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Energy flow for soliton ratchets
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Abstract. – We study the mechanism of directed energy transport for soliton ratchets.
The energy flow appears due to the progressive motion of a soliton (kink) which is an energy
carrier. However, the energy current formed by internal system deformations (the total field
momentum) is zero. We show that the energy flow is realized via an inhomogeneous energy
exchange between the system and the external ac driving. We also discuss effects of spatial
discretization and combination of ac and dc external drivings.

A transport mechanism of potential relevance in various areas of physics, chemistry and
biology is based on the ratchet effect [1], i.e. the generation of directed currents by zero-mean
external perturbations. It is based on the breaking of relevant space-time symmetries of the
underlying system evolution equations [2]. A paradigmatic model corresponds to a classical
particle moving in a spatially periodic potential under the influence of zero-mean fluctua-
tions [1], where the energy current is directly connected with the mean particle momentum
and the corresponding kinetic energy of the particle. For spatially extended systems, e.g.
an annular Josephson junction, which is described by a partial differential equation (PDE),
the ratchet phenomenon manifests as a unidirectional motion of a collective kink excitation
(soliton) [3–8]. Here the unambiguous ab initio definition of a current may become a much
more complicated task, because the kink excites other modes in the system during its motion,
which may contribute to an energy current as well.

A well-known model in the field of soliton ratchets is the driven-damped sine-Gordon equa-
tion [9], which is also used for modelling the abovementioned annular Josephson junction [8]:

ϕtt − ϕxx = −αϕt − sin ϕ + E(t), (1)

where E(t) is a zero-mean time-periodic driving force, E(t + T ) = E(t),
∫ T

0
E(t)dt = 0. We

impose the kink-bearing periodic boundary condition:

ϕ(x + L, t) = ϕ(x, t) + Q, ϕt(x + L, t) = ϕt(x, t), (2)

where Q = 2πm is the topological charge with integer m = 1, 2, . . ., and L is the system size.
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Let us consider the easiest case m = 1, i.e. the presence of one kink in the system Q = 2π.
The kink velocity V is defined, e.g., as [4, 5]

V (t) =
1
Q

∫ L

0

xϕtxdx. (3)

In the case of a soliton ratchet the mean value of V (t) will be nonzero. Since the kink
carries some energy, one expects a mean nonzero energy current as well. Recently, it has been
proposed to observe this directed energy transport using the definition of the internal energy
current JI and its density jI [5]:

JI(t) =
∫ L

0

jIdx, jI(x, t) = −ϕxϕt. (4)

JI is also known as the total momentum of the system [9–11].
Choosing either eq. (3) or eq. (4), the symmetry analysis provides identical necessary

conditions for the appearance of a ratchet effect [5]. If the ac driving E(t) possesses a shift
symmetry,

E(t) = −E(t + T/2), (5)

then the combined symmetry transformation

x → −x, ϕ → −ϕ + Q, t → t +
T

2
(6)

leaves eq. (1) invariant and changes the sign of V and JI . Consequently, if eq. (1) allows for
only one attractor solution, both quantities will have average value zero. Violating (5) we
loose the symmetry (6) and may expect nonzero values for the mean values of V and JI . This
can be done, e.g., by the choice [5, 6, 8]

E(t) = E1 cos(ωt) + E2 cos(2ωt + Θ), ω =
2π

T
. (7)

The soliton ratchet effect has been observed in terms of the mean soliton velocity V both
numerically [3–5] and experimentally in an annular Josephson junction [8]. However, by
differentiating eq. (4) and using eq. (1) together with the boundary condition (2) it follows
that [10,12]

JI
t (t) = −αJI(t) − QE(t). (8)

Thus, for any ac driving force E(t) with zero mean the time-averaged value of the total
momentum, JI = limt→∞ 1

t

∫ t

0
JI(τ)dτ , is zero. Suppose that a kink moves with some nonzero

mean velocity V . The kink carries also some nonzero energy. Hence the progressive kink
motion should lead to the appearance of an energy flux in the system.

Evidently JI does not account for this flow. We will derive the missing second energy flow
channel, which appear due to the finite spatial extent of the kink and the external field and
damping.

The PDE (1) corresponds to the energy density ρ,

ρ[ϕ(x, t)] ≡ ρ(x, t) =
1
2

(ϕ2
t + ϕ2

x) + 1 − cos(ϕ). (9)
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Using eq. (1) we obtain

ρt = −jI
x − αϕ2

t + E(t)ϕt. (10)

The last two terms describe energy losses through dissipation and the energy exchange between
the system and external driving E(t). A central result of this work is that these terms describe
a new exchange energy current JE . This exchange current corresponds to an additional
energy transmission channel provided by a spatially inhomogeneous energy exchange between
the system, the external ac driving and the dissipation. Thus, the complete current balance
equation for the full current J reads:

J = JI + JE . (11)

