avoided crossing. Solid lines - symmetric eigenstates,
dashed lines - antisymmetric eigenstates.

on top of the smooth variation in Fig. 30. The resonant enhancements and
suppressionsof tunneling are related to avoided crossings.Their presence
implies that a �ne tuning of the system parametersmay strongly suppress
or enhance tunneling which may be useful for spectroscopic devices. In
Fig. 33 we show the four various possibilities of avoided crossingsbetween
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a pair and a single level and betweentwo pairs, and the schematic outcome
for the tunneling splitting. 70

8.3. Quantum roto-br eather s

When discussingclassicalbreather solutions we have been touching some
aspectsof roto-breathers, including their property of beingnot invariant un-
der time reversalsymmetry. In a recent study Dorignacet al haveprovided71

with an analysisof the corresponding quantum roto-breather properties in
a dimer with the Hamiltonian

H =
2X

i =1

�
p2

i

2
+ � (1 � cosx i )

�
+ "(1 � cos(x1 � x2)) : (113)

The classicalroto-breather solution consistsof one pendulum rotating and
the other oscillating with a given period Tb. Sincethe model has two sym-
metries - permutation of the indicesand time-reversalsymmetry, which may
be both broken by classicaltra jectories, the irreducible representations of
quantum eigenstatescontain four symmetry sectors(with possiblecombina-
tions of symmetric or antisymmetric stateswith respect to the two symme-
try operations). Consequently , a quantum roto-breather state is belonging
to a quadruplet of weakly split states rather than to a pair as discussed
above. The schematic representation of the appearanceof such a quadru-
plet is shown in Fig. 34.71 The obtained quadruplet has an additional �ne
structure as comparedto the tunneling pair of the above considereddimer
and trimer. The four levels in the quadruplet de�ne three characteristic
tunneling processes.Two of them are energy or momentum transfer from
one pendulum to the other one, while the third one corresponds to total
momentum reversal (which restorestime reversal symmetry). The depen-
denceof the corresponding tunneling rates on the coupling " is shown for a
speci�c quadruplet from [71] in Fig. 35. For very weak coupling " � 1 the
fastest tunneling processwill be momentum reversal, since tunneling be-
tweenthe pendula is blocked. However assoon asthe coupling is increased,
the momentum reversalturns into the slowestprocess,with breather tunnel-
ing from one pendulum to the other one being orders of magnitude larger.
Note that again resonant features on these splitting curves are observed,
which are related to avoided crossings.
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Fig. 34. Schematic representati on of the sum of two pendula spectra. Straigh t solid
arrows indicate the levels to be added and dashed arrows the symmetric (p ermutation)
operation. The result is indicated in the global spectrum by a curv ed arrow. The con-
struction of the quantum roto-breathe r state is explicitly represented.

9. Some applications instead of conclusions

Instead of providing with a standard conclusion, we will discuss in this
last part someselectedcomputational results of discrete breather studies,
which have been boosting the understanding of various aspects of DBs or
con�rming analytical predictions.

Rather simple numerical observations of breathers showed that in one-
dimensional acoustic chains a breather is usually accompaniedby a kink-
type static lattice distortion 72 - a fact later explained73 and even used in
analytical existenceproofs.17;19 Other numerical observations revealedthat
stable discretebreathersmay be perturbed in an asymmetric way such that
a separatrix may be crossedleading to possiblemovabilit y (seediscussion
in [6]).

While exact moving breather solutions in generic Hamiltonian lattices
have not been observed, the understanding of somereasons74;75 and their
removal by consideringdissipative breathers successfullyallowed to obtain
dissipative moving breathers.58

Tracesof energy thresholds of discrete breathers47 have beenobserved
in the properties of correlation functions at thermal equilibrium. 77
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Fig. 35. Dependence of di�eren t splittings of a quadruplet on " . Only three of them
have been displayed, each being associated with a given tunneling pro cess.71

Numerical studies of collisions between moving breathers showed
that the energy exchange typically leads to the growth of the largest
breather34;76;31 - a fact which is not well explained yet.

The explained high precision numerical routines for obtaining discrete
breathers have beenused in order to obtain discrete breathers in acoustic
two-dimensionallattices.73 The predicted algebraicdecay of the static lat-
tice deformation and its dipole symmetry have beennicely observed prior
to analytical proofs of existence.19

Another example concerns the case of algebraically decaying (long
range) interactions on a lattice. While analytical proofs correctly stated
that the asymptotic spatial decay of breatherswill be alsoalgebraicin such
a case,numerical high precision computations showed that there is more
to say.78 The spatial breather pro�le in such systemsshows an exponential
decay on intermediate length scaleswith a crossover to algebraic decay on
larger distances.Afterwards this crossover was explained analytically and
estimatesof the crossover distancewell coincided with numerical results.

The tracing of bifurcations and instabilities explainedan often observed
puzzling exchange of stabilit y of various breather types. The outcome of
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the numerical studieswasthat thesedi�eren t typesof breather families are
connectedthrough unexpected asymmetric breather families.50

The understanding that two-channel scattering of plane waves by
breathers is inelastic was used to perform numerical experiments which
nicely showed the expected slow energy decreaseof a breather in such a
case.52

The appearanceof local Floquet modesaccording to analytical predic-
tions shouldleadto the appearanceof perfect transmissionof wavesthrough
breathers.57;52 This fact hasbeennicely observed in variousnumerical stud-
ies.

The theoretical understanding of Fano resonancesin wave scattering
by breathers lead to a numerical scheme which allows to compute and
thus predict the parameters of various models which should provide with
resonant Fano backscattering. Direct numerical scattering computations
have shown the correctnessof theseconsiderationsand computations.56

The launching of a localized initial state in a quantum trimer showed
up with unexpected echoes in the quantum evolution. These echoes have
been explained with the help of the numerically obtained spectrum and
eigenfunctionsby relating it to the existenceof quantum breather states.69

The interested user may consult the web page http://www.mpipks-
dresden.mpg.de/� 
ac h/h tml/dbreather.h tml for java applications written
by A. E. Miroshnichenko, which allow for launching your favorite breather
in your favorite system. There the interested reader may also �nd more
references,related web addressesand links to related activities.
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