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CHAPTER 1
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Dedicated to the Memory of Alexander Anatolievich Ovchinnikov

This chapter provides a description of the main computational tools for
the study of discrete breathers. It starts with the obsenation of breathers
through simple numerical runs, their study using targeted initial con-
ditions, and discrete breather impact on transient processesand ther-
mal equilibrium. Next we describe a set of numerical methods to obtain
breathers up to machine precision, including the Newton method. We
explain the basic approaches of computing the linear stabilit y properties
of these excitations, and proceedto compute wave scattering by discrete
breathers, and to briey discusscomputational aspects of studying dissi-
pative breathers. In a nal part of this chapter we presert computational
approades of studying quantum discrete breathers.

1. Intro duction

The past decadewitnessedremarkable developmerts in the study of non-
linear localized modesin di erent physical systems.One of the most ex-
citing results has been the discovery of stable highly localized modes in
spatial lattices,>2® coined discrete breathers (DB) or intrinsic localized
modes*567 The discretenessof space- i.e. the usageof a spatial lattice
- is crucial in order to provide structural stability for spatially localized
excitations. Spatial discretenesds a very commonsituation for various ap-
plications from e.g. solid state physics. Recernt studies have shavn that
e ects of spatial discretenesscan be important in many other systems,in-
cluding photonic crystals, coupled optical wave guides, coupled Josephson
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junctions, Bose-Einsteincondensatesn optically induced lattices and mi-
cromedanical cartilever systems(seethe more detailed discussionbelow).

Discretenessis useful for avoiding resonanceswith plane wave spectra,
which are bounded for spatial lattices, as opposedto the typical caseof
a spacecortinuous eld equation. DBs are spatially localized and time-
periodic excitations in nonlinear lattices. Their structural stability and
generic existenceis due to the fact that all multiples of their fundamen-
tal frequency are out of resonancewith plane waves. Thus localization is
obtained in a systemwithout additional inhomogeneities.Notably theseex-
citations exist independert of the lattice dimension, number of degreesof
freedomper lattice site and other details of the systemunder consideration
(see[6] and referencegherein).

While during the rst years studies of intrinsic localized modes have
beenmostly of mathematical nature, experimertal results soon moved into
the game. The discrete breather concepthas beenrecerily applied to vari-
ous experimental situations. Light injected into a narrow waveguidewhich
is weakly coupledto parallel waveguides(characteristic diameter and dis-
tances of order of micrometers, nonlinear optical medium basedon GaAs
materials) dispersesto the neighboring channelsfor small eld intensities,
but localizesin the initially injected wave guide for large eld intensities8
Notably the waveguidesmay be ordered both in a one-dimensionalarray
as well asin a two-dimensional structure.® Furthermore it was shovn in
accord with theoretical predictions, that self-defacusing Kerr nonlineari-
ties (which would not provide soliton formation in a spatially homogeneous
medium) when combined with the spatial discretenessllow for the forma-
tion of DBs.® Bound phonon states (up to sewen participating phonons)
have been obsened by overtone resonanceRaman spectroscoyy in PtCl
mixed valencemetal compounds!® Bound states are quantum versions of
classicaldiscrete breather solutions. Spatially localizedvoltage dropsin Nb-
basedJosephsonjunction ladders have beenobsened and characterized!
(typical size of a junction is a few micrometers). These states correspnd
to generalizations of discrete breathers in dissipative systems. Localized
modesin anti-ferromagnetic quasi-one-dimensionakrystals have been ob-
senedin [12]. And nally receri obsenations of localizedvibrational modes
in micromedanical cartilever oscillators arrays have beenreported in [13].

All these activities demonstrate that the concept of intrinsic localized
modes, or discrete breathers, as predicted more than 10 years ago, has a
strong potential for generalizationsto and applications in various areas of
science.At the sametime we are facing a dramatic enlargemen of physics
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researtr areasto articial or man-made deviceson the micrometer and
nanometer scales(of both optical and solid state nature), together with

a huge interest growing in the area of quantum information processing.
We may safely expect interesting new developmerts in these areas, which
will be connectedin various ways to the understanding of the concept of
nonlinear localizedmodes.One exampleis the recent connectionof discrete
breathers and the physics of Bose-Einsteincondensatesn optical traps.

We stresshere that the researti on DBs was initially purely theoreti-
cal, while experiments moved into the gameat a later stage. It turned out
that it needsa bit of curiosity, a simple computer, and a bit of surprise
after observingthat localized excitations in perfectly ordered lattices do
not decgy into extended states. The reasonwhy theory could ewlve that
fast and that far during a couple of years, is becausethe systemsunder
study are described using coupled ordinary di erential equations (ODE),
and becausethe objects of interest are highly localized on the lattice, i.e.
often a few lattice sites (or ODEs respectively) are enoughto capture the
main properties. The rest of the lattice (or of the many ODESs) can be
takeninto accourt using analytical considerationswith reasonableapprox-
imations, which are always systematically tested afterwards in numerical
simulations. This fruitful combination of analytical and numerical meth-
ods has lead to an enormous number of key results on DB properties. At
the prominent edge of this spectrum we now nd a whole set of rigor-
ous methods to prove DB existenceimplicitly .15:16:17:18:19:20:21 Remarkably
even suc rigorous mathematical existenceproofs'® have beenimmediately
turned into highly e cien t numerical toolsfor computing DB solutions with
machine precision. A large part of the DB studies can be thus characterized
truly ascomputational ones.This chapter is written in order to provide the
interested reader with knowledge about the main computational tools to
study DB properties. We will usually refer to the simplest model systems,
and commert on expected or known problemswhich may occur when more
complicated systemsare chosen.

Weimplicitly assumedhat the above discussionof computational meth-
ods is concernedwith classicalphysics. Once DBs are identi ed for a given
system or class of systems,a natural question is what sort of eigenfunc-
tions of the correspnding quantum Hamiltonian operator may be coined
guantum DBs. While the quantum problem seemsto be just an eigervalue
problem, it is much harder to be studied numerically ascomparedto its clas-
sical courterpart. The reasonis that in many caseseven the Hilb ert space
of a singlelattice site may bein nite dimensional. But even for nite local
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dimensions,the dimension of the lattice Hilb ert spaceis typically growing
exponertially with the system size.In addition straightforward solving of
the quantum problem implies diagonalization of the Hamiltonian. So the
successof computational studies of classicalDBs ends abruptly when we
erter the quantum world. Neverthelessthe hugeaccumnulated knowledgeon
classicalDBs can be usedto help formulate predictions for quantum DB
properties. But to con rm these predictions we have to solve the quantum
problem numerically, and are thus typically restricted either to small sys-
tems (two or three lattice sites, which makesthe problem more an abstract
model for moleculesrather than for extended attices) or to the low energy
domain of larger lattices (howewver note that ewvenin the caseof a spin one-
half lattice exact diagonalizations are restricted to a maximum of about
twerty sites).

Let us set the stage now by choosing a generic class of Hamiltonian
lattices:

X 1
H= ép|2+ V() + W x 1) (1)
[

The sum index integer | marks the lattice site number of a possibly in -
nite chain, and x; and p; are the canonically conjugated coordinate and
momertum of a degreeof freedom assaiated with site number I. The on-
site potential V and the interaction potential W satisfy V(0) = W(0) =
VY0) = WY0) = 0 and V0); W0) 0. This choice ensuresthat the
classicalground state x; = p = 0 is a minimum of the energy H. The
equations of motion read

xi=psp= VIx) WO x )+ Woxxa x): @)

If we linearize the equations of motion around the classicalground state,
we obtain a set of linear coupleddi erential equationswith solutions being
small amplitude plane waves:

xi(t) eat @122 vq0) + awR0) sin? g : 3)
The dispersionrelation ! ¢ is shown in Fig. 1 for the caseof an optical plane
wave spectrum V °{0) > 0 and for an acoustic spectrum Vv °{0) = 0. While
the rst oneis characterized by a nonzero frequency gap below the spec-
trum, the latter oneis gaplessdue to the consenration of total medanical
momertum (at least for the linearized equations of motion). Both cases
share the common and most important feature that the dispersion rela-
tion is periodic in the wave number g and possessesa nite upper bound.
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Fig. 1. The dispersion relation of small amplitude plane waves of model (1).

Another important feature of this dispersion is the group velocity of plane
waves Vg (0):

Yo(0) = d(j—; (4)

which vanishesat the nonzeroband edgesof ! .

When studying the properties of the original Hamiltonian problem (1)
numerically for say N sites,wethus dealwith a 2N dimensionalphasespace
and as much coupled rst order ODEs (2). The chosensystem is rather
simple. Neverthelessfor most of the results discussedbelow complications
likelarger interaction range, increaseof the lattice dimension, more degrees
of freedomper site (or a better unit cell) are not of crucial importance and
can be straightforwardly incorporated. We will provide with useful hints
whenewer sud generalizationsmay lead to lesstrivial obstacles.

To give a avour of what discrete breathers are in sud simple models,
we plot three di erent typesof them schematically in Fig. 2. CaseA cor-
responds to an acoustic chain with V = 0 and nonlinear functions W°.
Typically simplest stable breathers involve two neighbors oscillating out
of phasewith large amplitudes. CaseB is similar to A, but W is a peri-
odic function. In this caseroto-breathers exist, i.e. in the simplest caseone
degreeof freedom s rotating, while the rest is oscillating. Finally caseC
correspnds to an optical chain with nonzeroV. In this caseead degreeof
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Fig. 2. Three dieren t discrete breather types. Seetext for details.

freedom correspnds to an oscillator moving in V and coupled to nearest
neighbors by W. A simple breather solution consistsof one oscillator oscil-
lating with a large amplitude. In all three casesthe oscillations in the tails
will have lessamplitude with growing distance from the certer, and vanish
exactly if an in nite chain is considered.Note that similar excitations can
be easily constructed for large lattice dimension.

2. A bit on numerics of solving ODEs

As mertioned in the introduction, DB studies in classical systems are
mainly about solving coupled ODEs. So before coming to the actual topic
of this chapter, let us discussbrie y somerelevant informations concerning
integrating ODEs. The basic problem is not the coupling betweendi erent
ODEs, but rst the integration of a single ODE. If we are heading for a
speci ¢ solution like time-periodic oscillations, it may be appropriate to
expand the yet unknown solution in a Fourier seriesand then to compute
the solutions of the equationsfor the resulting Fourier coe cien ts. We will
cometo this aspect later. Here we are interestedin a brute force integra-
tion of the ODEs without prior knowledgeof what we may expect. In suc
a casethe standard procedureis to replacethe di erentials by di erences
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and to replacethe cortinuous variable (say time t) by a set of grid points.
While a good choiceis to make the grid or mesh ne enough,there are still
subtle choicesone can make which are or are not appropriate depending on
the concretesituation oneis interestedin.

For Hamiltonian systemsor more general systemswhich presene the
phasespacevolume, a number of so called symplectic routines is available.
For system (1) we may rewrite the Hamiltonian equationsof motion (2) in
a Newtonian way

iz VIx) WO oxi )+ Wi xi) fix@): (5)

In that casea standard symplecticroutine is the so-calledVerlet or leap-frog
method:??

x(t+h)  2x()+ x(t h)= %hzﬂ(x(t)) : (6)

The time step h de nes the grid in time, and the error per step is O(h%).
The advantage of this method is that only one calculation of the force f
is neededper step. A slight disadvantage is that we need not only the
coordinates at someinitial time tg, but alsothe coordinates at the previous
time stepty h when starting the integration. However this problem can
be easily circumverted by using approximate expressionsvhich connectthe
positions at various times and the velocities (or momernta), e.g. pi(to) =
(Xi(to+ h)  Xxi(tp h))=2h. Inserting this into (6) at time t, we obtain

Xi(to+ h)  Xi(to) hpi(te) = hf (X(to)) : (7)

While the error in this rst step is of order O(h®), this is typically not
crucial, asone should return to (6) after the rst step.

A much more often used method is the Runge-Kutta method of 4th
order.?® The error per step is of order O(h®). This method integrates 1st
order ODEs and is used also for dissipative systemswithout phasespace
volume consenation. However this method is not symplectic, sointegration
of Hamiltonian systemsmay lead in generalto a systematic drift of conser-
vation laws like energy on large time scales.Another disadvantage is that
we needfour force calculations per one time step, soroutines may become
computing-time consuming.

Before choosing a speci ¢ algorithm we should decide i) whether the
total simulation time is large comparedto the characteristic internal time
scalesor not, ii) what the maximum allowed error is, and iii) whether we
do care about overall stability w.r.t. integrals of motion or not. Given the
above choice of two algorithms the thumb rule would be to usethe Verlet
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algorithm for long time simulations with maximum stabilit y, and the Runge-
Kutta algorithm for short time simulations or those where we do not care
about overall stability.

