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We study the properties of spatially localized and time-periodic excitations—discrete breathers—in
Fermi–Pasta–Ulam sFPUd chains. We provide a detailed analysis of their spatial profiles and sta-
bility properties. We especially demonstrate that the Page mode is linearly stable for symmetric
FPU potentials. A resonant interaction between a localized and delocalized perturbations causes
weak but finite strength instabilities for asymmetric FPU potentials. This interaction induces Fano
resonances for plane waves scattered by the breather. Finally we analyze the interplay between
energy thresholds for breathers in the presence of strongly asymmetric FPU potentials and the
corresponding profiles of the low-frequency limit of breather families. © 2005 American Institute
of Physics. fDOI: 10.1063/1.1839151g

The Fermi–Pasta–Ulam (FPU) paradox was observed
fifty years ago. The surprising finding was a localization
of energy in the reciprocal q-space of a model with dis-
crete translational invariance, despite the presence of in-
teraction between extended normal modes. Thirty three
years later Sievers, Takeno, and Kisoda reported on the
observation of energy localization in real space for the
same class of FPU models, which is as surprising since
these excitations, called discrete breathers or intrinsic lo-
calized modes, violate the underlying discrete transla-
tional symmetry of the model. The past decade has wit-
nessed a tremendous progress in the theory and
applications of discrete breathers, which goes far beyond
the scope of the original FPU frame. We use the modern
theory of discrete breathers to investigate the properties
of these solutions in FPU models, paying special attention
to the issues of stability, resonances, wave scattering and
energy thresholds.

INTRODUCTION

The celebrated Fermi–Pasta–Ulam sFPUd model was in-
troduced fifty years ago in order to study the process of
equilibration of energy among normal modes due to mode–
mode interactions.1 It can be viewed as a toy version of a
model describing the dynamics of lattice vibrations of per-
fect crystals. The original FPU model reduced space dimen-
sion to one, and attributed one degree of freedom to each
lattice site. It is worth mentioning that in the absence of
mode–mode interactions, that model is often used in solid
state physics textbooks to explain the basic features of
phonons and is then called a monoatomic chain.2 Some of
these textbooks deal also with mode–mode interactions,
coining them anharmonic corrections ssince they appear as
anharmonic terms in the Taylor expansion of the potential
energy of the lattice with respect to atomic displacementsd.
Notably these anharmonic terms are used to explain thermal
expansion of crystals, among many other features. It is also
worth stressing that solid state physicists did not seriously
question the assumed fact that in thermal equilibrium the

energy is equipartitioned among the normal modes—due to
the bulk of accumulated experimental evidence for that fact.
The more time-resolved spectroscopical methods advance,
the more questions arise concerning these topics when study-
ing lattice dynamics in the presence of strong nonlinearities
si.e., mode–mode interactionsd. Returning to the FPU model
calculations, they revealed the surprising fact that at least for
some cases sfor some sets of initial conditionsd the evolution
of the FPU model showed no equipartioning among the nor-
mal modes.1 In other words, the FPU paradox seems to con-
sist primarily of the observation of localization of energy in
a few normal modes, despite the presence of interaction be-
tween all modes, which would be capable of distributing the
energy among all normal modes of the system.3

While the modern view on this FPU paradox observation
is for sure discussed in other contributions to this Focus Is-
sue, we will not dwell on that further. In what follows, we
will discuss another interesting aspect of the dynamics in the
FPU model and its various generalizations. This concerns
localization in real space. In other words, we will show that
FPU models allow for solutions of the corresponding equa-
tions where the energy is not equally shared among the local
constituents susing the solid state physics language, among
the different atomsd. These solutions are coined intrinsic lo-
calized modes sILMd, or discrete breathers sDBd. Whatever
the nomenclature, ILMs/DBs turn out to be generic to a
much larger class of Hamiltonian lattices, and FPU models
together with their generalizations represent one of the sub-
classes of these lattices ssee Fig. 1 for a schematic represen-
tation of various DBsd. ILMs/DBs are time-periodic and spa-
tially localized solutions, and exist thanks to the interplay
between nonlinearity and discreteness.4 Many studies of DBs
have been successfully launched, on such topics as rigorous
existence proofs, dynamical and structural stability and com-
putational methods of obtaining DBs in classical models as
well as their quantum aspects. In addition DBs have been
detected and studied experimentally in such different sys-
tems as interacting Josephson junction systems,5 coupled
nonlinear optical waveguides,6 lattice vibrations in crystals,7
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antiferromagnetic structures,8 micromechanical cantilever
arrays,9 Bose–Einstein condensates loaded on optical
lattices,10 layered high-Tc superconductors.11 DBs are pre-
dicted also to exist in the dynamics of dusty plasma
crystals.12 It is an equally interesting question of why
ILMs/DBs have not been properly discussed when studying
the lattice dynamics of crystals until very recently. We leave
the answer to this question to the experienced and educated
experts of that field.

