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Abstract

In Physica D [S. Flach, Physica D 91 (1996) 223], results were obtained regarding the tangent bifurcation of the band edge
modes (¢ = 0, r) of nonlinear Hamiltonian lattices made of N coupled identical oscillators. Introducing the concept of partial
isochronism which characterises the way the frequency of a mode, w, depends on its energy, ¢, we generalize these results and
show how the bifurcation energies of these modes are intimately connected to their degree of isochronism. In particular, we
prove that in a lattice of coupled purely isochronous oscillators (oscillators with an energy-independent frequency), the in-phase
mode (¢ = 0) never undergoes a tangent bifurcation whereas the out-of-phase mode (¢ = ) does, provided the strength of the
nonlinearity in the coupling is sufficient. We derive a discrete nonlinear Schrédinger equation governing the slow modulations
of small-amplitude band edge modes and show that its nonlinear exponent is proportional to the degree of isochronism of the
corresponding orbits. This equation may be seen as a link between the tangent bifurcation of band edge modes and the possible
emergence of localized modes such as discrete breathers.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Since almost 15 years now, properties of discrete breathers (DB) in nonlinear translationally invariant Hamiltonian
lattices are under intense investigation. General features regarding these time periodic, spatially localised excitations
are well understood and have been documented in several reviews [1-7]. Mathematical proofs of their existence go
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back to a paper by MacKay and Aubry [8] which considers lattices of interacting oscillators. It shows the possibility
to continue single site oscillations in the decoupled (so-called anti-continuous) limit to nonzero coupling between
the oscillators provided the corresponding orbit stays out of resonance with the low amplitude lattice modes. This, in
particular, requires the oscillator (onsite) potential to be non isochronous, that is, to possess orbits whose frequency
varies with the energy. Other works, either generalising this method [9], or using different approaches [10-12] have
added to the variety of rigorous existence proofs of discrete breathers.

One of us has performed an analytical study of the way band edge modes (BEMs) may bifurcate (tangently) to
give rise to new periodic orbits breaking the translation invariance of the lattice [13]. It is a common conjecture
indeed that discrete breathers are among the orbits bifurcating from these plane waves. The bifurcation analysis
investigates the possible existence of almost extended discrete breathers and, in this respect, is complementary to
MacKay’s and Aubry’s theorem which proves the existence of strongly peaked ones in networks of weakly coupled
non isochronous oscillators. It provides the critical energy at which tangent bifurcations of BEMs possibly occur
according to the mode under consideration (see also [14]). But it is restricted to the generic case where plane wave
orbits do not bear any degree of isochronism.

In order to discuss further the specific properties of partially isochronous BEMs, we now define this concept
more precisely. Let us first remark that in one-dimensional (1D) convex potentials, the motion is always periodic.
To any given energy corresponds a unique orbit whose frequency is determined by the features of the potential
(basically, its shape). We will say an orbit to be isochronous if its frequency does not depend on its energy. Given
the one-to-one correspondence between the potential and its orbits, if the motion is isochronous the potential can
be said to be isochronous as well.

In higher dimension however, the concept of isochronous potentials becomes ambiguous due to the possible pres-
ence of several families of periodic orbits, each of which having its own energy-frequency dependence. Isochronism
is then a property of a particular family of orbits rather than a property of the potential itself. Let us notice though,
that to give birth to a family of isochronous orbits, the potential must fulfill certain conditions. These constraints
simply vary according to the motion under consideration, and may be different for different families of periodic
orbits of one and the same potential.

The most famous example of a 1D isochronous potential is the harmonic well V(x) = w?x2/2 whose frequency
w is well known to be energy-independent. Nevertheless, isochronism is not the privilege of the latter and it
can be shown that appropriate shears of the parabolic curve produce other non symmetric isochronous potentials
V(x) # V(—x) [17].

Now, for generic convex potentials, the frequency of a given periodic orbit can be expanded at low energies E (bot-
tom of the potential) as a power series in E. Its behaviour is generally linear with E around the equilibrium position.
We will call “partially isochronous” or, more precisely isochronous up to order n, orbits whose frequency behaves in-
stead as a nonlinear function of the energy when expanded around E = 0. Typically, »*(E) = 3 + y, E" + 0(E)",
n>2, w >0andy, #0. For n =1, we recover the case of non isochronous motions or, equivalently in our
terminology, of orbits isochronous up to order 1. Completely isochronous orbits verify w?(E) = a)g.

The aim of the present paper is to extend the results [13] to the class of potentials rendering certain periodic
motions partially or completely isochronous. As we will see, it turns out that the tangent bifurcation of band edge
plane waves is intimately related to the low-energy behaviour of their frequency (hence the above definitions).
This remark will enable us to generalise the perturbative analysis performed in [13] and to express the bifurcation
energy of BEMs in a very simple way valid for any potential. An immediate conclusion of this generalisation will
be that, families of discrete breathers bifurcating from partially isochronous BEMs possess energy thresholds, even
in 1D. This, to some extent, shall be confirmed by a “multiple-scale” analysis which leads to a discrete nonlinear
Schrodinger equation (DNLS) whose nonlinear exponent is related to the degree of isochronism of the BEM. The
existence of energy thresholds of DBs for such DNLS models has been confirmed [15] and has been proved by M.1.
Weinstein [16].

The paper is organised as follows: in Section 2, we present a low-energy perturbative solution of the in-phase
and out-of-phase modes and in Section 3, we use them to derive the constraints imposed to 1D or 2D potentials
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to enforce a partial isochronism of these motions. In Section 4, we study the linear stability of these orbits and

derive an expression for the energy at which they undergo a tangent bifurcation. Finally, in Section 5, we discuss
the implications of these results and present a brief multiple-scale analysis which corroborates our conclusions.