Another set of related questions concerns nite temperature simula-
tions. Here in addition to the choice of the algorithm we have to worry
about the most e cient way to emulate a statistical ensenble. Typically
there are two methods one may use - deterministic and stochastic ones??
Among deterministic methods there is the simple microcanonicalsimulation
of a large enoughsystem, and the so-calledNose-Haver thermostat, which
consistsof coupling an additional arti cial degreeof freedomto the system
of N degreesof freedom and performing the microcanonical simulation of
the (N + 1) degreesof freedom system. Among the stochastic algorithms
two main onesare Monte-Carlo methods (random sampling) and solving
of Langevin equations obtained by extending the original equationswhich
incorporate damping and random forcing. Typically oneheadsfor the com-
putation of averages,i.e. in the most generalcasefor correlation functions
which may depend both on spacedistance and on distancein time, e.g.the
displacemert-displacemert correlation function

Sic(t) = bxi(t+ )x( )i (8)
Sud functions are analyzed with the help of temporal and spatial trans-
forms
Z, X
A(l) = cost )A(t) ; Aq= €9 KA, : (9)
0

To decide which method is the most useful for a given problem, we have
again to decide whether we head for short time correlations, i.e. for the
statistics of excitations, or for long time correlations, i.e. for the properties
of slow relaxations. Sincestochastic methods unavoidably introduce cuto s
in the correlation times of the original dynamical system,thesemethods are
best if one headsfor the statistics of excitations, as they may replacethe
probably very slow relaxation of the dynamical system by a faster mixing
due to the incorporated stochasticity. On the other hand, the statistics of
slow relaxations of the dynamical systemcall for deterministic methods, as
the optional additional stochasticity would have to becomeactive anyway
on much larger time scalesthan the internal relaxation times (such as not
to spoil the statistics) and can be thus safely neglectedall together.
Regardingthe spatial correlations, we should carefully choosethe system
sizesud asto avoid nite sizee ects. A way to ched this is to compute a
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correlation length
h . [
==Se(t=0
dq SQ( ) =0 (10)
2S¢=0 (t = 0)

and to compareit with the systemsize.

While the spatial transform in (9) is a simple sum, temporal transforms
asin (9) are again integrals. For a correlation function which has a short
time (high frequency)oscillatory contribution aswell asa slow long time re-
laxation stretched over seweral decadesusethe Filon integration formula*

Z 2n
t f(t)cog! t)dt = h[ (! h) (Fan sin( tan)  fosin(! to)) + (! h)Con

to

+ (1 h)Can 1]+ O(nh*f @)

with

X 1
Con = facos( ta) > [fon cos( ton) + focosl to)]
i=0

X 1 sin2z 2sin’z
= : I to . = — 4+ — _
Can 1 B fai 1coq!tai 1) (2) >t o0 73
1+cosfz sin2z _ sinz  cosz
(Z) =2 22 23 ’ (Z) =4 23 22

By dividing the whole accessibldgime interval into di erent sub-partswhich
are sampledwith di erent grid points (with grid point distanceswhich could
vary by ordersof magnitude) it is straightforward to compute a reproducible
high-quality spectrum covering se\eral decadesin frequency
Contrary, if we are concernedwith the Fourier transform of an analytical
time-periodic function
2
A =Alt+T); ! = —
T
the simple trap ezoidal rule?® doesthe job with exponertial accuracy pro-
vided that the period T is exactly a multiple of the grid sizeh:

Y4 T mxT:h
Akl) = cogk! t)A(t)dt = h cosk! mh)A(mh) + O(e “):
0

m=1
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3. Observing and analyzing breathers in numerical runs
3.1. Targeted initial conditions

For corveniencewe will sometimesusea Taylor expansionof the potentials
in (1):
X v X w
V(z) = —z ; W(2) —
=2,3;u =2,3;u

z (112)
Let uschoosev, = 1,vz= 1,v4 = %, w, = 0:1 with all other coe cien ts
equalto zero.The on-site potential in this casehastwo wells separatedby a
barrier, and the interaction potential is a harmonic one.One of the simplest
numerical experimens to obsene localized excitations then is to choose
initial conditions when all oscillators are at rest pj(0) = 0, X;g0 (0) = 0
exceptoneat site | = 0 which is displacedby a certain amourt Xo(0) from
its equilibrium position. Then we integrate the equations of motion e.g.
using the Verlet method. We expect at least a part of the initially localized
energyexcitation to spreadamongthe other sites. We choosea systemsize
N = 3000.The maximum group velocity of plane waves(3) is of the order
0.1 here.Finite sizee ects due to recurrenceof emitted waveswhich travel
around the whole system and return to the original excitation point are
thus not expected for times smaller than tmax = 30000.In other words,
our simulation will emulate the behavior of anin nite chain with the above
initial conditions up to tmax . TO monitor the ewlution of the system we
de ne the discrete energy density

o= SOV F ZWi X )+ Wi X))t (12)

The sum over all local energy densitiesgivesthe total consened energy If
DBs are excited, the initial local energy excitation should mainly remain
at its initial excitation position. Thus de ning
X
€2m+1) = S (13)
m
by choosinga proper value of m in (13) wewill cortrol the time dependence
of ez m+1) - If this function doesnot deca to zeroor doessoon asu cien tly
slow time scale,the existenceof a breather-like object can be con rmed.
The term “slovly enough' has to be speci ed with respect to the group
velocities of small amplitude plane waves(3). We simply have to estimate
the time waveswill needto exit the half volume of sizem which we monitor
with (13). For the choicem = 2 we concludethat this time scaleis of the
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order of tmin 20. Thus the relevant times of monitoring the ewlution of
the systemare still covering three decades

20 t 30000: (14)

In Fig. 3 we show the time dependenceof g for aninitial condition xo(t =

0.730
0.8
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11]
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Fig. 3. ep) versustime (dashed line). Total energy of the chain, solid line. Inset: energy
distribution e versus particle number for the same solution measured for 1000 < t <
1150.

0) = 2:34562° Clearly a localized excitation is obsened. After a short
time period of the order of 100 time units nearly constart values of e
are obsened. The breather-like object is stable over a long period of time
with some weak indication of energy radiation. The energy distribution
within the object is shownn in the inset of Fig. 3. Essetially three lattice
sites are involved in the motion, so we nd a rather localized solution.
While the certral particle performslarge amplitude oscillations, the nearest
neighbors oscillate with small amplitudes. All oscillations take placearound
the groundstate x; = p; = 0. Note that due to the symmetry of the initial
condition the left and right hand parts of the chain should ewlve exactly
in phase- a good test for the correctnessof the used numerical scheme.
To get more insight into the internal dynamics of the found object,
we perform a Fourier transform of xp(t) and x 1(t) in the time window
1000 t 10000 using the Filon algorithm.?® The result is shovn in
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Fig. 4. We obsene that there are essetially two frequenciesdetermining
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Fig. 4. Fourier transformed FT[x;(t 1000)](! ) with initial condition asin Fig. 3 for
| = 0.Inset: for | = 1.

the motion of the certral particle ! ; = 0:822; !, = 1:34. All peak
positions in Fig. 4 can be obtained through linear combinations of these
two frequencies.To that end we may concludethat we obsene a long-lived
strongly localized excitation with oscillatory dynamics described by quasi-
periodic motion. To proceedin the understanding of the phenomenon,we
plot in the inset in Fig. 4 the Fourier transformation of the motion of the
nearestneighbor(s) to the certral particle. As expected,we not only obsene
the two frequencyspectrum, but the peak with the highestintensity is not
at !, asfor the certral particle, but at ! ,. Becauseof the symmetry of
the initial condition the two nearest neighbors move in phase. Thus and
becausethe other particles are practically not excited, we are left with an
e ectiv e 2 degreeof freedom problem (cf. inset in Fig. 3).

Instead of getting lost in the possibilities of initial condition choices
for the whole system, we may now expect that asit standsthe obsened
excitation must be closelyrelated to a trajectory or solution of a reduced
problemwith a low-dimensionalphasespace.Indeed, xing all but the three
oscillators| = 1;0; 1 at their groundstate positions reducesthe dynamical
problem to a three degreeof freedom system, and restricting ourselesto
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the symmetric casex ; = x; and p ; = pp in fact to a two degree of
freedom problem:

Xo = VO(X()) 2W2(X0 X 1) X (15)
x 1= VUx 1) wax 1 Xo) : (16)

First we may choosethe sameinitial condition in the reduced problem as
done before in the full chain, and obsene that indeed the two trajecto-
ries are very similar. Following this way of reduction we may then perform
Poincare maps of (15,16) and formally get full insight into the dynamical
properties of this reduced problem. This has beendone e.g. in [26]. The
samemap has beenthen performed in the extended lattice itself, and the
two results were compared.Not only wasthe existenceof regular motion on
a two-dimensionaltorus found in both cases,but the tori intersectionsfor
the reducedand full problems were practically identical.?®> Thus we arrive
at two conclusions:i) the breather-like object correspndsto atrajectory in
the phasespaceof the full systemwhich is for the times obsened practically
embeddedon a two-dimensionaltorus manifold, thus being quasi-periodic
in time; ii) the breather-like object can be reproduced within a reduced
problem, where all particles but the certral one and its two neighbors are
xed at their groundstate positions, thereby reducing the number of rele-
vant degreesof freedom.

Intuitiv ely it is evidert, that noneof the obsened frequenciesdescribing
the dynamics of the local ertit y should resonatewith the linear spectrum
(3), since one expects radiation then, which would violate the assumption
that the object stays local without essetial change.In truth the conditions
are much stricter, aswe will discussbelow. Sincethe reducedproblem de-
ned above can not be expectedto be integrable in general, we expect its
phase spacestructure to contain regular islands lled with nearly regular
motion (tori) embeddedin a seaof chaotic trajectories. Note that this pic-
ture will strongly depend on the energyshell on which the map is applied.
Chaotic trajectories have cortin uous (as opposedto discrete) Fourier spec-
tra (with respect to time), and so we should always expect that parts of
this spectrum overlap with the linear spectrum of the in nite lattice. Thus
chaotic tra jectories of the reducedproblem do not appear as candidatesfor
breather-like ertities. The regular islands have to be cheded with respect
to their set of frequencies.If the island frequenciesare located outside the
linear spectrum of the in nite lattice, we can expect localization - i.e. that
a trajectory with the sameinitial conditions if launched in the lattice will
essetially form a localized object. Islands which do not fulll this non-
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resonancecriterion should be rejected as candidates for localized objects.
Thus we arrive at a selection rule for initial conditions in the lattice by
studying the low-dimensionaldynamics of a reducedproblem. This conjec-
ture hasbeensuccessfullytested in [26]. In Fig. 5 we shawv a represetativ e

1.0

05+

-0.5 |

-1.0 ' '
-1.5 -1.0 -0.5 0.0

(u+1)

Fig. 5. Poincare intersection between the tra jectory and
the subspace [x1;X1;Xo = 0;xp > 0] for the symmetric reduced three-partic le problem
and energy E = 0:58. Note that u instead of x is used in the axis labels.

Poincare map of the reducedproblem. In Fig. 6 the time dependenceof the
above de ned local energy eg) (t) is shown for dierent initial conditions
which correspnd to di erent trajectories of the reducedproblem. The ini-
tial conditions of regular islands 1,2 of the reduced problem yield localized
patterns in the lattice, whereasregular island 3 and the chaotic trajectory,
if launched into the lattice, lead to a fast decay of the local energy due to
strong radiation of plane waves. It is interesting to note that the energy
decay of the latter objects stops around ey = 0:35. In [26] it was noted
that the fraction of chaotic trajectoriesin the reduced problem practically
vanishesfor energiesbelow that value.

Another obsenation, which comesfrom this systematic analysisis that
the xed points in the Poincare map of the reducedproblem (in the middle
of the regular islands in Fig. 5) correspnd to periodic orbits. A careful
analysis of the decay properties in Fig. 6 has shavn that all objects were
slightly radiating - but some stronger and some less. The objects corre-
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Fig. 6. egs) (t) dependence. Upper short dashed line - total energy of all simulations;
solid lines (4) - initial conditions of xed points in islands 1,2 from Fig. 5 and larger
torus in island 1 and torus in island 2 from Fig. 5; long dashed line - initial condition of
torus in island 3 in Fig. 5; dashed-dott ed line - initial condition of chaotic tra jectory in
Fig. 5.

sponding to the periodic orbits of the regular islands 1,2 of the reduced
problem showed the weakest decay.?® Thus we arrive at the suggestionthat
time-periodic local objects could be free of any radiation - i.e. be exact so-
lutions of the equationsof motion on the lattice! It makesthen senseto go
beyond the presen level of analysisand to look for a way of understanding
why discrete breathers can be exact solutions of the dynamical equations-
provided they are periodic in time. Further the question arises,why their
guasi-periodic extensionsappear to deca - i.e. why do quasi-periodic dis-
crete breathers seemnot to persist for in nite times. We can also ask:
suppose quasi-periodic DBs do not exist - what are then their patterns of
decay; what about their life-times; what about moving DBs (certainly they
can not be represered as time-periodic solutions)? And we may already
state, that if time-periodic DBs are exact localizedsolutions, then they may
be also stable with respect to small perturbations, as obsened here.