SETTING THE STAGE AND EARLY RESULTS

We will consider the following class of one-dimensional
Hamiltonian chains

H = o
l

f 1
2 pl

2 + Wsxl − xl−1dg , s1d

where xl describes the scalar displacement of a particle
satomd from its equilibrium position, pl= ẋl;dxl /dt is its
conjugated momentum svelocityd, l denotes the number of
the particle, and Wsxd is the interaction potential between
nearest neighbors. The Hamiltonian H is assumed to take
only nonnegative values for small values of the displace-
ments and velocities, i.e., the potential W and its first deriva-
tive W8 vanish for zero displacements Ws0d=W8s0d=0 and
the second derivative W9 is positive for small displacements
W9s0d.0. The Hamiltonian equations of motions ẋl

=]H /]pl, ṗl=−]H /]xl lead to the following set of coupled
differential equations:

ẍl = − W8sxl − xl−1d + W8sxl+1 − xld . s2d

Let us expand the function W in the following series:

Wsxd = o
m=2

`
fm

m
xm. s3d

If the potential Wsxd is symmetric Wsxd=Ws−xd it follows
f2m+1=0 for all positive integers m.

The celebrated FPU models1 are obtained by choosing
nonzero values for f2,3,4 and zeroing all the others fm.4

=0. Thus we may consider the FPU models as low amplitude
expansions of the more general model class s1d. FPU models
take into account the two first anharmonic corrections f3,4 to
the harmonic term f2. The case of a symmetric potential for
FPU models is thus obtained by assuming f3=0. Note that
anharmonic terms in the Hamiltonian correspond to nonlin-
ear terms in the equations of motion here. Equation s2d con-
serves both the total energy H s1d as well as the total me-
chanical momentum P=olpl. Without loss of generality we
will consider below the case P=0 only.

If we restrict our consideration to very small amplitudes
and velocities only, we may neglect all nonlinear terms from
the equations of motion, assuming fm.2=0. The solution of
the corresponding linear coupled differential equations

ẍl = f2sxl+1 + xl−1 − 2xld s4d

can be written in the form of a superposition of plane waves
each given by

xlstd = Aq cossvqt − ql + Bqd s5d

where q is the wave number, vq the plane wave frequency,
and Aq and Bq are integration constants. The dispersion rela-
tion sFig. 2d

vq = ± 2Îf2 sinSq

2
D s6d

is periodic in q and is characterized by an upper bound
uvquøvp;2Îf2. Moreover for small values of quvqu
<Îf2q. Such an acoustic type of dispersion at small values
of q is intimately connected to the above mentioned conser-
vation of the total mechanical momentum P. Any spatially
localized initial excitation on the lattice will ultimately dis-
perse due to the q-dependence of the group velocity

vq =
dvq

dq
= ± Îf2 cos

q

2
. s7d

Taking into account weak anharmonic–nonlinear effects usu-
ally leads to a renormalization of plane wave properties such
as frequencies and lifetimes. However, no principal change

FIG. 1. A schematic representation of different types of discrete breathers:
sad Acoustic FPU breather; sbd acoustic rotobreather; scd optical breather sfor
details see, e.g., Ref. 4d.

FIG. 2. Dependence of vq on q for f2=1. Vertical and horizontal lines mark
the values q=0 and vq=0.
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in the behavior of a spatially localized initial condition is
expected from that perspective.

Some rigorous results exist for the study of stability of
certain plane waves. Indeed, the corresponding modulational
instability scf. Refs. 13–18d is responsible for the appearance
of localized structures. However, the linearization of the
phase space flow around the plane wave in these studies
limits possible conclusions about the appearance of strongly
localized ILMs or DBs.

A nonperturbative and qualitatively new property of the
evolution of spatially localized excitations takes place if the
nonlinear terms become essential. Instead of observing a de-
cay in space, robust and seemingly exact spatially localized
vibrational excitations have been observed. Early results on
ILMs or DBs in FPU chains have been obtained by Sievers,
Takeno, and Kisoda.19 These studies as well as their
followups20 provide three types of observations and results,
among others.

First, they report on numerical evidence of the existence
of long lived localized excitations, with lifetimes much
larger than the typical oscillation times ,2p /vp. The inter-
nal frequencies of such ILMs are outside the spectrum vq. In
Figs. 4, 6, and 8 some of these excitations are shown sand
will be discussed in more detail belowd. In fact, as will be
discussed in the next sections, these excitations are exact
solutions of the equations of motion.