We consider a large system size, i.e. L � Lk, where Lk is the kink localization length.
Far from the kink center the field is oscillating in time while being homogeneous in space.
We also assume that the kink travels only over distances Lp � L during one period of the ac
driving. Because of the external ac force the field evolution is uniquely locked to the driver (as
was the case for all previous considerations [3–6,8], i.e. assuming that the system allows only
for one attractor). Thus we observe a moving localized excitation (kink) which propagates on
a background formed by a spatially homogenous ground state. It is convenient to separate
ϕ(x, t) into a localized kink part, ϕk(x, t), where ϕk(x → 0, t) = 0; ϕk(x → L, t) = 2π, and a
background (vacuum) part ϕv(t) which depends only on time [10]:

ϕ(x, t) = ϕk(x, t) + ϕv(t). (12)

The vacuum part alone must satisfy eq. (1). Because it is also a solution of the system in the
absence of a kink when Q = 0, it cannot contribute to any energy transport [5].

On the attractor the dynamics of the system (1) is given by

ϕk(x, t + T ) = ϕk(x − V T, t), ϕv(t + T ) = ϕv(t), (13)

where T = 2π/ω and V is the averaged kink velocity, V = 〈V (t)〉T = 1
T

∫ T

0
V (t)dt. Note that

all integral system characteristics, such as the total energy of the system, the kink velocity,
and energy currents from eq. (11) are periodic functions of time with period T .

Let us compute the full energy current J produced by a moving kink. We use the periodicity
of the total system energy W (t) =

∫ L

0
ρ(x, t)dx in time. The amount of energy carried through

a point x between time t and t + T is equal to

∆w(x, t) =
∫ x

0

[ρ(x′, t) − ρ(x′, t + T )]dx′ = −
∫ x

0

dx′
∫ t+T

t

ρt(x′, t′)dt′. (14)

Here we assume that at x = 0 we have a homogeneous vacuum state during the full cycle of
the ac driving, thus there is no energy current through this point. Due to the presence of ac
driving the system is not time homogeneous and ∆w(x, t) in eq. (14) depends on t. With (2),
(13) it follows: ∆w(x, t + T ) = ∆w(x − V T, t) and ∆w(x + L, t) = ∆w(x, t) and

J =
1
T

∫ T

0

dt

∫ L

0

dxj(x, t), j(x, t) =
1
T

∆w(x, t). (15)

Using eqs. (2), (13) and the multiplicative integration rule [13] we obtain from (14), (15):

J = V 〈
∫ L

0

ρ[ϕ(x, t)]dx − Lρ[ϕv(t)]〉T (16)
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with 〈. . .〉 = 1/T
∫ T

0
. . . dt. The quantity being averaged in the r.h.s. of (16) is the difference

between the energy of system with and without a kink, or simply the kink energy W k =
WQ(t) − W0(t), so that the mean total current, eq. (16) generated by the moving kink reads

J = V W k. (17)

It follows that the total energy current has the same symmetry properties as the kink veloc-
ity (3). This result proves the initial intuitive guess that a moving kink indeed generates a
nonzero energy current in the system.

Because for any ac driving E(t) with zero mean the averaged internal current JI is equal
to zero, we arrive at the following energy current balance:

J = JE , JI = 0. (18)

In order to obtain an expression for the exchange current density, we use (10) and (15)
and arrive at

jE(x, t) = − 1
T

∫ t+T

t

dt′
∫ x

0

dx′φ(x′, t′), (19)

φ(x, t) = φ[ϕ] = αϕ2
t − E(t)ϕt, (20)

JE =
1
T

∫ T

0

dt

∫ L

0

dxjE(x, t). (21)

Evidently, the exchange current JE has the same symmetry as V , J and JI .
We solved eq. (1) numerically [14] in order to test the current balance (18). A crucial

parameter is the mesh size h used for the spatial discretization of eq. (1). For any finite value
of h the internal current JI is nonzero, as also obtained in [5]. However it scales according
to JI ∼ h2 for h ≤ 0.1 and vanishes in the continuum limit h → 0 in full accord with (18).
We chose h = 0.1 here, for which the values of J and JE are determined with an error of less
than 3%, while JI/J ∼ 0.003 (for h = 0.32 used in [5] the latter ratio increases to 0.02 for
α = 0.2 and 0.18 for α = 0.05). The results of numerical calculations of J , eq. (16), and JE ,
eq. (21), are shown in fig. 1. We obtain very good agreement with (18). Note that L = 500,
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Fig. 1 – The dependence of the mean exchange current JE on Θ for α = 0.2 (solid line) and α = 0.05
(dashed line). Circles correspond to the numerical results for Jtotal. Other parameters: E1 = E2 =
0.2, ω = 0.1, Q = 2π, L = 500.
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Fig. 2 – Space-time evolution of the soliton ratchet for α = 0.2 and other parameters as in fig. 1.
(a) Contour plot of the function φ(x, t), eq. (20). (b) Contour plot of the energy density (9).