The linear spectrum of the model used for the numerical results here
is optical-lik e, with a ratio of the band width to the gap of about 1/10.
Howewer this doesnot imply that the discrete breathersexist merely due to
someweaknessof the interaction. An estimation of the energypart stored
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in the interaction of the DB object preserted here yields a value of 0.4.
Compare that to the full energyE  0:7. Roughly half of the energy is
storedin the interaction. By no meanswe can descrike theseexcitations by
completely neglecting the interaction amongthe di erent lattice sites?®
Since breather-like excitations can be described by local few-degree-of-
freedom systems (reduced problem), there is not much impact one would
expect from increasingthe lattice dimension. We will have an increasein
the number of nearest neighbors, which implies simply some rescaling of
the parameters of the reducedproblem. To seewhether that happens,the
above described method was applied to a two-dimensional analog of the
above consideredchain. The interested readerwill nd details in [27]. Here
we shorten the story by stating that practically the whole local ansatz can
be carried through in the two-dimensionallattice. An analog of Fig. 3 for
the two-dimensional caseis shavn in Fig. 7 where the energydistribution
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Fig. 7. Energy distribution for the breather solution with initial energy E = 0:3 after
waiting time t = 3000. The lled circles represent the energy values for each particle; the
solid lines are guides to the eye. Inset: Time dependence of the breather energy e, .

in a discrete breather solution is showvn, and the inset displays the time
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dependenceof a local energy similar to e (t). The readerwill ask how we
dealwith radiation in this case.lndeed, the systemin Fig. 7 hasdimension
20 20 (only a subpart of size10 10 is actually shawvn), which implies
a characteristic time tmax 100. The necessarytrick is to add to the
Hamiltonian part of the lattice a dissipative boundary, here of 10 more
sites on ead edge,increasing the total size of the systemto 40 40. In
these dissipative boundaries simple friction is applied in order to dissipate
as much energy radiation as possible.Sinceboth zero and in nite friction
will leadto total re ection of wavesinstead of absorption, the next stepis to
imposea friction gradient from small to large valuesas one penetratesthe
dissipative layer coming from the Hamiltonian core. By simple variation
of the friction gradient and the maximum friction value it is possibleto
optimize the absorption properties of this layer.?’

3.2. Breathers in transient processes

If breather-like states are easily excited by a local perturbation, then we
expect that these objects may be alsorelevant in systemswith a nonzero
energy density which is nonuniformly distributed among the lattice. One
possibility is to excite a uniform energydensity distribution which is how-
ewver unstable with respect to small perturbations - something known as
modulational instabilit y, Benjamin-Feir instabilit y etc. Analytical predic-
tions for such instabilities can be obtained by nding an exact solution of
a plane wave of nonzero amplitude and linearizing the equations of mo-
tion around the solution. If the result indicates instabilit y, it can be easily
implemented numerically by taking initial conditions which correspnd to
sud a plane wave and adding a weak noiseto them. Typically the outcome
is the ewolution of the energy density into spatially nonuniform patterns.
Even if the outcome of a very long time simulation would not show up
with breather-like states, the transient into sud equilibria may take a lot
of time, and on this path breathers can be obsened. The formation of
breather-like states through modulational instabilit y was reported in sev-
eral publications,?8:29:30:31:32

While a number of publications hasbeendewted to theseproblems, for
reasonsof coherence(staying within one model class) belonv we will show
recert numerical results done by Ivanchenko and Kanakov.*® The model
parametersare v, = 1, v4 = 0:25and w, = 0:1. The initial conditions can
be encaded as

x1(0) = (a+ )cos@) ; x1(0) = ! (a+ )sin(dl) (17)
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for the one-dimensionalcasewith |2 = I 2+ 0:75a%, the wave number
g= 3 =4, the amplitude a = 0:5 and the noise being uniformly distrib-
uted in the interval 0 0:001.The systemsizeis N = 400,and periodic
boundary conditions are used.In Fig. 8 we plot the energydensity ewlu-
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Fig. 8. Energy density evolution in a chain with parameters givenin the text. Horizontal
axis - chain site, vertical axis - time. Energy density is plotted in a gray scale coding
from white (zero) to maximum observed values (black).

tion up to atime t = 5000.Note that on short time scalesthe modulational
instabilit y is obsened, both with a characteristic regular distance between
the ewlving maxima of the energy density and with a characteristic shift
of the maxima positions in time due to the nonzerogroup velocity of the
plane wave. Discrete breather-like objects are formed in the next part of
the ewlution, when some of these energy lumps start to collide and ex-
changeenergy®* leaving the systemover long times with immobile highly
localized excitations, which coexist with a diluted gas of plane waves or
small amplitude solitons. These plane waves and solitons are obsened to
sometimesscatter from a breather, sometimespenetrate it, and surely their
presencewill lead to a further thermalization of the lattice on much larger
time scalesthan the numerically studied. Indeed extending the obsenation
time by two orders of magnitude we obsene further focusing of energyin
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Fig. 9. Energy density evolution in a chain with parameters givenin the text. Horizontal
axis - chain site, vertical axis - time. Energy density is plotted in a gray scale coding
from white (zero) to maximum observed values (black).

high energy breathers (Fig. 9). Note that the results of Fig. 8 are not ob-
senable here becausethey cover one percen of time here, and becausethe
gray scalecoding is signi cantly changed.

In some studies thermalization leads ultimately to a disappearanceof
large amplitude breathers (or better to a negligible probability to obsene
formation again). In other cases(see below) breather formation is even
obsened in what is believed to be thermal equilibrium. The outcome sen-
sitively depends both on model parameters but most importantly on the
temperature, which is implicitly de ned by the averageenergy density of
the initial conditions. Too low temperature will on onehand still shav mod-
ulational instabilit y and breather formation, and very long transient times
into a nal equilibrium state without breathers, but only plane waves.In-
termediate temperatures will again provide with modulational instabilit y,
but transient times are shorter, and breathersmay now be expected evenin
thermal equilibrium (simply becauseprobability of large local uctuations
increases).Note that in general the temperature, i.e. the average energy
density, is given by both the amplitude of the plane wave and the way the
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initial conditions are noised. Here we assumethat the noise cortribution
is always weak, so the energy density is mainly given by the plane wave
amplitude.

The samescenariocan be also obsened in two-dimensional lattices.3
With the same parameters as above but replacing the argumert (ql) by
(g(I + m)), wherel and m are the lattice indices of a squarelattice of size
80 80 with periodic boundary conditions, we showv the energy density
distributions at four di erent times in Fig. 10. Note the increasing grey
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Fig. 10. Energy density distribution in a square lattice with parameters given in the
text. Energy density is plotted in a gray scale coding from white (zero) to maximum
observed values (black). Times of observation are t = 400; 450; 500; 5000.

scale coding limit due to more energy getting attracted into high energy
breathers.

Another way to obsene breathersin transient processess to randomly
excite a given sub-part of a lattice, with the rest of the lattice being not
excited. Then, asin the caseof targeted initial conditions, one may expect
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that all plane waveswill be radiated into the in nite nonexcited part, and
only breatherswill stay.®® In that senseone could eventry to measurethe
energyfraction storedin breathersfor a givenlattice at a giventemperature.
We shaw experimerts for a systemsize50 50plus friction boundaries,with
model parametersas above *3 In Fig. 11the energydensity distribution is
shown at four times t = 0;490Q0 1190Q 19900 and ¢ = 3. We obsene that
even at theselow temperatures about 5% of the total energywas stored on
long-livedbreathers,simply dueto uctuations in the initial conditions. The
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Fig. 11. Energy density evolution in a two-dimensional lattice. Seetext for details.

above mentioned method, howewver, cannot be applied to one-dimensional
lattices. The reasonis that while a single breather-like excitation by one
local perturbation is easily detectable (see3.1) in one-dimensionalsystems,
we have to worry about the interaction betweenbreathers and plane wave
radiation when exciting the whole lattice or a big part of it. It turns out
(seesection 6.2) that breathersin one-dimensionalsystemsusually very ef-
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fectively badscatter plane waves.Consequeltly exciting e.g.two breathers
in a one-dimensionalsystemand someplane wavesbetweenthem, will lead
to a trapping of the radiation betweenthe two breathersand alsoto some
enhancedretarded interaction betweenthe breathers mediated by the radi-
ation. In cortrast, in systemswith dimensiond 2 breathersas point-lik e
(zero dimensional) objects may scatter plane waves but not trap them.
Consequetly plane waveswill still easily exit the excited lattice volume,
and breathers left will practically not interact with ead other (the only
interaction channel left are spatially decging breather tails, which may
becomeexponertially small with growing distance from a breather core).
Indeed, repeating the above experiment in a one-dimensionalanalog (same
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Fig. 12. Energy density evolution in a one-dimensional lattice. Seetext for details.

parametersexceptc = 2) we nd in Fig. 12 that the energy distribution
is trapped betweentwo large amplitude breathers (seealso [36,37]). With
increasingtime someradiation escapes,and the two guarding breathersare
slowly shifting towards ead other.
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3.3. Breathers in thermal equilibrium

Finally breathers have been also
obsened in thermal equilibrium. 32:38:39:40:41 |n Fig. 13 we shav the evo-
lution of a one-dimensionalchain with sameparametersasin the preceding
section. Periodic boundary conditions are applied, and the initial condi-
tions for x; and x; being randomly uniformly distributed between c=2
and c=2. We clearly obsene the formation of breather-like highly localized
objects, and more of them for larger energy densities. The sameprocedure

Fig. 13. Energy density evolution in a one-dimensional lattice for a time window after
giving the system time to equilibrate. Left upper picture - ¢ = 1, right upper picture -
c= 3, secondrow - c= 4.

can be applied to a similar two-dimensional square lattice. In Fig. 14 we
showv the ewolution of the energy density distribution using a simple cut
procedure, where black dots are plotted if the energy density at a given
lattice point exceedsv e times the averageenergy density. Nearly all the
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obsened spots and especially the long vertical lines correspnd to breather
excitations. All theseresults con rm that breather-like objects are easily

Fig. 14. Energy density evolution in a two-dimensional lattice for various time windows.
For both casesc = 5 was chosen.

excitedin lattices, that they can be obtained both with targeted initial con-
ditions, during transient processesnd in thermal equilibrium. We are only
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beginningto dewelop a reliable quartitativ e way to compute their statistical
cortribution and weights. Another important aspect - interaction between
breathers - is also waiting further clari cation. Already sud straightfor-
ward studies as the onesdiscussedshaw that this problem depends both
on the dimensionality of the system and on the relative cortributions of
phonon mediated interaction and tail-tail interactions.

4. Obtaining breathers up to machine precision: Part |

From section 3 we learned that breather-like objects exist due to weak
resonancewith the plane wave spectrum ! 4. Also these studies suggested
that time-periodic breathers could be exact solutions, i.e. do not radiate at
all. If so,let ustry to obtain a time-periodic solution with period Ty, = Z—b
which is localizedin space

Xi(t) = xj(t+ Tp) ; Xjm ! O (18)
By de nition we can expandit into a Fourier series

X )
X)) = Age ot (19)
k

The Fourier coe cien ts by assumptionare alsolocalizedin space
Agjipn P O (20)

This ansatz hasto be inserted into the equations of motion of (1,2) which
we rewrite in the following form

X = VaXp Wo(2X X 1 Xps1) + FM(xp) (21)

Herewe haveintroducedthe forceterm F\" which incorporatesall nonlinear
terms of the equations of motion. For (1,11) it takesthe form

(nl) X 1 1 1
Foo= VX T+Ew (X X 1) Xiez X))
=3 ;4;::
(22)
With ansatz (19), F" can be also expandedinto a Fourier series:
X1 _
FM(t) = Fek ot (23)

k=1

Thus we arrive at a set of coupled nonlinear algebraic equations for the
Fourier coe cien ts A, of the breather solution we seard for:

k2 2Ak = VoAl + Wo(2AK Ak 1 Argsa) + FUV 0 (24)
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If a breather solution exists, then in its spatial tails all amplitudes are small.
Thus we can assumethat the nonlinear terms in (24) are negligible in the
tails of a breather. We are then left with the linearized equations

k? 2Ak = oAk + W2(RAK Ak 1 Axie1) (25)

Theseequationsare not much di erent from the linearization of the equa-
tions of motion asdiscussedn 1 which leadto the dispersionrelation ! ¢ for
small amplitude plane waves.All it would needis to replacek? 2 in (25)
by ! 2. Consequetly, if k? 3= !, small amplitudes of (25) will not decay
in space,in cortrast to our initial assumption. However, if k> § 6 ! 2 for
any g, no plane wavesexist, and instead we can obtain localization. In the
consideredcaseit is exponertial

Ay e ¥l k2 2= v, + 2wy(1 cosh ) : (26)

Thus we arrive at a generically necessarynonresonancecondition for the
existenceof breathers?:42

k? 2612 (27)

for all integer k and any g. Clearly such a condition can be in principle
fullled for any lattice, since! é is bounded from above (in cortrast to
spacecortinuous systems). The upper bound or cuto is a result of the
discretenessof the system. Right on the spot we may also conclude, that
quasi-periodic in time and spatially localized excitations will not be exact
solutions generically, since they will always radiate energy due to reso-
nances.Indeed there is always an in nite  number of pairs of integersky; ks
which for any choice of incommensuratefrequencies 1; » will leadto res-
onancek; 1+ kz »="!4. Sowe have already an explanation for the weak
but nonzeroradiation obsened in 3.1 for quasi-periodic excitations.
Returning to the time-periodic solutions, all we need is to tune the
breather frequency and all its multiples out of resonancewith ! 4. The
nonlinear terms in the equationsof motion will be responsible for that.