Second, approximate numerical solutions were obtained
using the rotating wave approximation which implies that a
time-periodic solution is constructed taking into account only
its first harmonics frequency contribution sand optionally
also a dc componentd and neglecting higher harmonics. The
recipe is to use the ansatz xlstd=cl+al cossVbtd, to insert it
into the equations of motion s2d and to neglect all terms with
higher harmonics which appear due to the nonlinear terms.
The resulting set of coupled algebraic equations for the co-
efficients cl ,al can be solved numerically for finite numbers
of sites, and yields solutions similar to those observed in
numerical simulations. This approximation is strictly speak-
ing valid only for small amplitudes of the displacements. In
reality, however, it may serve as a good estimate to exact
solutions for rather large amplitudes as well.

And third, for quite long simulation times moving ILMs
have been observed, which in addition of being characterized
by internal oscillations, propagate along the chain. Typically
the observed propagation velocities are smaller than the
maximum group velocity maxsuvqud=Îf2. Also the motion of
these ILMs along the lattice leaves excited lattice parts be-
hind, implying that in the course of time these moving struc-
tures will slow down or disappear due to radiation of energy.

While initially ILM excitations seemed to be connected
to some specific properties of FPU chains, the observation of
similar localized structures in Klein–Gordon chains as well
as in higher dimensional lattices suggested that the existence
of ILMs is a rather generic feature for various anharmonic
Hamiltonian lattices.4 This view became a well established
fact due to numerous studies during the past decade. In the
following we will discuss the existence and properties of
ILMs or DBs in FPU chains using methods of the modern
theory of localized excitations in discrete systems.

DISCRETE BREATHERS IN FPU CHAINS: SOME
DEFINITIONS

Discrete breathers sintrinsic localized modesd are time-
periodic spatially localized solutions of the equations of mo-
tion of a Hamiltonian lattice.4 In mathematical terms we are
searching for solutions of s2d satisfying

x̂lst + Tbd = x̂lstd, p̂lst + Tbd = p̂lstd , s8d

x̂l→±` → d±, p̂l→±` → 0. s9d

The difference d+−d− characterizes the DB induced lattice
deformation and is related to the abovementioned effects of
thermal expansion sor contractiond. Without loss of general-
ity we may choose d−=0 in the following. The period Tb is
related to the DB frequency Vb=2p /Tb. The DB solution
can be thus represented as a Fourier series expansion with
respect to time:

x̂lstd = o
k=−`

+`

Akle
ikVbt. s10d

The localization property s9d implies

AkÞ0,l→±` → 0, Ak=0,l→±` → d±. s11d

Inserting s10d into the equations of motion s2d, and assuming
a large distance from the DB core, the linearization of the
algebraic equations for the coefficients Akl together with the
condition s11d leads to the nonresonance condition21

kVb Þ vq s12d

for all integer k. Excluding k=0 for a moment, that condition
implies Vb.vp. The possible resonance for k=0 which in-
duces nonzero static lattice deformations, will be discussed
in more detail below.

The stability of a DB sas for any periodic orbitd can be
accounted for by linearizing the phase space flow around a
given DB solution x̂lstd, i.e., by adding a small perturbation
to it xlstd= x̂lstd+elstd, inserting this expression into the equa-
tions of motion s2d and keeping only terms linear in el:

ėl = pl,

s13d
ṗl = − W9sx̂l − x̂l−1dsel − el−1d + W9sx̂l+1 − x̂ldsel+1 − eld .

Equations s13d define a map

SpW sTbd

eWsTbd
D = FSpW s0d

eWs0d
D s14d

which maps the phase space of perturbations onto itself by
integrating each point over the DB period Tb. Here we used
the abbreviation xW ;sx1 ,x2 , . . . ,xl , . . . d. The map s14d is char-
acterized by a symplectic Floquet matrix F, whose complex
eigenvalues l and eigenvectors yW provide information about
the stability of the DB. For details we refer to Ref. 22. Here
we note that if all eigenvalues l are of length one, then the
DB is linearly smarginallyd stable. Otherwise perturbations
exist which will grow in time stypically exponentiallyd and
correspond to a linearly unstable DB. Upon changing a con-
trol parameter se.g., the DB frequencyd stable DBs can be-

015112-3 DBs in FPU lattices Chaos 15, 015112 ~2005!