Lk ≈ 10 and Lp ≈ 30. According to the collective coordinate theories [6,7] a nonzero average
kink velocity implies the excitation of shape modes on the kink. Thus the appearance of a
strong exchange current is related with the kink deformations.

In fig. 2(a) we plot the space-time evolution of the function φ(x, t) as defined in (20), which
describes the energy exchange between the field ϕ, the external ac drive E(t) and the friction
term. The energy is exchanged and transported in a cyclic way: first the kink absorbs energy
in its rare tail, then it releases energy in its front, then it absorbs energy in its front and finally
releases energy in the rare tail. In fig. 2(b) we plot the space-time evolution of the energy
density ρ(x, t) (9). The excitation of internal shape modes on the kink is clearly observed —the
kink is much more compressed when moving opposite to its average propagation direction as
compared to the times when it moves in the same direction.

It is very instructive to apply our approach based on the generalized current balance
equation (11) to the well-studied case of a constant force, E = const [9]. Due to the time ho-
mogeneity of the system ϕ(x, t) = ϕ(ξ), ξ = x−V t. Still we deal with the motion of a spatially
localized kink with a finite extension. The internal current JI can be evaluated using eq. (8):

JI = −EQ

α
. (22)

The internal current density
jI(ξ) = V ϕ2

x|x≡ξ. (23)

Similarly the exchange current density can be obtained as

jE(ξ) =
∫ ξ

0

dx(αV 2ϕ2
x + V Eϕx). (24)

Due to the time homogeneity the kink energy Wk is now independent of time, and the total
current can be computed using (17). We plot the current densities in fig. 3. The internal
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Fig. 3 – The densities of the scaled internal current, 0.02jI(x) (thin line), and the exchange current,
jE(x) (thick line), for the constant force case E = 0.2. The other parameters are Q = 2π, L = 500
and α = 0.2.

current density is single peaked, with the peak position corresponding to the position of the
kink center. The exchange current density jE �= 0, which may come as a surprise, since in
this case the kink moves with constant shape. Yet the kink is a spatially extended object, and
it is this property which leads to a nonzero exchange current density. We also computed the
kink velocity, the kink energy, the total current and the total internal and exchange currents
for the case E = 0.2 and α = 0.2, L = 670 and h = 0.045. The kink velocity V = −0.6201,
the kink energy Wk = 10.0813 and thus the total current J = −6.251. The internal current
JI = −6.282, which is off the exact result JI = −2π (22) by an error δ = 0.001. The total
exchange current is obtained as JE = 0.0321. The current balance equation (11) is satisfied
within the same small error δ, which is an order of magnitude smaller than the computed
value for JE [15]. The appearance of an exchange current (or its density) is simply linked to
the finite spatial extent of the kink, and the corresponding spatially (and thus temporally as
well) inhomogeneous energy exchange between the field ϕ and the external field E and the
friction term, similar to the soliton ratchet.

Let us combine both cases from above, i.e. both a constant and an ac components of the
driving E. A careful tuning of the parameters leads to an exact cancellation of both force
components and V = 0. At that point J = 0 (17). At the same time, according to eq. (22),
the internal current is JI = −QEstop/α, where Estop is the dc component of E. This implies
an exact balance between the two currents,

J total = 0, JE = −JI . (25)

It is also possible to have a situation where the sign of the total momentum of the system
JI , eq. (4), is opposite to the sign of the kink velocity V , and the internal current is pumping
energy against the kink motion.

We resolved the soliton ratchet energy flow for nonvanishing kink velocities and vanishing
total momentum. Our results are important for the general case of spatially extended systems
coupled to external driving fields or simply other degrees of freedom (see also [11] and [17]).
We identified a new energy pathway which is entirely mediated by the spatial and temporal
inhomogeneity of the system assisted by the external driving and the finite spatial extension
of the kink. Even for the case of a constant external field, the exchange current is found to be
small but nonzero. And the role of this new pathway becomes dominant in the case of the ac
driving, when the exchange energy flux is strongly enhanced by the kink shape oscillations.

The relative contributions of the two currents, internal and external, might change when
considering spatially discrete systems. For the ac driving case of a soliton ratchet, corrections
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to the internal current invalidate (8) so that JI also contributes to the total energy flow [5]
even for a zero mean drive. We note that in the nonadiabatic case, ω ∼ 1, the separation
ansatz eq. (12) may not be valid anymore. The kink may emitt phonon waves, which would
also contribute to the energy transport [18].

Finally, we mention that the driven-damped sine-Gordon system in eq. (1) is the relevant
physical model of the Josephson junction ring oscillator, where the soliton ratchet effect has
been experimentally realized recently [8]. An intriguing question arises about possibility of
detection of the new exchange current mechanism on the base of available experimental data
(current-voltage characteristics, spectra of emitted radiation, etc.).
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