4.1. Metho d No.1 - designing a map

Wewill now designamapto nd breather solutionsup to machine accuracy
This method No.1 is one of the rst which have beenusedto perform high
precision computations of DBs. It is instructiv e that one can accomplish
the task with using a bit of intuition and luck.4%43
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Let us rewrite (24) asa map in two di erent ways. Map A:

h i
. . . . | . _
ALY = k2 2 (v2+ 20)AL) wa(AL) |+ AL L)+ V(AR
(28)
with
_ V2
and Map B:
h i
(i+1) _ 1 (i) (i) (i) (nh) A (i) .
Ay = v (k* 5 2w)A + WA 1 Alag) Fol (Adao)
(29)
with
k2 2
kI = b
V2

We can de ne a lattice map by using any of the two maps for any k and
[, and a solution of (24) will be always a xed point of the chosenlattice
map. Two questionsarise: is the breather solution a stable xed point for
the chosenlattice map, and what is a good initial guess?nstead of being
worried about stability as one normally should, we may also approad the
probleminversely We know that we want to nd a breather with frequency

p located e.g.at site | = 0. Let usthen put initially all Fourier amplitudes
to zeroexceptA 1.0 which is small but nonzero.Fork = 1;1 = 0 we will
choosethe map with 1.0 > 1 and the map with ; < 1 for all other
coe cien ts. Thus we will imposea local instability (growth) atk = 1;1 =
0 when we start the iteration. At the sametime all other coe cien ts will
tend to stay at zero, sincetheir mapsare chosento be locally stable around
the value zero. Thus we expect a breather to grow during the iteration. All
we now have to do is to hope that the breather solution is a stable xed
point. For low order polynomial potertial functions we can compute

X X1
I:k(lnl) = v AkllAkZI Ak il ki(kyit kot i+ k1)
=3;4;:: kikorink 1= 1
(30)
very e cien tly during ead iteration. Otherwise we can take all A(k'l) at a
given step, compute x;(t) and by numerical integration obtain
147

2 .
Fo = = FM (e *' it : (31)
LER.
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Of coursewe have to imposea cuto in k-space,which can be justi ed
afterwards by cheding that the Fourier amplitudes closeto the cuto are
reasonablysmall. The iteration can be stopped when e.g.
jA(kiI) A(ki| l)J < 10 10 : (32)
k;l
The following results have been obtained along theselines for a breather
with frequency , = 1:3.In Fig. 15 the solution for the Fourier coe cien ts

i

30 35 40 45 50 55 60 65 70

L L R L
30 3 40 45 50 55 60 65 70 107
lattice site |

Fig. 15. Breather solution by method No.l. Left picture: vo = 2; v3 = 3 ; vq =
1; wy = 0:1;right picture: vo = 1; vq4=1; wp = 0:1.

is plotted for two di erent systems.Absolute valuesof Ay, are plotted on
a logarithmic scaleversuslattice site number |. The non- lled squaresare
the actual numerical data. Coe cien ts with samevaluesof k are connected
with lines. We nd the expectedexponertial deca in spacewith exponerts
(slopes)clearly beingdependert onk. A surprising numerical fact is that the
computed amplitudes seemto be correct down to values10 2°, although the
Fortran compiler usesdouble precision oating point numbers (16 decimal
digits). Moreover, the limit of the computation here would be actually at
10 397, The reasonis that we seard for solutionswhich are localizedaround
zero, and the issueis not numerical precision, but the encading of small
numbers. If however we would shift the classicalground state position to
s&y x; = 1,then the samecomputation would be restricted by the numerical
precision.

To ched whether the numerically computed exponertial deca in space
is in accordwith the predicted one (26) from the linearized equations (25)
we simply measurethe slopesin Fig. 15 and comparethem with the solu-
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tions of (26) for the left picture in Fig. 15

kK num:result linearization
1:3202 1:3415
0:6904 0:6898
1:3796 1:6588
2:0748 2:1143
2:3957 2:3951
2:6018 2:6026
2:7663 2:7682

OOk, WNPEFEO

While most of the numbers do coincide, clear deviations are obsened for
k = 2;3. Note that the numerical slope is weaker than the predicted one.
The obvious reasonis that for these Fourier numbersweakly decag/ing non-
linear correctionshave to be takeninto accourt, ® which deca slower than
the predicted linearized result. Here these correctionsare simply A2, for
k= 2and A3 for k = 3. The analytically predicted slopes are then
simply 2 0:6898= 1:3796for k = 2 and 3 0:6898= 2:0694for k = 3.
A full treatment of nonlinear corrections is given in [43]. Note that the
nonresonancecondition (27) is not a ected by these corrections. Also im-
portant is, that the Fourier amplitude with the weakest spatial deca is
always correctly described by the linearized equationsin the breather tails.
For the right picture in Fig. 15we nd respectively

k num:result linearization
0:6722 0:6709
1:9910 2:1464
2:6103 2:6133
2:9114 2:9117
3:1324 3:1325

O N O Wk

Only the k = 3 valuesdi er, and the correct slope is again given by terms
A3: 3 0:6709= 2:0127.
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4.2. Metho d No.2 - saddles on the rim with space-time
separ ation

A subclass of systems(1) is characterized by space-time separation (see
[44], [16] and [45]). Consider

X 1
H='  Zp2+ 2x2 +POT; (33)
202
with H _
X V. W I
POT = Zz—r;:Xfm + %(XI xi )" s m=234:m (34)

being a homogeneoudunction of the coordinates. The equationsof motion
take the form

MAVX = VomX2™ L wom (X X1 1)®™ T wom (Xier x1)?™ 1 (35)

These systemsallow for time space separation for a sub-manifold of all
possibletra jectories:

xi(t) = AG(1) : (36)
Inserting (36) into (35) we obtain

G+ v,G _ .

G2m 1~ ' @37

1
= = VvumAM™ b won (A A 1) T wom (A A) T

A
(38)
Here > 0 is a separation parameter, which can be chosen freely. The
master function G obeysa trivial dierential equation for an anharmonic
oscillator

G= wG G2 1. (39)

Its solution setsthe temporary ewlution of the breather.
The spatial pro le is given by

@OT.

A= thm Ajog s (40)
or better by the extrema of a function S:
1 X
& 0;S= < AZ POT(fx? Al): (41)

@\ 2
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Fig. 16. Schematic representation of function S (41) and the pathway to a breather
being a saddle.

Let us discusssomeproperties of S. This function hasa minimum at A =
0 for all | with height S = 0 (point PO in Fig. 16). When choosing a
certain direction in the A| spacestarting from PO, S will rst increase then
passthrough a maximum and further decreaseto 1 . Sothere is a rim
surrounding the minimum A, = 0. Since breathers are spatially localized
solutions, variation of the amplitudes A, in the tails of a breather around
zero will increaseS. At the sametime the breather correspnds to an
extremum of S, but there is only one trivial minimum of S located at
P 0. Thus breathersare saddlesof S.

It is remarkably easyto compute such a saddle. First choosedirection
in the N -dimensionalspaceof all A;, e.g.(:::0001000::) ; (:::0001001000:)
etc. Then start from spaceorigin PO, A| = 0, depart with small stepsin the
chosendirection, compute S. It will rst increaseand then passthrough a
maximum P 1. Now we are on the rim. Compute the gradiert of S hereand
make a small step in opposite direction, to arrive at P2. Maximize S on
the line PO P2 to be on the rim again. Repeat until you reach a saddle
with required accuracy

This method has beenusedto compute various types of breathers and
multi-breathers. Note that it is very simple to extend the computation to
two- or three-dimensionallattices.*®

4.3. Metho d No.3 - homoclinic orbits with time-sp ace
separ ation

Using again the time-space separability as discussedin 4.2, breathers can
be consideredas homoclinic orbits of a two-dimensionalmap.*® Indeed, we
may rewrite (38) in the following way:

1
A = A+ Vo AP T won (A A )M T A, T (42)
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where we can compute a given amplitude pro le starting with a given pair
of nearestneighbor amplitudes (both to the right and to the left of course).
Using a two-dimensionalvector

Ri=(xi;y) = (A1 15A)1) (43)
the procedurecan be castinto the form of a two-dimensionalmap with

Xi+1 = Vi (44)

Yier = Vi+ VomYE™ T+ wom(y o x)P™ Y oy, T (45)

This map (Fig. 17) hasa xed point Rg = (0;0). The xed point be-

Fig. 17. Schematic representati on of the map (44,45). Red line - stable invariant man-
ifold, green line - unstable invariant manifold, black spots - intersection points of both
manifolds for a given breather solution. Dashed blue line - diagonal x = y.

longsboth to a stable (red) and unstable (green) one-dimensionalinvariant
manifolds. Taking a point on the stable manifold and iterating forward,
we will approad the xed point. The samehappenswith a point on the
unstable manifold when iterated backwards. These manifolds intersect in
many points. By de nition any of theseintersection points, when iterated
either forward or badkward, will corvergeto Rg and thus correspndsto a
breather solution. Sudh map trajectories are also called homaoclinic orbits.
Note that many intersection points belongto the samehomoclinic orbit or
to the samebreather, asindicated by the onesmarked with black spots in
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Fig. 17. Howewer since the above map is locally (around Rg) volume pre-
serving, the structure of the invariant manifold lines will generically shov
up with horseshe patterns (wigglesin Fig. 17). These patterns generate
additional intersection points. Consequetly there will be an in nite num-
ber of dierent homoclinic orbits and thus breathers. They will dier by
the amplitude distribution inside the breather core, which can becomear-
bitrary complicated, and an exponertial tail outside. Thus we already at
this stagearrive at the conclusionthat in addition to single site breathers
discussedso far also so-calledmulti-breather solutions can exist, i.e. local-
ized excitations with a complicated pattern of energy distribution inside
the breather core (seealso[15]).

Dueto the space-re ectionsymmetry of the map there will be alwaysone
intersection point on the line x = y. The position of this point will depend
only parametrically on . Thusit is possibleto designsimple seard routines
by e.g. xing xp = yo and varying (see[16]). The numerical scheme has
been even used for a formal existence proof of breathers as homoclinic
orbits. 16

5. Obtaining breathers up to machine precision - Part 11

Sofar we have searted for discrete breather periodic orbits as solutions of
algebraicequations. The variableswere either Fourier coe cien ts or simply
the amplitudes at a given site. Also the methods of solving theseequations
have been quite special, using some particular properties of the system.
What if we don't know or do not want to know any particular system
properties we could use? We could of course use more general methods
of solving algebraic equations, e.g. various gradient methods or Newton
routines.?® For them to corvergewe needalways a good initial guess.This
usually implies that we should start computations closeto a casewhere we
know the solution, and then depart from this limit with small parameter
steps.

Gradient methods are more sophisticated in programming, while New-
ton routines may su er from the long times that may be neededto invert
matrices, and also from the danger of coming closeto a noninvertible case
dueto bifurcations. Recall herethat the Newton map for nding the zeroof
a known function f (x) (meaningthat we can computeits value) is given by
f(x=5)=0; f(x)=fXo)+fAxo)(X Xo)+:: Xn+1 = Xn f(Xn)=FAXpn).
In our casesf will be a vector function and its derivative a matrix.

Instead of solving algebraic equations for amplitudes, we may also try
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to compute the periodic breather orbit directly in the phase spaceof our
system. Recall that a periodic orbit (PO) is aloop in phasespace.Generic
POs of generic nonintegrable Hamiltonian systemsare isolated ones, i.e.
in a small neighborhood in phasespacewe will genericallynot nd other
slightly deformed POs with identical values of consened quartities like
energy This isin cortrast to POs on resonart tori of integrable Hamiltonian
systems. Howewer isolated POs have generically slightly deformed POs in

Fig. 18. Schematic representation of a family of isolated POs. Green sector - stable
POs, red sector - unstable POs, blue line - bifurcation location of additional PO family
detaching.

their neighborhood with slightly dierent values of consened quartities
(see Fig. 18). So we can think of isolated POs residing on cylinders in
phasespace,where ead point on a cylinder belongsto a closedloop which
is a PO. Sliding along the cylinder we changeall the parametersof the PO.
In particular, a PO can turn from stable to unstable, due to a bifurcation,
possibly resulting in new families of POs, asindicated in Fig. 18.
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5.1. Metho d No.4 - Newton in phase space

Now we may proceedin describing the most popular method of nding
discrete breathers - a Newton map in phase space?® Let us integrate a

giveninitial condition R with

X|(t = 0) X p|(t = 0) P, (46)

over a certain time T:
xi(T)  1J(f X0, Ppog; T) 47)
pi(T) ||p(fX|o; Pog; T) : (48)

Considerthe functions
Fr=1¢ Xi;FP=10 P (49)
If R belongsto a PO with period T then
FX=FP=o0: (50)

Now we can implement a Newton map sud that all functions in (50) will
vanish. Our variables are simply the phasespacevariableswhich de ne the
initial conditions. Since the Newton map needsinversion of a derivative
matrix, we have to remove all possible degeneracieswhich lead to zero
eigernvalues of the newton matrix. Indeed, if R belongsto the PO, then a
1d manifold of points belongto the PO. This is a degeneracydue to the
phaseof the PO. It can be removed by one additional condition, e.g.

Pw = 0: (51)

So for N degreesof freedom we will seart for zerosin 2N 1 coupled
equationsof 2N 1 variables.