Downloaded 08 Apr 2005 to 193.175.8.207. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



come unstable sand vice versad. Such a change of stability is
appearing because two sor mored Floquet eigenvalues collide
on the unit circle and depart from it. If one of the two asso-
ciated eigenvectors sor bothd is spatially localized, such a
collision and the corresponding instability are independent of
the size of the lattice. If both eigenvectors are spatially de-
localized, the strength of the instability depends on the size
of the system and vanishes in the limit of an infinite
system.23

The absence of a cubic term f3 sor more generally the
case of a symmetric potential Wd implies a parity symmetry
of the interaction potential W. Consequently DB solutions
will contain only odd harmonics in a Fourier expansion with
respect to time, A2k,l=0. That implies d+=0 swe remind the
reader that d−=0 as welld. For such a case the Floquet prob-
lem s13d is periodic with period Tb /2, because the time-
periodic coefficients in s13d contain only even harmonics
2kVb in a Fourier expansion with respect to time.

Two eigenvectors of the Floquet matrix are correspond-
ing to homogeneous shifts in all coordinates or likewise ve-
locities sdue to the conservation of Pd. Their eigenvalues are
always located at +1 in the complex plane. Two more eigen-
vectors of the Floquet matrix are corresponding to perturba-
tions along the DB periodic orbit sphase moded or along the
family of DB solutions. Their eigenvalues are located either
at +1 for asymmetric potentials W ssince the Floquet map-
ping is performed for one period Tbd or at −1 for symmetric
potentials W ssince the Floquet mapping is performed for
Tb /2d.

Finally we will also use the linearized phase space flow
dynamics around a DB solution s13d in order to compute the
transmission coefficient for a small amplitude plane wave
launched into the DB. It is a special Bloch-type solution of
Eq. s13d of the form24

elstd = o
k=−`

`

elke
isvq+kVbdt. s15d

The DB solution acts as a time-periodic scattering potential
for an incoming wave with frequency vq and generates new
channels at frequencies vq+kVb. If vq+kVbÞvq8 for non-
zero k then all channels are closed except for the open chan-
nel k=0. Such a situation corresponds to elastic scattering,
i.e., the energies of the incoming and the outgoing stransmit-
ted and reflectedd waves are equal. Otherwise we are con-

fronted with inelastic scattering. The scattering setup is sche-
matically represented in Fig. 3. For computational details the
reader is referred to Ref. 25.

EXISTENCE PROOFS

The pioneering DB existence proof of MacKay and
Aubry26 was designed to apply for networks of weakly
coupled oscillators using the implicit function theorem. The
extension of this technique to FPU systems turned out to be
complicated because one needs a limiting case where DB
solutions are compact. Nevertheless it was applied success-
fully to the case of a diatomic FPU chain with alternating
heavy and light masses.27 DB solutions were shown to exist
close to the limit where the ratio of light to heavy masses
vanishes.

A special case of homogeneous potentials W with fm

=mdm,2n where n is a given positive integer, was treated in
Ref. 28 to separate time and space dependence. This feature
was then used in Ref. 29 to provide a constructive proof of
existence of DBs. As shown recently,30 this proof can be
extended to systems with onsite potentials by adding
ols

1
2v0

2xl
2+nxl

2nd to the Hamiltonian s1d.
An implicit proof of existence of DBs in FPU models

was provided by Aubry et al. in Ref. 31 using a variational
method. Discrete breathers are obtained as loops in phase
space which maximize a certain average energy function for
a fixed pseudoaction. More recently James32 proved exis-
tence of DBs in FPU models for low amplitudes senergiesd.

All these results provide the certainty of existence of DB
solutions in infinite FPU models. However, due to the im-
plicit character of most of these proofs a detailed study of
DB properties has to be obtained, e.g., using advanced com-
putational methods.

DB SOLUTIONS AND THEIR STABILITY

Computational tools for studying DB properties are con-
fined to the case of a finite lattice size. The typically expo-
nential spatial degree of localization of DBs yields reliable
results which apply for infinite lattice size as well. In terms
of the dynamics in phase space hxl , plj we are searching for a
starting point of a trajectory such that after integrating over a
given period of time the trajectory reaches the starting point
again. Of course all points on the corresponding one-
dimensional manifold generated by the trajectory fulfill this
condition. Discrete breathers are so-called isolated periodic
orbits. That implies that fixing the total energy and mechani-
cal momentum for a given DB solution, no other DB solu-
tions are found in an infinitesimal neighborhood of the DB
loop. In other words, DB solutions do not belong to higher
dimensional resonant tori in the model phase space. How-
ever, if changes in the energy are allowed, then generically
infinitesimal deformations of the original DB loop will result
in a new DB loop with slightly changed parameters such as
energy, frequency or amplitude. Sliding along such a family
of DB solutions may lead to a stability change of the solu-
tions. Here we use a Newton method to find a DB solution at
a chosen frequency together with open boundary conditions.

FIG. 3. Schematic representation of the one-channel scattering of a wave by
a discrete breather.
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For details on this method as well as on numerical evalua-
tions of the Floquet matrix we refer to Ref. 22.

The Page mode for f3=0

In Fig. 4 we show the profile of a stable DB solution
x̂lst=0d for f2=f4=1, f3=0, Vb=4.5 and 80 sites, the index
l running from l=−39 to l=40 with open boundary condi-
tions. Note that p̂lst=0d=0. Because Vb.vp, the amplitudes
stagger.21 The solution is antisymmetric in space, and like-
wise coined centered between sites and also Page mode. In
the inset we plot the profile of the corresponding staggered
deformation ul= s−1dlsxl−xl−1d on a logarithmic scale. The
DB is strongly localized, and only a part of the chain is
shown. The inset shows that the DB is localized exponen-
tially. The exponent depends on the model parameters and
the DB frequency.21 In the left part of Fig. 5 we show the
location of the Floquet eigenvalues l in the complex plane.
All eigenvalues reside on the unit circle. The two pairs of
degenerate eigenvalues located at +1 and −1 on the real axis
ssee discussion aboved are shown with diamonds. Besides the
Floquet continuum of extended eigenstates scrossesd two
pairs of stable spatially localized eigenstates are observed
sshown by squares and circlesd. In the two right panels of

Fig. 5 the real part of the displacement components of these
localized eigenstates are plotted.

The Sievers–Takeno mode for f3=0

For the same parameters we show in Fig. 6 an unstable
DB solution which is symmetric in space, or centered on a
site and also known as the Sievers–Takeno mode.

In the left part of Fig. 7 we show the location of the
Floquet eigenvalues l in the complex plane. Not all eigen-
values reside on the unit circle. At variance with the Page
mode, one of the pairs of localized eigenstates scirclesd is
located on the real axis off the unit circle. In the two right
panels of Fig. 5 the real part of the displacement components
of these localized eigenstates are plotted. The instability is
caused by a spatially localized Floquet eigenvector, which
deforms the Sievers–Takeno mode in Fig. 6 in the direction
of the Page mode in Fig. 4. Indeed the Sievers–Takeno
mode, when perturbed in the full nonlinear equations of mo-
tion along the unstable Floquet eigenvector, starts to perform
additional oscillations around the stable Page mode for times
large compared to the DB period.

FIG. 4. Displacements x̂lst=0d for f2=f4=1, f3=0 and Vb=4.5 vs lattice
site number l for an antisymmetric DB. Inset: Staggered deformation ulst
=0d for the same solution on a logarithmic scale vs lattice site number l.
This DB is stable.

FIG. 5. Left panel: Location of Floquet eigenvalues l in the complex plane
for the DB in Fig. 4 scrosses, diamonds, squares, circlesd. The unit circle is
shown to guide the eye. Right panels: Real part of the displacement com-
ponents of the Floquet eigenvectors marked with the corresponding symbols
ssquare and circled.

FIG. 6. Displacements x̂lst=0d for f2=f4=1, f3=0 and Vb=4.5 vs lattice
site number l for a symmetric DB. Inset: Staggered deformation ulst=0d for
the same solution on a logarithmic scale vs lattice site number l. This DB is
unstable.

FIG. 7. Left panel: Location of Floquet eigenvalues l in the complex plane
for the DB in Fig. 6 scrosses, diamonds, squares, circlesd. The unit circle is
shown to guide the eye. Right panels: Real part of the displacement com-
ponents of the Floquet eigenvectors marked with the corresponding symbols
ssquare and circled.
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The Page mode for f3Å0

If f3Þ0, then the interaction potential W becomes
asymmetric. DB solutions will now contain in general all
Fourier harmonics kVb including k=0. Depending on the
sign of f3 this will cause either a contraction or expansion of
the chain. In Fig. 8 we show a DB solution which can be
continued from the Page mode in Fig. 4 up to f3=1. For that
particular case d+<−1.005. The DB solution can be thus
viewed as a localized vibration which induces a nonzero
kink-shaped lattice distortion. This DB solution turns out to
be unstable. The reason for that is the interaction of localized
Floquet eigenstates with the Floquet continuum sthe eigen-
states which correspond to plane waves far away from the
DBd. Such oscillatory instabilities can be characterized by
the wave numbers qos which correspond to the extended Flo-
quet state interacting with the originally localized one.23 In
the left part of Fig. 9 we show the location of the Floquet
eigenvalues l in the complex plane. Not all eigenvalues re-
side on the unit circle. The two pairs of degenerate eigenval-
ues, which were located at +1 and −1 on the real axis ssee
discussion aboved for f3=0, are now all located at +1 and
shown with diamonds. Besides the Floquet continuum of ex-
tended eigenstates two pairs of eigenstates swhich were lo-
calized for the Page mode with f3=0d are observed to

strongly interact with the Floquet continuum sshown by
squares and circlesd. While the small deviation of the corre-
sponding eigenvalues from the unit circle is of the order of
0.01…0.03, we checked that it is independent of the system
size by increasing the number of sites from 80 to 640 ssee
also Ref. 23d. In the two right panels of Fig. 9 the real part of
the displacement components of these resonating and un-
stable eigenstates are plotted.