A lessobvious obstacle we have to take care of is to make sure that a
zeroofthese2N 1 equationswith the additional initial condition Py = 0
uniquely xes pwm (T) = 0, e.g.through energy consenation. If that will be
not the case,we can not ensurethat our procedure computesa PO.

Let usde ne
R= (X1 Xz X i Xng P i Py 2iPve 15 Pr+a s Py2 525 P) 5
(52)
F=(FGFS Ry s FUGFRD s RS 5 FY GRS i Fh o FR) S
(53)

F=R(T) R: (54)
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Givenan initial guessR© expand

X
Fa(R) = F(RO) +

) o Rn RO (55)
F(R)= FRQ)+ M(R RO); (56)
@n . _ @R (T).

M m = (57)

@R Jro = @ JrO nm -
Now we may perform one Newton step,i.e. nd an R sud that F = 0O:
R=R® M FRO?): (58)

This procedurecan be repeated until someprecisionis obtained: jFj < or
maxjFnj <

What remainsis to explain how to compute the Newton matrix M . For
the special caseof a two-dimensional space of variables the notations in
Fig. 19 will help to understand the following points. Given an initial guess

Fig. 19. Schematic representation of the computation of the Newton matrix in a two-
dimensional space of variables. Seetext for details.

R© and integrating over time T, we arrive at R (T). Generally the two
points will dier in phasespace.Now we perturb R© in the direction m
by :

ROM = RO + g : (59)
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Here e, denotesa unit vector in direction m. Integrating R©™) over the
period T we arrive at R@™)(T). Then the Newton matrix elemerns are
given by

M m = 1 Fo(ROMY  F(RO) (60)

For computational purposesit might be more corveniert to usethe alter-
nativ e expressiondirectly through the vectors:

M = = RO™MT) ROT) o : 61)

The advantagesof Newton mapsarethat they arerelatively easyto program
once we already have a good integrator. The map corvergesexponertially

fast. Furthermore we may use one Newton matrix for seweral iterations,

which may be useful when matrices get large. Disadvantages of Newton

maps may be due to relatively large computational time N 2 becauseof
matrix inversion. Matrix inversions are sensitive to bifurcations, because
at bifurcations additional degeneraciegake place, which may lead to zero
eigervaluesof M . Sometimeswe may need more subtle inversion routines
using singular value decomposition etc. Note that at some point the ef-
forts of removing all the obstaclesfrom a Newton map approad might be
equivalent to the onesof using alternative methods.

As always we needa good initial guess.Probably we haveto deform our
systemparameterssud that a known solution can be used,and afterwards
system parameters are changed by small steps, tracing the solution. We
should also keep in mind that other specic methods may deal with a
certain limiting caseeasily, soa known solution must not be onewe obtained
analytically, but also numerically with various other methods at hand.

5.2. Metho d No. 5 - steepest descent in phase space
Similar to the Newton map we may also use a steepest desceh method in
phasespace?’ De ne the nonnegative function
X
gR) = [F'F*+ FPFP] (62)
|

and its gradient with componerts

@
n= — 63
(r 9 & (63)
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Now we simply start at somepoint in phasespace,compute the gradiert,
and descehn in the direction opposite to the gradiert. Then we again com-
pute the gradiert etc. A breather solution is found if g comescloseenough
to zero.

The advantages of steepest desceh are that the computational time
grows with N. Furthermore the method is insensitive to bifurcations.
Disadvantages of steepest desceh are that it is more clumsy to program,
that the corvergenceis slower than that of Newton maps and that it may
be hard to distinguish zero minima from nearly zero minima.

5.3. Symmetries

Very often the equations of motion are invariant under somesymmetry op-
erations, e.g.the cortin uoustime-shift symmetryt ! t+ ,the time reversal
symmetry t ! t;p! pi, someparity symmetry x; ! X p! P,
the discrete translational symmetry on the lattice and probably other dis-
crete permutational lattice symmetries which leave the lattice invariant,
like spatial re ections etc.

Each discrete symmetry implies that given a trajectory in phasespace,
a new trajectory is generatedby applying the symmetry operation to the
manifold of all points of the original trajectory. If the new manifold equals
the original one, then the trajectory is invariant under the symmetry, and
otherwise it is not invariant.

In linear equation systemssymmetry breaking is possibleonly in the
presenceof degeneraciesln nonlinear equation systemssymmetry breaking
is a commonfeature. For example,a plane wave in a harmonic chain is not
invariant under time reversal symmetry, becauseof degeneracy(of left and
right goingwaves! g =1 ).

A breather is by de nition not invariant under discrete translational
symmetry. If howewer it is invariant under other symmetries, this can be
usedto substartially lower the numerical e ort of computing the solution.®

For time-reversal breathersit is possibleto nd an origin in time when
xi(t) = xi( t); p(t) = p( t), which saves50% of computational time.
For time-reversal parity-invariant breathers x,;(t + T=2) = x,(t) ; pi(t +
T=2)= p(t) we may save 75% of computational time.

Higher dimensionallattices may allow for further symmetries. Comput-
ing lattice permutational invariant breathers may substartially lower the
computational e ort by nding the irreducible breather section.

At the sametime ewvenin the presenceof additional symmetriesbreather
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solutions may be found which lack thesesymmetries. The simplestexample
is again discrete translational symmetry, but also lattice re ection symme-
tries may be broken. Even breathers which are not invariant under time
reversal and thus possess nonzero energy ux do exist, except for one-
dimensional systems?*®

6. Perturbing breathers

Suppose we found a breather solution x,(t). Let us addressthe question
of stability and interaction with plane waves.First we add a perturbation
1 (t) to the breather solution. What can we say about the ewolution of this
perturbation? Evidently, if the amplitude of the perturbation is large, we
may expect genericdynamical featuresof a nonintegrable system,which are
usually rather complicatedand hard to be addressedanalytically . If however
the perturbation sizeis small, we may linearize the resulting equations for
| (t):5;49
X @H

o = =0 : 64
| @ @y oo m (64)

m

This problem correspnds to a time-dependert Hamiltonian H (t)
" #

X 1, 1X  @H . _
H(t) = | >it5 i @@ g 1 m (65)
@ . @ (66)

1T e - @
The ewlution of this time-dependert Hamiltonian is characterized by a
consenation law L= 0, where the symplectic product | is formed between
two trajectories (with and without prime respectively):

X
L= [AD ) () X0 : (67)
[
The reader can verify that | is constart in time by straightforward di er-
ertiation with respect to time and by using the equations of motion (66).
Let us briey discussthe consequencesf this consenation law.
For simplicity we drop the lattice index for the next lines. De ne the
matrix J

J = (68)
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and the ewolution matrix U(t)

(t) ©)

= U(t 69
() Q) 0) (69)
which mapsthe phasespaceof the perturbations onto itself by integrating
eat point over a given time t. It follows that we can express! in the
following form

= (@®; ()3 3((:)) (70)
and using (69) as
1= (O O)UTIVY O )
' %0)
Sincel is consened, and U(t = 0) is the identit y matrix, we conclude
Ut u) =J : (72)

We have obtained that U(t) is symplectic. Then it follows (and canbe easily
derived with the help of the obtained relations) that if y is an eigervector
of U with eigervalue

Uy=y;Uly=y; (73)
then y0is a related eigervector with eigervalue 1= :
U= Y0 y= 0 y= 0y (74)
If Uisrealand (; y) are an eigervalue and eigervector, soare
()i (Bay)s (ay): (75)

Note that even though U is real, both eigervectors and eigervalueswill be
complexin general.

6.1. Line ar stability analysis

Consider now the mapping over one period for a breather, which de nes
the real valued Floquet Matrix F

U(Ty) F: (76)

The eigernvalues and eigervectors of F completely de ne the dynamics of
small amplitude perturbations of a breather, or the dynamics of the lin-
earized phase space ow around a breather solution. We can now study
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whether a breather is unstable or stable, how strongly plane waves are
scattered by the breather, etc.

Before starting to addressthese questions,let us discussthe meaning
of a nondegeneratecomplex eigervalue and eigervector y of F for the

dynamics of the real valued phase spacevariables |; |. For that purpose
we write

= r i Y=E Yty (77)
where ; i;V¥r;Yi arethe real and imaginary parts of the eigervalue and
eigervector. Then using Fy = y we obtain

Fyr= % iYi (78)

Fyi= iyr+ v (79)

Thus taking any linear combination of y, andy; asan initial condition for
1, 1, the Floquet map will perform some unitary transformation in the
subspacespannedby y, and y;, and in addition change the length of the
new vector by j j. We alsoknow that if both y, andy; are nonzero,soare
r and . Then there existsanother eigervaluewith  and ; andy;, and

yi. But from the point of view of the dynamics of the real-valued phase
spacevariablesthis complex conjugated eigenstatedoesnot add much new
results. So we conclude that if a pair of complex eigervectorsy and y
hasbeencomputed, their real and imaginary parts spana two-dimensional
subspacen the phasespace(of the perturbations) which is invariant under
applying the Floguet mapping. The mapping performs simply a rotation
only if j j = 1, otherwise it adds a cortraction j j < 1 or an expansion
ji> 1

If there is an eigervalue with j j < 1, due to (73,74) there is an eigen-
valuewith j j > 1 and vice versa.Consequetly whenewer we nd eigerval-
ueswith j j 6 1, there are directions in the phasespaceof perturbations
where we will obsene growth, which implies linear instabilit y. So we con-
clude that the only possibility for breathersto be marginally stable is to
have all Floquet eigervaluesbeing located on the unit circlej j= 1.
All eigenstateswhich reside on the unit circle ful ll Bloch's Theorem,

i.e. eigenstateswith = €' Tv whentaken asinitial conditions correspnd
to

w=¢ o 0= [t+T): (80)
One Floquet eigervalue is always located at = +1. Its eigervector is

tangert to the periodic orbit of the original breather. As eigervaluescomein
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pairs, there is another eigervalueat = +1. It correspndsto perturbations
tangert to the breather family of POs. Upon changing a cortrol parameter
the other Floquet eigervalues may move on the unit circle, collide and
leave the circle. Then a breather turns from being linearly stableto linearly
unstable. A schematic outcome of the Floquet eigervaluesfor a marginally
stable and unstable breather solutions is shawvn in Fig. 20.

Fig. 20. Schematic view of an outcome of the Floquet analysis of a breather. Flo quet
eigenvalues (lled circles) and the unit circle are plotted in the complex plane. Left
picture: marginally stable breather (all eigenvaluesare located on the unit circle). Right
picture: unstable breather (two eigenvaluesare located outside the unit circle). Note that
the group of closely nearby lying eigenvalues on the unit circle correspond to the plane
wave contin uum (extended Flo quet eigenstates), while the separated eigenvalues on the
circle correspond to localized Flo quet eigenstates.

Floguet eigervectors (i.e. the perturbations at time t = 0: F =
(1; 2,35 N 1, 205 N)) can be localized or delocalized in the lattice
space.Becausethe breather is localized, for large enough lattice size N
there will be a large number 2N of delocalized Floquet eigervectors,
and only a nite number of localized ones.Delocalized Floquet eigenstates
correspnd to plane wavesfar from the breather core.

The numerical computation of a Floquet matrix is similar to the
above descriced way to compute the Newton matrix. °° Using the re-
sults of 5.1 we choose a starting point on the breather orbit R(® with
R = (X1; X255 XN 1 XN P1; P2y Py 13 Py) and compute in analogy
to (61)

1 .
Fom = = RP™(T) RP(Th) (81)
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keepingin mind that all 2N phase spacedirections are used here. Note
that most of the elements of the Floquet matrix are also contained in the
Newton matrix of the last step of a Newton map, i.e. when beingreasonably
closeto an exact DB solution.

Before diagonalizing F we could ched all possiblesymmetriesin order
to reducethe Floquet matrix to its noninteracting irreducible parts. A good
test of the quality of the numerically obtained spectrum is to conrm the
double degeneracyof = 1 and the relations (75). The results are usedin
order to characterize stability of a given breather, to trace bifurcations of
breathers, to make cortact with possiblemoving breathersetc.

6.2. Plane wave scattering

The knowledge of the Floquet eigervaluesprovides with stability informa-
tion, andthe Floquet eigervectorstell us which directions in phasespaceare
causingpossibleinstabilities, and the nature of the eigervector (localizedor
delocalized) provideswith further information. However there is another in-
formation hidden in the extended eigenstates,namely their phases.These
phasesprovide with information about the scattering of plane waves by
discrete breathers. Sud a scattering has been indeed obsened in simple
numerical runs, when an extended plane wave was sert into a breather, to
shav up with an energy density distribution as the one in Fig. 21.5' We
obsene that most of the plane wave coming from the left is re ected bad,
and only a small fraction of about one percert is transmitted through the
breather. This implies that breathersmay act asvery strong scattering cen-
ters. Computational studies of wave scattering have been so far done for
one-dimensionalattices. 52:53:54:55:56 This is causedon one hand by the fact
that scattering in higher lattice dimensionsis more hard to be handled. On
the other hand breathersin higher lattice dimensionsare interacting much
wealker with radiation.

For one-dimensionalattices we needto nd the transmissioncoe cien t
as a function of the wave number of a plane wave which is sert into the
breather from say the left end of the system. Since such a plane wave
correspndsto an extendedFloquet eigenstate,we may write it in its Bloch
represemation as

(1) = * ey gt atk o)t (82)

k=1
We nd that inside the breather new frequencies! 4 + k  are generated.
These new frequenciesare also frequertly coined as channels (seeFig. 22
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Fig. 21. Scattering of a plane wave with q = 0:2 by a breather located at site 1500.
The energy density distribution is shown. The incident wave comes from the left. The

standing wave pattern on the left side of the DB is due to interferences between the
incident and re ected waves.

for a schematic view). Can any of these new channelsagain resonatewith
wWqt3W,

Wgr2W '

LWt

Wq

Fig. 22. Schematic view of a plane wave scattered by a discrete breathers. The plane
wave with frequency ! g is injected from the left. Inside the breather new frequency
channels are excited.

the spectrum ! 4 (note the signindicating that we haveto considerthe
frequency spectrum itself and not its squaredanalog or absolute values)?
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Sincethe breather frequency |, hasto be in generallarger than the width
of the band ! 4, at maximum one of the additional channels can resonate
with another plane wave frequency ! o =1!4+ k p. Sud a caseis called
two-channel scattering, and channelswhich match plane wave frequencies
are called open channels, while all others are called closedchannels. It is
straightforward to seethat for m dierent plane wave bands at most 2m
channelscan be open. Returning to the casem = 1, two-channel scattering
can be obtained under certain circumstances,but it is much easierto real-
ize one-thannel scattering, when all of the additionally generatedchannels
inside the breather are closed.We also note herethat one-thannel scatter-
ing is always elastic, i.e. the energy ux of the outgoing waves(transmitted
and re ected) equalsthe energy ux of the incoming wave.>? Two-channel
scattering is inelastic, with more energy carried away from the breather
than sert inside. Thusin a real simulation two-channel scattering will lead
to a linear in time decreaseof the breather energy®? In the following we
will focus on the caseof elastic one-hannel scattering only.

To compute the transmission coe cien t for a plane wave, we needto
know how large our chosensystemshould be. The systemsizeN should be
large comparedto the localization length 1= i in (26) for any k. In addition
we have to compute the localization length 1=§& of all closedchannelsin a
similar way

(lq+ k p)?=va+2wp(1l cosh&) (83)

for all nonzerok and requestthat the system sizeis larger. Then we can
approximate the extended Floquet state (82) by a simple plane wave for
larger distancesfrom the breather, with exponertial accuracy Assuming
that this is done, we choosethe labeling of the sizesof our nite system

N;( N+12);:; 1,01:(N 1);N (84)

where the breather is located in the certer around site | = O.

Solving the Floquet problem would provide only with a discrete set
of extended eigenstatesdue to the niteness of the system. Also we do
not need all Floquet states, but are interested only in the transmission
properties of a given extended state. Thus we simply emulate an in nite
system by imposing the following boundary conditions:

nep=e ety 1 = (A+iB)e Mt (85)

While we assumethat the transmitted wave on the right end has ampli-
tude j n+1j = 1, the amplitude and relative phaseon the left end are still



August 4, 2003 14:44 WSPC/T rim Size: 9in x 6in for Review Volume cach

46 S. Flach

undetermined and implicitly encaded in the real numbers A and B. Let
us x thesenumbersin somearbitrary way. The next stepis to perform a
Newton map (not a Floquet calculation!) in order to nd the zerosof G
which is de ned as

G("‘(O),':(O)) — “(O) ei! qTb “(Tb)

=0) =Tp)

Contrary to the Floquet approad, we thus obtain an extended Floquet
eigenstatewith an eigervalue beinglocated exactly on the unit circle. More-
over, in the ideal casewe needonly one step of the Newton map to corverge
to the solution, becausethe equations of motion are linear. Sometimesa
secondstep is neededdue to numerical errors done during the rst step.

The obtained eigenstateis however in generalnot correspnding to the
desiredscattering setup, sincewe do not know whether on the right end of
our system the obtained state correspnds to plane wave traveling to the
right only. The reasonfor that is that extendedFloquet eigenstatesare two-
fold degeneratedfor in nite systems.In order to proceedwe add another
Newton map with just two variables A and B sud that the eigenstate
solution from the rst map satis es

N:eiq i!qt; (87)

(86)

which now implies that we have selecteda Floquet eigenstatewhich corre-
spondsto a plane wave traveling to the right at the right end of our system,
and thus satisfying our scattering setup. With the notation

()= (e "o (88)

and remenbering that at the ends of our system | is a time-independert
complex number, the transmission coe cien t can be expressedhrough the
obtained numbers A and B:
- 4sin? q _
T jA+iB)e i j2r

(89)

The described method®® is remarkably easyto handle, provides with ma-
chine precision computations, doesn't care about any symmetry and struc-
ture of the underlying breather solution and can be applied as well to any
related problem of scattering by a time-periodic scattering potential. In
Fig. 23 we plot>® the computed transmission coe cien t versusq and |
for an acoustic systemwith V = 0 and w, = ws = 1. As expected the
transmission coe cien t vanishesat = (plane wave band edgewith zero
group velocity), but alsoin this special caseof an acoustic systemit takes
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Fig. 23. Transmission coe cien t versus wave number q and breather frequency | for
an acoustic chain (seetext for details).

valuet = 1 at q= 0 due to medanical momertum consenation. Note the
two peaksin Fig. 23 wheret = 1 again, due to bifurcations of localized
Floquet states from the cortinuous part of the Floquet spectrum.52:57

In Fig. 24 the above casefor = 4:5is comparedwith the result for
a chain with additional wz = 1.5 Note the additional resonan perfect
transmission peaksdue to additional localized Floquet eigenstatesand also
the remarkableresonar perfectre ection minima dueto Fanoresonances?
Only recenly theseFanoresonancesiave beenexplainedby localizedmodes
of closed channels resonating with the open channel.>® In some limiting
casegheselocalizedmodeshave beeneven computed numerically to predict
and obsene a Fano resonart re ection for other systems®®

7. Breathers in dissipativ e systems

So far we have been discussing computational methods of studying
breathers in Hamiltonian lattices. Any experiment will however shov up
with some dissipation. When this dissipation is of uctuating nature, it
could be simulated using a heat bath. Howewer it is possibleto consider
also simple deterministic extensionsof the above problems. In Josephson
junction systems(seethe chapters by Mazo and Ustinov in this volume)
this is actually evenimplemented experimenrtally . Here we will only mention
someof the basicnew featuresoneis facedwith whencomputing dissipative
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Fig. 24. Transmission coe cien t versus wave number q for | = 4:5 for an acoustic
chain with w, = ws = 1 (dotted line) and additional w3z = 1 (solid line). (seetext for
details).

breathers and their properties.6:58

7.1. Obtaining dissip ative breathers

Considerthe following set of equations of motion:

@
X = — x| 90
| @ X (90)
with

X
H = [ cosx;, C(1 codx; X 1))]: (91)

[
For =1 = 0 this systemis Hamiltonian and correspndsto the Takeno-

Peyrard model of coupled pendula.®:*° This model allows both for usual
discrete breathers, but also for so-calledroto-breathers. While for a usual
breather x,(t+ Tp) = x,(t) for all I, for the simplestversionof a roto-breather
one pendulum is performing rotations

Xo(t+ Tp) = Xo(t) + 2 m: (92)

Here m is a winding number characterizing the roto-breather (again the
simplestrealization is m = 1). Note that at variancewith a usual breather
(m = 0), roto-breathers are not invariant under time reversal.
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For nonzero and | = 0 the nonzerodissipation will leadto a decg of
all breather and roto-breather solutions. But for nonzerotime-independert
| roto-breathers may still exist. The reasonis that the rotating pendulum
will both gain energydue to the nonzerotorque | and dissipate energydue
to the nonzerofriction , soan energybalanceis possible(whereasthat is
imp ossiblefor breatherswith m = 0).

Instead of families of breather periodic orbits in Hamiltonian systems,
dissipative roto-breathers will be attractors in the phasespace.Attractors
are characterizedby a nite volume basin of attraction surrounding them.
Any trajectory which starts inside this basin, will be ultimately attracted
by the roto-breather. Thus dissipative breathers form a courtable set of
solutions.

To compute suc a dissipative roto-breather, we cansimply make a good
guessin the initial conditions and then integrate the equations of motion
until the roto-breather is reached. This method is very simple, but may
su er from long transient times, and also from complicated structures of
the boundariesof the basin of attraction.

The Newton method can be applied here as well. Although we do not
know the precise period of the roto-breather, we do not need it either.
Instead of de ning a map which integrates the phase spaceover a given
time Tp, we may de ne a map which integrates the phasespaceof all but
the rotating pendulum coordinate from its initial value Xo(t = 0) = 0 to
Xo(tmap) = 2 m. Dierent trajectories will have dierent values of tmap
which is not a problem. The only two things we have to worry about are:
to nd a trajectory which leadsto a rotation of xo and as usual to be
su cien tly closeto the desired solution in order for the Newton map to
corverge.Once the solution is found, Tp = tyap -

7.2. Perturbing dissip ative breathers

As long as a dissipative roto-breather is stable, the volume of its basin of
attraction is nite, and small deviations will return the perturbed trajec-
tory bad to the breather. Upon the changeof somecortrol parameterthe
breather may still persist but get unstable. Consider the linearized phase
space o w around a roto-breather of (90,91):

X @H

————]fx,o(t)g m 1!
m @I@m

In analogy with 6.1 we may introduce a (quasi-symplectic) matrix R which
mapsthe phasespaceof the perturbations onto itself by integration of (93)

(93)
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Fig. 25. Schematic view of an outcome of the Flo quet analysis of a dissipativ e breather.
Floquet eigenvalues (lled circles), the unit circle (large radius) and the inner circle
of radius R (96) are plotted in the complex plane. Left picture: stable breather (all
eigenvaluesare located on the circle with radius R). Right picture: stable breather closeto
instabilit y (two eigenvalueshave collided on the inner circle, and oneis departing outside
towards the unit circle). Note that the group of closely nearby lying eigenvalues on the
unit circle correspond to the plane wave contin uum (extended Flo quet eigenstates), while
the separated eigenvalueson the inner circle correspond to localized Flo quet eigenstates.

over one breather period.>® By using the transformation
=ez' (94)

we obtain
X H 1,
. @I@mjfx|o(t)g m ]

Equations (95) de ne a Floquet problem with a symplectic matrix F with
properties discussedabove. By badtransforming to R we nd that those
eigervalueswhich are located on the unit circle for F residenow on a circle
with lessradius

I - (95)

R()=e ™2 (96)
If is an eigervalue of R, soare

e mlie ml (97)
There is still one eigervalue = 1 which correspnds to perturbations

tangert to the breather orbit. The related second eigervalue is located
at e v, cortrary to the Hamiltonian case.The schematic outcome of a
Floquet analysis of a dissipative breather is shovn in Fig. 25.



August 4, 2003 14:44 WSPC/T rim Size: 9in x 6in for Review Volume cach

COMPUT ATIONAL STUDIES OF DISCRETE BREATHERS 51

8. Computing quantum breathers

A natural questionis what remains of discrete breathersif the correspnd-
ing quantum problem is considered®® Since the Scredinger equation is
linear and translationally invariant all eigenstatesmust obey the Bloch the-
orem. Thus we cannot expect eigenstatesof the Hamiltonian to be spatially
localized (on the lattice). On the other sidethe correspndencebetweenthe
quantum eigervalue problem and the classicaldynamical ewlution needs
an answer.

The concept of tunneling is a possible answer to this puzzle. Naively
speaking we quartize the family of periodic orbits assaiated with a dis-
crete breather located somewhereon the lattice. Notice that there are as
many sud families asthere are lattice sites. The quartization (e.g., Bohr-
Sommerfeld)yields someeigervalues. Since we can perform the samepro-
cedurewith any family of discrete breather periodic orbits which di er only
in their location on the lattice, we obtain N -fold degeneracyfor every thus
obtained eigervalue, where N standsfor the number of lattice sites.Unless
we consider the trivial caseof, say, uncoupled lattice sites, these degen-
eracieswill be lifted. Consequetly, we will instead obtain bands of states
with nite band width which can even hybridize with other states. These
bands will be called quantum breather bands. The inversetunneling time
of a semiclassicabreather from one site to a neighboring oneis a measure
of the bandwidth.

We canthen formulate the following expectation: if a classicalnonlinear
Hamiltonian lattice possessesliscrete breathers, its quantum counterpart
should show up with nearly degeneratebands of eigenstates,f the classical
limit is considered.The number of statesin suc a band is N, and the
eigenfunctions are given by Bloch-like superpositions of the semiclassical
eigenfunctions obtained using the mertioned Bohr-Sommerfeld quantiza-
tion of the classicalperiodic orbits. By nearly degeneratewe meanthat the
bandwidth of a quantum breather band is much smaller than the spacing
betweendi erent breather bandsand the averagelevel spacingin the given
energy domain, and the classicallimit implies large eigervalues.

Another property of a quantum breather state is that sud a state shows
up with exponertial localization in appropriate correlation functions.5! This
approad selectsall particle-lik e states, no matter how deeponeis in the
quantum regime. In this sensequantum breather states belongto the class
of particle-lik e bound states.