When the Page mode is perturbed along the oscillatory
instability eigenvector in the full nonlinear equations of mo-
tion, it deforms initially very slowly compared to the DB
period, due to the weak amplitude of the instability. After
reaching a critical threshold in the perturbation amplitude,
the mode depins from its original lattice site position and
starts to move along the lattice.

The Sievers–Takeno mode for f3Å0

When continuing the Sievers–Takeno mode from f3=0
to nonzero values of f3, the strong instability caused by a
localized Floquet eigenstate for f3=0 remains. It also ac-
quires the above discussed oscillatory instabilities of the
Page mode. At the same time the spatial profile of the mode
ceases to show up with any symmetry.

DB stability properties for different frequencies

In the following we present results on the stability of the
Page mode DB upon variation of the DB frequency Vb. The
Sievers–Takeno mode DB yields similar results, except for
keeping its strong localized instability discussed above.

In Fig. 10 we plot the dependence of the arguments u
and the squared absolute values ulu2 of the irreducible part of
the Floquet matrix eigenvalue spectrum l= uluexpsiud as a
function of the DB frequency Vb for f2=f4=1 and f3

FIG. 8. Displacements x̂lst=0d for f2=f3=f4=1 and Vb=4.5 vs lattice site
number l. Inset: Staggered deformation ulst=0d for the same solution on a
logarithmic scale vs lattice site number l. This DB is unstable.

FIG. 9. Left panel: Location of Floquet eigenvalues l in the complex plane
for the DB in Fig. 8 scrosses, diamonds, squares, circlesd. The unit circle is
shown to guide the eye. Right panels: real part of the displacement compo-
nents of the Floquet eigenvectors marked with the corresponding symbols
ssquare and circled.

FIG. 10. All Floquet phases u and the squared eigenvalue length ulu2 of the
unstable Floquet eigenvectors for a DB with f2=f4=1 and f3=0.5 as a
function of the DB frequency Vb. Eigenvalues which correspond to finite
size instabilities are shown using gray symbols.
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=0.5. These results are obtained for a DB family which is
continued from the Page mode in Fig. 4. We first note that
vp;2 and for vp,Vb,2vp the arguments u cover the
whole unit circle interval. The corresponding interactions be-
tween different extended Floquet eigenstates lead to finite
size instabilities23,31 which are marked with gray symbols in
the lower panel of Fig. 10. These instabilities will disappear
for an infinite system, i.e., the corresponding values ulu−1
,1/N where N is the number of sites.23 For that DB fre-
quency interval scattering of waves will be inelastic for
wavenumbers q ,q8 satisfying vq+Vb=vq8.

24 Note that this
inelastic two-channel scattering will survive in the limit of an
infinite system, opposite to the finite size instabilities of the
DB itself.

The mentioned oscillatory instabilities induced by the
interaction between two pairs of originally localized eigen-
states and the continuum are clearly observable, and cause
deviations of the corresponding absolute values ulu from
unity. As conjectured in Ref. 33, these instabilities survive in
the limit of an infinite lattice. The first pair of these eigen-
states exits the continuum at Vb<4.6. The corresponding
eigenvalues return to the unit circle and approach −1 in the
complex plane at Vb<12, collide with each other, separate
on the real axis causing another instability scf. the corre-
sponding ellipse structure in Fig. 10d and merge again at −1
for Vb<14. The second pair exits the continuum at Vb

<11.5. For sufficiently large values of Vb.14 the DB be-
comes stable.

The discussed instabilities for the Page mode are solely
caused by the asymmetric term f3. Indeed, for f3=0 the
abovementioned periodicity of s13d with Tb /2 excludes the
possibility of finite size instabilities or equally inelastic mul-
tichannel scattering, since the condition vq+2Vb=vq8 can
not be satisfied due to Vb.vp. The oscillatory instabilities
caused by the interaction of localized Floquet eigenstates
with the Floquet continuum are removed for the same rea-
son. The dependence of the eigenvalue phases Q on Vb for a
Floquet matrix defined by integrating s13d over Tb for f3

=0 is practically identical to the case f3=0.5 supper panel in
Fig. 10d. However, the correct irreducible Floquet matrix for

f3=0 is obtained by integrating s13d over the true period
Tb /2. The phase variation shown in Fig. 11 demonstrates that
the localized Floquet states are indeed separated from the
Floquet continuum.