Intuitiv ely it is evidert that for large energiesand N the density of states
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becomeslarge too. What will happen to the expected quantum breather
bandsthen? Will the hybridization with other non-breather states destroy
the particle-lik e nature of the quantum breather, or not? What is the impact
of the nonintegrability of most systemsallowing for classicalbreather solu-
tions? Sincethe quantum casecorrespndsto a quantization of the classical
phasespace,we could expect that chaotic trajectorieslying nearby classical
breather solutions might a ect the correspnding quantum eigenstates.

From a computational point of view we are very much restricted in
our abilities to study quantum breathers. Ideally we would like to study
quantum properties of a lattice problem in the large energy domain (to
make cortact with classicalstates) and for large lattices. This is typically
imp ossible, since solving the quantum problem amourts to diagonalizing
the Hamiltonian matrix with rank bN where b is the number of states per
site, which should be large to make cortact with classicaldynamics. Thus
typically quantum breather states have beenso far obtained numerically
for small one-dimensionalsystems(N ~ 8).61:62:63

One of the few exceptionsis the quantum discretenonlinear Schrodinger
equation with the Hamiltonian 64

R
H = 5(@a)* + C(alan + hc) (%8)
=1

and the commutation relations
aay, ana = m (99)

with |, beingthe standard Kronedker symbol. This Hamiltonian consenes
the total number of particles

B = n;n=ala: (100)
[

For b particles and N sites the number of basisstatesis

(b+ N 1)

bI(N  1)!

For b = O there is just one trivial state of an empty lattice. For b = 1
there are N stateswhich correspnd to one-bosonexcitations. Thesestates
behave pretty much asclassicalextendedwave states.For b= 2 the problem
is still exactly solvable, becauseit correspnds to a two-body problem on
alattice. A correspnding numerical solution is sketched in Fig. 26.54 Note
the wide two-particle cortinuum, and a single band located below. This
single band correspnds to quasiparticle states characterized by one single

(101)
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Fig. 26. Spectrum of the quantum DNLS with b= 2 and N = 101. The energy eigen-
values are plotted versus the wavenumber of the eigenstate.

guantum number (related to the waverumber g). These states are two-
particle bound states. The dispersion of this band is given®* by
r
E= 1+ 16C2co2 g : (102)

Any eigenstatefrom this two-particle bound state band is characterized by
exponertial localization of correlations, i.e. when represerted in someset
of basis states, the amplitude or overlap with a basis state where the two
particles are separatedby somenumber of sitesis exponertially decreasing
with increasing separation distance. Note that a compact bound state is
obtained for q= , i.e. for thesewave numbers basisstates with nonzero
separation distance do not cortribute to the eigenstateat all.
Increasing the number of particles to b= 3 or larger calls for computa-
tional tools. Eilbedk® hasrecerly provided with updated codesin Maple
in order to deal with systemswith up to b= 4 and N = 14, implying a
Hilb ert spacedimension of 2380 (there are N*—t?l ways to distribute b
identical particles on N sites). While these studies revealed a lot of new
structures of the correspnding spectra, we still have to wait for more sys-
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tematic studies. Sincethe classicalregime is still not easily reachable for
theselarge systems,we will discussin the next sectionssystematic studies
of small systems,which allow to boost the energiesinto the semiclassical
domain.

8.1. The dimer

A series of papers was dewted to the properties of the quantum

dimer.%6:67:68 This systemdescribesthe dynamics of bosons uctuating be-
tweentwo sites. The number of bosonsis consened, and together with the
consenation of energythe systemappearsto be integrable. Of course,one
cannot consider spatial localization in sud a model. Howeer, a reduced
form of the discrete translational symmetry - namely the permutational

symmetry of the two sites - can be imposed.Togetherwith the addition of
nonlinear terms in the classicalequations of motion the dimer allows for
classicaltra jectories which are not invariant under permutation. The phase
spacecan be completely analyzed, all isolated periodic orbits can be found.
There appearsexactly one bifurcation on one family of isolated periodic or-
bits, which leadsto the appearanceof a separatrix in phasespace.The sep-
aratrix separatesthree regions- oneinvariant and two non-invariant under
permutations. The subsequehanalysisof the quantum dimer demonstrated
the existenceof pairs of eigenstateswith nearly equal eigenenergie$§® The
separatrix and the bifurcation in the classicalphasespacecan be traced in

the spectrum of the quartum dimer.58

The classicalHamiltonian may be written as

1
H= , 1+ 2+§(1 1)+ ( 2 22 +C( 1 2+ , 1) :(103)

with the equationsof motion —;;» = iI@H=@ ;.,. The model conseresthe
norm (or number of particles) B = j 1j%+ ) »j°.

Isolated periodic orbits (IPO) satisfy the relation gradH jj gradB. Let
us parameterizethe phasespaceof (103) with 1., = Aj.2d 42, A, 0.

It followsthat A;.» is time independert and 1 = .+  with =0
and ., = ! beingalsotime independeri. Solving the algebraic equations
for the amplitudes of the IPO's we obtain
1
| AL, = %B; =0;! =1+C+ éEs . (104)
1 1
1AL, = 5B = ;l=1 C+3B; (105
2_ 1 P

[ :Af= 2B 1 1 4C?=B? ; =0;!=1+B : (106)
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IPO 111 correspndsto two elliptic solutions which break the permutational
symmetry. IPO Il exist for B By with B, = 2C and occur through a
bifurcation from IPO I. The correspnding separatrix manifold is uniquely
de ned by the energyof IPO | at a givenvalue of B By. This manifold
separatesthree regionsin phasespace- two with symmetry broken solu-
tions, ead one cortaining one of the IPO's |11, and one with symmetry
conserving solutions cortaining the elliptic IPO Il. The separatrix mani-
fold itself contains the hyperbolic IPO I. For B By only two IPO's exist
- IPO | and I, with both of them being of elliptic character. Remarkably
there exist no other IPO's, and the mentioned bifurcation and separatrix
manifolds are the only onespresett in the classicalphasespaceof (103).
To concludethe analysisof the classicalpart, we list the energyproper-
ties of the di erent phasespaceparts separatedby the separatrix manifold.
First it is straightforward to show that the IPO's (104)-(106) correspond to
maxima, minima or saddlepoints of the energyin the allowed energyinter-
val for a given value of B, with no other extrema or saddlepoints presert.

It follows
E;=H(POI) =B+ %BZ+ CB ; (107)
E,=H(POIl) =B+ %BZ CB ; (108)
E3:H(IPOIII):B+%BZ+ c?: (109)

For B < B, we have E; > E, (IPO | - maximum, IPO Il - minimum). For
B Byit followsEz > E; > E;, (IPO 111 - maxima, IPO | - saddle,IPO
[l - minimum). If B < By, then all trajectories are symmetry conserving.
If B By, then trajectories with energiesE; < E E3 are symmetry
breaking, and trajectorieswith E, E  E; are symmetry conserving.
The quantum eigervalue problem amounts to replacing the complex

functions ; in (7) by the boson annihilation and creation operators
a;a¥ with the standard commutation relations (to enforce the invariance
under the exdhange the substitution hasto be done on rewriting
=1=2( + )
H=24+3 Qa+ada, + 1 (@ay)? + (aap)® + C ajax + aja
4 2 11 22 2 191 22 1A2 2al
(110)
Note that = 1 here,sothe eigenvaluesb of B = a)a; + aja, are integers.

SinceB commutes with H we can diagonalizethe Hamiltonian in the basis
of eigenfunctionsof B. Each value of b correspnds to a subspaceof the
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dimension(b+ 1) in the spaceof eigenfunctionsof B. Theseeigenfunctions
are products of the number statesjni of ead degreeof freedomand canbe
characterized by a symbol jn; mi with n bosonsin the site 1 and m bosons
in the site 2. For a given value of bit followsm = b n. Sowe can actually
label eadh state by just onenumber n: jn; (b n)i jni. Consequetly the
eigervalue problem at xed b amounts to diagonalizing the matrix

g%a-%b+% nZ+ (b n)? n=m

_ C,.n(b+1 n) n=m+1
H”’“‘gcp (n+1)(b n) n=m 1 (111)

"0 else

wheren; m = 0; 1; 2; ::;; b. Notice that the matrix Hpny is a symmetric band
matrix. The additional symmetry Hpm = Hp ny: (o m) iS @ consequencef
the permutational symmetry of H. For C = 0 the matrix H.y, is diagonal,

200000

0.02

150000 -

200000

100000

50000 :
0 100 200 300

n
Fig. 27. Eigenvalues versus ordered state number r for symmetric and antisymmetric

states (0 < r < b=2 for both types of states). Parameters: b= 600 and C = 50. Inset:
Density of states versus energy.

with the property that ead eigervalue is doubly degenerate(except for the
state jb=2) for the even valuesof b). The classicalphasespacecortains only
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symmetry broken trajectories, with the exceptionof IPO Il and the separa-
trix with IPO | (in fact in this limit the separatrix manifold is nothing but
a resonart torus cortaining both IPO's | and Il). Sowith the exception of
the separatrix manifold, all tori break permutational symmetry and come
in two groupsseparatedby the separatrix. Then quantizing ead group will
lead to pairs of degenerateeigervalues- one from ead group. There is a
clear correspndenceto the spectrum of the diagonal (C = 0) matrix Hpm .
The eigervaluesHgpy = Hpp correspnd to the quantized IPO's I11. With
increasingn the eigervaluesHn, = Hp n);p n) COrrespnd to quartized
tori further away from the IPO Ill. Finally the states with n = b=2 for
evenborn = (b 1)=2 for odd b are tori most closeto the separatrix.
Switching the side diagonalson by increasingC will lead to a splitting of
all pairs of eigervalues.In the caseof small valuesof b thesesplittings have
no correspndenceto classicalsystem properties. However, in the limit of
large b we enter the semiclassicaregime,and dueto the integrability of the
system, eigenfunctionsshould correspond to tori in the classicalphasespace
which satisfy the Einstein-Brillouin-Keller quantization rules. IncreasingC
from zerowill leadto a splitting E, of the eigervalue doublets of C = 0.
In other words, we nd pairs of eigervalues, which are related to eadh
other through the symmetry of their eigervectorsand (for small enoughC)
through the small value of the splitting. These splittings have been calcu-
lated numerically and using perturbation theory.%¢:¢8 In the limit of large
b the splittings are exponertially small for the energiesabove the classi-
cal separatrix energy (i.e. for classicaltrajectories which are not invariant
under permutation). If the eigenenergiesare lowered below the classical
separatrix energy the splittings grow rapidly up to the meanlevel spacing.

In Fig. 27 the results of a diagonalization of a systemwith 600 particles
(b= 600) is shavn.®® The inset shaws the density of states versusenergy
which nicely con rms the predicted singularity at the energyof the separa-
trix of the classicalcounterpart. In orderto computethe exponertially small
splittings, we may use e.g. a Mathematica routine which allows to choose
arbitrary valuesfor the precision of computations. Here we choseprecision
512.1In Fig. 28the numerically computed splittings are comparedto pertur-
bation theory results. As expected, the splittings becomeextremely small
above the separatrix. Consequetly these states will follow for long times
the dynamics of a classicalbroken symmetry state.
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Fig. 28. Eigenvalue splittings versus i/ for b= 150 and C = 10. Solid line - numerical
result, dashed line - perturbation theory. Inset: Same for b = 600 and C = 50. Only
numerical results are shown.

8.2. The trimer

The integrability of the dimer does not allow a study of the in uence of
chaoson the tunneling properties of the mentioned pairs of eigenstates.A
natural extensionof the dimer to a trimer adds a third degreeof freedom
without adding a new integral of motion. Consequetly the trimer is nonin-
tegrable. A still comparatively simple numerical quartization of the trimer
allows to study the behavior of many tunneling statesin the large-energy
domain of the eigervalue spectrum.®®
Similarly to the dimer, the quantum trimer Hamiltonian is represened
in the form H _
[
H = 2 S(afas + ala + afas) + o (afan)? + (a)’
+C(ajap + ayay) + (ajag+ ajay + ajas + ajay) :  (112)

Again B = aja; + a}a, + ajaz commutes with the Hamiltonian, thus we
can diagonalize (112) in the basis of eigenfunctionsof B. For any nite
eigervalue b of B the number of statesis nite, namely (b+ 1)(b+ 2)=2.
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Thusthe in nite dimensional Hilb ert spaceseparatesinto an in nite set of
nite dimensional subspacesgad subspacecortaining only vectorswith a
given eigervalue b. Theseeigenfunctionsare products of the number states
jni of ead degreeof freedomand can be characterizedby a symbol jn; m; li
wherewe have n bosonson site 1, m bosonson site 2, and | bosonson site
3. For a givenvalue b it followsthat | = b m n. Sowe can actually
label eat state by just two numbers (n; m): jn;m;(b n  m)i jn; mi.
Note that the third site addedto the dimer is di erent from the rst two
sites. There is no boson-osoninteraction on this site. Thus site 3 senes
simply asa bosonresenoir for the dimer. Dimer bosonsmay now uctuate

from the dimer to the resenoir. The trimer has the same permutational

symmetry asthe dimer.