RESONANT WAVE SCATTERING BY DBS

As mentioned above, the linearized phase space flow
equations s13d give also information about the complex
transmission amplitude tq and the transmission coefficient
Tsqd;utqu2. While the numerical technique and also a num-

FIG. 11. All Floquet phases u for a DB with f2=f4=1 and f3=0 as a
function of the DB frequency Vb. Note that the Floquet map is obtained here
by integrating s13d over the time Tb /2.

FIG. 12. Transmission coefficient T vs wave number q of an incident wave
for f2=f4=1 and f3=0.5 scattered by a Page mode DB. From top to
bottom: Vb=4.5,4.7,10. The vertical dashed line indicates the position of
the oscillatory instabilities qos.
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ber of results concerning wave scattering by FPU breathers
have been reported recently,24,25,34 we want to address here
one aspect which was not yet discussed.

We show in Fig. 12 the q-dependence of Tsqd for three
different frequencies Vb=4.5,4.7,10 of the Page mode DB
with f2=f4=1 and f3=0.5, for which we gave the Floquet
spectral data in Fig. 10. The perfect transmission Tsq=0d
=1 for all cases is due to the conservation of total mechanical
momentum.25 Equally the vanishing of the transmission
Tsq=pd=0 is due to the vanishing of the group velocity s7d
at the band edge q=p.24 However, the resonant perfect trans-
mission and reflection peaks observed for qÞ0,p are due to
Fano resonances.25,34 We remind the reader that Fano reso-
nances are induced by localized states interacting with a con-
tinuum of scattering states.35

This is precisely the situation observed in the case of an
asymmetric FPU potential. For f3=0 the Page mode DB has
a localized Floquet eigenstate well separated from the Flo-
quet continuum. However any nonzero value of f3 induces
an interaction between this localized state and the continuum
mediated by the DB. This interaction causes an oscillatory
instability in the Floquet matrix spectrum. The dashed verti-
cal lines in all three panels in Fig. 12 indicate the location of
the oscillatory instability qos as observed in Fig. 10. In all
three cases the value of qos is very close to the locations of
perfect transmission and reflection. In Fig. 13 we plot the
q-values of the oscillatory instability of the DB qos from Fig.
10 together with the positions of the perfect transmission and
reflection as functions of Vb. The obtained correlation be-
tween these resonant q-values is evident.

From a general point of view, the DB acts as a time-
periodic scattering potential for incoming waves. The time-
periodic scattering potential generates locally new frequen-
cies from an incoming wave which correspond to closed
channels. These closed channels provide additional propaga-
tion ways for the incoming wave. In that sense a time-
periodic scattering potential in a strictly one-dimensional
system acts similar to a local enlargement of the system di-

mensionality around the scatterer.24,25 Such additional propa-
gation channels allow for wave interference, and may also
cause a total destructive interference leading to a total reflec-
tion of the incoming wave, which is another way of under-
standing the origin of the observed Fano resonance.34 Note
that in a strict sense the correlation between an oscillatory
instability of a DB solution and a corresponding Fano reso-
nance holds only for the limit of weak coupling between the
localized Floquet state and the Floquet continuum.25 And
only in that limiting case we can expect a nearby location of
perfect reflection sFano resonanced and perfect transmission.
The case of strong interaction can lead to the disappearance
of an oscillatory instability in the Floquet spectrum and of
the perfect transmission peak, but simultaneously to a re-
maining of the Fano resonance of perfect reflection.34

THE FREQUENCY LIMITS OF THE DB SOLUTION
FAMILIES

When the frequency Vb is varied along a DB family, we
may consider the two limiting cases Vb→` and Vb→vp.
The high frequency limit implies large amplitudes inside the
DB core. The leading order contribution in the equations of
motion will then be due to the f4 term. The core profile of
these high frequency DBs will be very similar to the DB
cores in Figs. 4 and 6 regardless the values of f2 and f3

which will only affect the tail characteristics.21,29,36,37 Oppo-
site to that, the low frequency limit is depending on the value
of f3.33,38

In Fig. 14 we plot the dependence of the DB energy s1d
on its frequency for f3=1 and f3=0.5 and 80 sites. For
f3=0.5 the energy tends to zero as Vb tends to vp. However,
for f3=1 the DB energy passes through a minimum as the
frequency is lowered, and increases again with further ap-
proaching the limiting value vp.33,38 These results are inti-
mately connected with the modulational instability of plane
waves at small amplitudes.13,15,16 Assuming that a DB family
has a zero amplitude limit, it follows that in a one-
dimensional chain as discussed here its energy will also van-
ish in that limit.39 It has been conjectured16 sand later con-

FIG. 13. The dependence of the position of an oscillatory instability qos

sdiamondsd and the associated locations of perfect transmission ssolid lined
and perfect reflection sdashed lined on Vb for a Page mode DB with f2

=f4=1 and f3=0.5.