The matrix elemernts of (112) betweenstatesfrom di erent b subspaces
vanish. Thus for any given b the task amourts to diagonalizing a nite
dimensionalmatrix. The matrix hasa tridiagonal block structure, with eadh
diagonalblock being a dimer matrix (111). The nonzeroo -diagonal blocks
contain interaction terms proportional to . Since H commutes with F‘}q
we considersymmetric j is and antisymmetric j i, states. The structure
of the corresppnding symmetric and antisymmetric decompsitions of H
is similar to H itself. In the following we will presen results for b = 40.
We will alsodrop the rst two terms of the RHS in (112), becausethese
only lead to a shift of the energy spectrum. Since we evaluate the matrix
elemerts explicitly , we needonly a few secondgo obtain all eigervaluesand
eigervectors with the help of standard Fortran routines. In Fig. 29 we plot
a part of the energy spectrum as a function of for C = 2.%° As discussed
above, the Hamiltonian decomposesinto noninteracting blocks for = 0,
eadt block correspnding to a dimer with a bosonnumber between0 and b.
For 6 0the nonzeroblock-block interaction leadsto typical featuresin the
spectrum, like, e.g., avoided crossings.The full quantum energy spectrum
extends roughly over 103, which implies an averagedspacing of order 10°.
Also the upper third of the spectrum is diluted comparedto the lower two
thirds.

The correspndenceto the classicalmodel is obtained with the use of
the transformation Eo = Eqm=I + 1 and for parametersC=band =b(the
classicalvalue for B is B = 1).

The main result of this computation so far is that tunneling pairs of
eigenstatesof the dimer persistin the nonintegrableregime 6 0. Howewer
at certain pair-dependernt valuesof a pair breaks up. From the plot in
Fig. 29 we cannot judge how the pair splittings behave. In Fig.30 we plot
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Fig. 29. A part of the eigenenergy spectrum of the quantum trimer as a function of
with b = 40 and C = 2. Lines connect data points for a given state. Solid lines -
symmetric eigenstates; thic k dashed lines - antisymmetric eigenstates.

the pair splitting of the pair which hasenergy 342at = 0.7° Denote
with X; y; z the eigervaluesof the site number operators ny; n»; n3. We may
considerthe quantum states of the trimer at = 0 when z is a good quan-
tum number and then follow the ewlution of thesestateswith increasing .
The state for = 0 can be traced badk to C = 0 and be thus characterized
in addition by x and y. The chosenpair states are then characterized by
x = 26(0),y = 0(26)and z = 14for C = = 0. Note that this pair survives
approximately 30 avoided crossingsbeforeit is nally destroyed at coupling
strength 2:67 as seenin Fig. 29.

From Fig. 30 we nd that the splitting rapidly increasesgaining about
eight ordersof magnitude when changesfrom 0to slightly above 0.5.Then
this rapid but newverthelesssmooth rise is interrupted by very sharp spikes
when the splitting  E risesby se\eral orders of magnitude with  chang-
ing by mere percerts and then abruptly changesin the opposite direction
sometimeseven overshwting its pre-spike value. Sud spikes, somelarger,
somesmaller, repeat with increasing until the splitting value approaces
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0
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Fig. 30. Level splitting versus for a level pair as described in the text. Solid line -
numerical result. Dashed line - semiclassical approximation. Filled circles - location of
wave function analysis in Fig. 31.

the meanlevel spacing (of order onein the gure). Only then one may say
that the pair is destroyed sinceit can be hardly distinguished among the
other trimer levels.

Another obsenation is presernied in Fig. 31. We plot the intensity
distribution of the logarithm of the squaredsymmetric wave function of our
chosenpair for v edierent valuesof = 0; 0:3; 0:636; 1:0; 18 (their
locations are indicated by lled circlesin Fig. 30). We usethe eigenstates
of B asbasisstates. They can be represeted asjx; y;z > wherex; y;z are
the particle numberson sites 1, 2, 3, respectively. Due to the commutation
of B with H two site occupation numbers are enoughif the total particle
numberis xed. Thusthe nal encaling of states(for a givenvalue of b) can
be chosenas jx; z) (seealso discussionabove for details). The abscissain
Fig. 31is x and the ordinate is z. Thus the intensity plots provide us with
information about the order of particle ow in the coursethe tunneling
process.For = 0 (Fig. 31(a)) the only possibility for the 26 particles
on site 1 is to directly tunnel to site 2. Site 3 is decoupledwith its 14
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Fig. 31. Contour plot of the logarithm of the symmetric eigenstate of the chosentunnel-
ing pair (cf. Fig. 30) for v edieren t valuesof = 0; 0:3; 0:636; 1:0; 1:8 (their location
is indicated by lled circles in Fig. 30). (a): three equidistant grid lines are used; (b-e):
ten grid lines are used. Minim um value of squared wave function is 10 30, maximum

value is about 1.
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particles not participating in the process.The squaredwave function takes
the form of a compactrim in the (x; z) plane which is parallel to the x axis.
Nonzero values of the wave function are obsened only on the rim. This
direct tunneling hasbeendescribedin 8.1.When switching on somenonzero
coupling to the third site, the particle number on the dimer (sites 1,2) is
not consened anymore. The third site senesas a particle resenoir which
is able either to collect particles from or supply particles to the dimer. This
coupling will allow for nonzerovalues of the wave function away from the
rim. But mostimportantly, it will changethe shape of the rim. We obsene
that the rim is bended down to smaller z valueswith increasing . That
implies that the order of tunneling (when, e.g., going from large to small
x values)is asfollows: rst, someparticles tunnel from site 1 to site 2 and
simultaneously from site 3 to site 2 (Fig. 32(a)). Afterwards particles ow
from site 1 to both sites2 and 3 (Fig. 32(b)). With increasing the structure
of the wave function intensity becomesmore and more complex, possibly
revealing information about the classicalphasespace o w structure. Thus

Fig. 32. Order of tunneling in the trimer. Filled large circles - sites 1 and 2, lled small
circle - site 3. Arro ws indicate direction of transfer of particles.

we obsene three intriguing features.First, the tunneling splitting increases
by eight ordersof magnitude when increasesrom zeroto 0.5. This seems
to be unexpected, since at those values perturbation theory in  should
be applicable (at least Fig. 29 indicates that this should be true for the
levelsthemselhes). The semiclassicakxplanation of this result was obtained
in [70].
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The secondobsenation is that the tunneling beginswith a o w of par-
ticles from the bath (site 3) directly to the empty site which is to be lled
(with simultaneous o w from the lled dimer site to the empty one). At the
end of the tunneling processthe initially lled dimer site is giving particles
back to the bath site. Again this is an unexpected result, sinceit implies
that the particle number on the dimer is increasing during the tunneling,
which seemsto decreasehe tunneling probability, accordingto the results
for an isolated dimer. These rst two results are closely connected(see[70]
for a detailed explanation). The third result concernsthe resonan structure

6e 05 6e 05

4e 05 44 4e 05

energy levels
\
energy levels

2e 05 2e 05

0e+00
049 0.05 0.051 0.049 0.05 0.051

0e+00
0.

6e 05

(d)

\ © 0.01

4e 05

energy levels

2e 05

energy levels

0e+00 0.00
0.049 0.05 0.051 0.01 0.03 0.05 0.07 0.09

Fig. 33. Level splitting variation at avoided crossings. Inset: Variation of individual
eigenvalues participatin g in the avoided crossing. Solid lines - symmetric eigenstates,
dashed lines - antisymmetric eigenstates.

on top of the smooth variation in Fig. 30. The resonant enhancemets and
suppressionsof tunneling are related to avoided crossings.Their presence
implies that a ne tuning of the system parametersmay strongly suppress
or enhancetunneling which may be useful for spectroscopic devices. In
Fig. 33 we show the four various possibilities of avoided crossingsbetween
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a pair and a singlelevel and betweentwo pairs, and the schematic outcome
for the tunneling splitting. "©

8.3. Quantum roto-br eather s

When discussingclassicalbreather solutions we have beentouching some
aspectsof roto-breathers, including their property of being not invariant un-
dertime reversalsymmetry. In arecen study Dorignac et al have provided’*
with an analysisof the correspnding quantum roto-breather properties in
a dimer with the Hamiltonian

H = P, (1 cosxi) +"(1 cosfi X2)): (113)

The classicalroto-breather solution consistsof one pendulum rotating and
the other oscillating with a given period Tp. Sincethe model has two sym-
metries - permutation of the indicesand time-reversalsymmetry, which may
be both broken by classicaltrajectories, the irreducible represemations of
guantum eigenstatescorntain four symmetry sectors(with possiblecombina-

tions of symmetric or antisymmetric stateswith respect to the two symme-
try operations). Consequetly, a quantum roto-breather state is belonging
to a quadruplet of weakly split states rather than to a pair as discussed
above. The schematic represemation of the appearanceof suc a quadru-

plet is shown in Fig. 34.”* The obtained quadruplet has an additional ne

structure as comparedto the tunneling pair of the above considereddimer

and trimer. The four levels in the quadruplet de ne three characteristic

tunneling processesTwo of them are energy or momertum transfer from

one pendulum to the other one, while the third one correspnds to total

momertum reversal (which restorestime reversal symmetry). The depen-
denceof the correspnding tunneling rates on the coupling " is shavn for a

speci ¢ quadruplet from [71] in Fig. 35. For very weak coupling™ 1 the

fastest tunneling processwill be momertum reversal, since tunneling be-

tweenthe pendulais blocked. However as soon asthe coupling is increased,
the momertum reversalturns into the slowvestprocesswith breathertunnel-

ing from one pendulum to the other one being orders of magnitude larger.

Note that again resonan features on these splitting curves are obsened,

which are related to avoided crossings.
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coe
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4-uplets

Rotobreather

[s>  |s> 4-uplets
N 2> 2-uplets
|a [& singlets

Separatrix

2-uplets
singlets

Ground states

Fig. 34. Schematic representati on of the sum of two pendula spectra. Straight solid
arrows indicate the levelsto be added and dashed arrows the symmetric (p ermutation)
operation. The result is indicated in the global spectrum by a curved arrow. The con-
struction of the quantum roto-breathe r state is explicitly represented.

9. Some applications instead of conclusions

Instead of providing with a standard conclusion, we will discussin this
last part someselectedcomputational results of discrete breather studies,
which have beenboosting the understanding of various aspects of DBs or
con rming analytical predictions.

Rather simple numerical obsenations of breathers showed that in one-
dimensional acoustic chains a breather is usually accompaniedby a kink-
type static lattice distortion 72 - a fact later explained’® and even usedin
analytical existenceproofs.!’:1® Other numerical obsenations revealedthat
stable discrete breathersmay be perturbed in an asymmetric way sud that
a separatrix may be crossedleading to possible movability (seediscussion
in [6]).

While exact moving breather solutions in generic Hamiltonian lattices
have not been obsened, the understanding of somereasong*’® and their
removal by consideringdissipative breathers successfullyallowed to obtain
dissipative moving breathers>®

Tracesof energy thresholds of discrete breathers*’ have beenobsened
in the properties of correlation functions at thermal equilibrium. 77
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Fig. 35. Dependence of dieren t splittings of a quadruplet on ". Only three of them
have been displayed, each being asscciated with a given tunneling process’!

Numerical studies of collisions between moving breathers showed
that the energy exdange typically leads to the growth of the largest
breather’*76:31 . a fact which is not well explained yet.

The explained high precision numerical routines for obtaining discrete
breathers have beenusedin order to obtain discrete breathersin acoustic
two-dimensionallattices.”® The predicted algebraic decay of the static lat-
tice deformation and its dipole symmetry have been nicely obsened prior
to analytical proofs of existence'®

Another example concerns the case of algebraically decaing (long
range) interactions on a lattice. While analytical proofs correctly stated
that the asymptotic spatial decay of breatherswill be alsoalgebraicin suc
a case,numerical high precision computations showved that there is more
to say.”® The spatial breather pro le in sud systemsshows an exponertial
decay on intermediate length scaleswith a crosswer to algebraic decgy on
larger distances. Afterwards this crosswer was explained analytically and
estimatesof the crosswer distance well coincided with numerical results.

The tracing of bifurcations and instabilities explainedan often obsened
puzzling exdange of stability of various breather types. The outcome of
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the numerical studieswasthat thesedi erent typesof breather families are
connectedthrough unexpected asymmetric breather families.>°

The understanding that two-channel scattering of plane waves by
breathers is inelastic was used to perform numerical experiments which
nicely shoved the expected slov energy decreaseof a breather in suc a
case>?

The appearanceof local Floquet modesaccordingto analytical predic-
tions shouldleadto the appearanceof perfect transmissionof wavesthrough
breathers®7:52 This fact hasbeennicely obsened in various numerical stud-
ies.

The theoretical understanding of Fano resonancesin wave scattering
by breathers lead to a numerical scheme which allows to compute and
thus predict the parameters of various models which should provide with
resonart Fano badkscattering. Direct numerical scattering computations
have shavn the correctnessof these considerationsand computations.>®

The launching of a localized initial state in a quantum trimer showed
up with unexpected edoes in the quantum ewlution. These ecoes have
been explained with the help of the numerically obtained spectrum and
eigenfunctionsby relating it to the existenceof quantum breather states.%°

The interested user may consult the web page http://www.mpipks-
dresden.mpg.de/ ach/html/dbreather.h tml for java applications written
by A. E. Miroshnichenko, which allow for launching your favorite breather
in your favorite system. There the interested reader may also nd more
referencesyrelated web addressesand links to related activities.
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