FIG. 14. DB energy E vs DB frequency Vb for f2=f4=1 and f3=0.5
slower curved and f3=1 supper curved. Insets: Displacements x̂lst=0d for
Vb=2.001 vs lattice site number l. Upper left inset for f3=1, lower right
inset for f3=0.5.
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firmed numerically15d that a small-amplitude DB occurs due
to an instability sbifurcationd of the q=p plane wave. The
rigorous analysis of this plane wave bifurcation gives an
inequality13,15,16,32

3f2f4 − 4f3
2 . 0 s16d

which has to hold in order to obtain the modulational insta-
bility of the q=p mode and by conjecture a low-amplitude
DB solution. Since inequality s16d is satisfied for f2=f4

=1 and f3=0.5, we do observe the low amplitude sand thus
low energyd limit of the DB family in Fig. 14. However,
choosing f2=f4=1 and f3=1, the inequality s16d is vio-
lated. Consequently the q=p mode does not experience a
low amplitude modulational instability, and low amplitude
sand low energyd DBs do not exist. Nevertheless, as ex-
plained above, the high frequency limit of such an FPU
model will always allow for DB solutions of a well known
asymptotic shape. Consequently the energy versus frequency
curve in Fig. 14 has to show up with a minimum. It is in-
structive to compute the DB profiles for Vb close to vp for
the two cases. These profiles are shown in the insets in Fig.
14. For f3=0.5 the low energy DB delocalizes and takes the
shape of a q=p plane wave sor better to say a standing wave,
due to the open boundary conditionsd. The lattice deforma-
tion d+<−0.03 tends to zero when increasing the system size
and further approaching Vb→2. For f3=1 the DB with fre-
quency close to vp has still large amplitudes, including a
nonzero and well pronounced lattice distortion d+<−1.
While both DB branches have weak oscillatory instabilities
as shown in Fig. 10, the dashed part of the upper curve in
Fig. 14 indicates that DBs from that part of the branch ex-
perience an additional instability with corresponding eigen-
values located on the real axis. When decreasing f3 and
approaching f3

scrd=Î3f2f4 /2, which changes the sign of the
l.h.s. of inequality s16d, the value of d+ for DBs with fre-
quencies close to the linear spectrum sVb→2d tends to zero
and the energy threshold disappears.

DISCUSSION

The results of this work can be continued—and have
been continued—in many different directions. The unstable
Sievers–Takeno mode DB, when properly perturbed, lead to
DB-like excitations which propagate along the lattice.20,40

Some perturbative analytical results give a partial under-
standing of this effect.41 Still there is strong evidence of the
nonexistence of exact and spatially localized moving DBs.42

The inequality s16d can be used to predict the existence
or noexistence of DB solutions for various other FPU-like
models. A consequence is that DB excitations are not ex-
pected to exist for the Toda chain. A similar conclusion can
be obtained for a so-called Roto-FPU model with Wsxd=1
−cos x. However, such a system of coupled rotors allows for
rotobreathers, i.e., solutions where a few degrees of freedom
are in a rotating state, while the rest of the system is in a
spatially localized oscillating state43 fcf. Fig. 1sbdg.

Discrete breathers are not an exclusive property of one-
dimensional lattices. They exist equally in higher dimen-
sional lattices,4 where they show up with nonzero lower en-

ergy thresholds,39 independent on further model parameters.
This is true also for generalizations of FPU models to higher
lattice dimensions. An interesting result concerns the case of
asymmetric interaction potentials W and higher-dimensional
FPU lattices. As shown in,44 the requirement to have a finite
energy for a DB leads to a static lattice deformation with a
dipole symmetry and a spatial decay law ,r1−d where r is
the distance from the breather core and d the lattice dimen-
sion.

Finally we mention a number of studies of FPU breath-
ers emerging from perturbed extended states via modula-
tional instability or induced by fluctuations in thermal
equilibrium.18,45 These studies show clearly that DB solu-
tions are not only interesting mathematical objects, but es-
sential in order to understand and describe the properties of
nonlinear lattice dynamics in thermal equilibrium and during
relaxational processes.
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