2. Equations of motion

2.1 . Generalities

All along this paper, we will investigate the dynamical properties of a lattice described by the following Hamil-
tonian

N
H =" [392+ Vi) + Wlxs — )] M
n=1

with periodic boundary conditions x,, .y = x,,. For the sake of simplicity, we consider an even number of sites N
ranging from 2 to infinity. The onsite (V(x)) and the interaction (W(x)) potentials are both assumed to possess a
minimum at x = 0 around which they can be expanded as

— 1 — 1
VE =) o W) =) gt @
o e

The first coefficients of these expansions,vy and ¢», represent harmonic frequencies and are assumed to be
strictly positive. The Hamiltonian equations of motion for (1) are given by

Xn = DPn»

= V(50 = W/ = X-) + W1 — ). ©

Let us introduce the normal coordinates
N
Qq=%§ei"”xn, q=%, le{—%—i—l,..‘,%}. 4
Their properties are

Oyt2rn = Oy and Q4= Q; (x, € R), 5)
and inverting the transform (4) yields

Xp = Z e—iqn Qq- (6)

q

Rewritten in terms of normal coordinates, Eq. (3) read now

Qq + Fq(Q) =0, (7)

where

N
1 H i ) i
F(Q) = D e |V | D oem0y |+ W | 3 (L —e)e "0,
n=1 q q

—W Y e —1eTro, ] | (8)
q/
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A linearization of F,(Q) around Q, = 0 leads to the equations of motion of a harmonic lattice, namely

Qq + (1)3,0 Qq =0, 9)
where

w2 = vz + 4gp sin’ (g) (10)

represents the squared frequency of each linear mode g (hence the additional subscript 0, the frequency of the
nonlinear mode being denoted by w,).

In what follows, we will be interested in the stability of two particular nonlinear modes corresponding to the
natural continuation of the linear ¢ = 0 and ¢ = = modes defined by (9). These nonlinear modes are periodic
solutions of (7) which converge to their respective linear modes as their energy tends to zero. Notice that the linear
frequency wo o of the in-phase mode is always nondegenerate and because the number of sites N is even, the linear
frequency wx o of the out-of-phase mode is nondegenerate as well. All other modes ¢ # 0,  are twofold degenerate
(wq,0 = w—_4,0)- In the next two sections, we define more precisely the two nonlinear in-phase and out-of-phase
modes and evaluate them perturbatively by means of a Poincaré—Lindstedt expansion carried out at low energy.

2.2 . In-phase mode (orbit I)

2.2.1_ Equation of motion
Oscillators are said to be in phase when they perform identical periodic motions. This corresponds to

Qg = Q0840 (11)

where §, , = 1 if g = ¢'[27] and O else. The previous expression is a solution of the equations of motion (7)
provided

Qo + V'(Qo) = 0. (12)

The solution Q, = Qod,,0 represents the in-phase periodic orbit. We call it orbit I. The total energy of the lattice
evolving according to orbit I is

Er = H(lx, = Qo)) = N (0§ + V(00)) (13)

We will use an energy density (or energy per site) rather than the total energy E| to describe this orbit. It is given
by e = E|/N and represents the energy of the oscillator Qg evolving according to (12).

2_2.2_ Solution at low energy

Eqg. (12) represents the motion of a single oscillator in the potential V(x). According to our assumptions regarding
the latter, the potential is convex in x = 0 and at small energy, the motion is bounded and thus periodic. We can
solve for it in perturbation by expanding the solution as a Poincaré—Lindstedt series (see e.g. [21]). For this purpose,
let us first define a new dimensionless timer = w(e)t, where w(e) is the frequency of Qg as a function of its energy
¢ (for the sake of clarity we have dropped the subscript I). The corresponding period is T(¢) = 2r/w(g). We show
in Appendix A how this period can be expanded as a power series in energy. Let us also defineX = (2¢/v7)Y/2, as
well as the new dimensionless quantities 7(X) = T(g)/v2/(2m) and V(x) = V(x)/v2. Eq. (12) now reads

#Qo(X, 7)

3.2 + T3(X)V'(Qo(X, 7)) = 0, (14)
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where we have explicitly mentioned the energy dependence of Qg on X. To solve this last equation, we expand
Qo(X, t) asaseriesin X around O:

Qo(X. 7) = }:dWﬂﬂ. (15)

We choose without lost of generality an initial condition such that Qo(X, 0) = 0 which means that Qo(X, 0) is
aturning point of the potential V defi ned by the relationV(Qo(X, 0)) = ¢ < V(Qo(X, 0)) = X?/2. Inverting the
previous relation gives

o
Qo(X.0) =X+ Y o0, X", (16)
n=2
where the fi rst odd coeffi cientsr,, are given in Appendix A. According to the relation above, the initial conditions
for the functions Q(")(r) are

oo =1 0M0) =0, ¥n=2 ad 0(0)=0 Vn>1 (17)
Moreover, according to (A.6), we know the explicit form of 7(X) which reads,

(2 + !

(k)11 (18

00
T(X) =1+ Z TZkXZk where TZk = 02k+1
k=1

Reinstating (18) and (15) in (14) and expanding as aseries of X, we derive aset of differential equationsfor Q(")(r).
This way is clearly related to the Poincaré-Lindstedt method except that the preliminary calculation (18) of the
period 7(X) automatically removes all secular terms from Eq. (14).

Using the results of Appendix A, we may derive for example the first differential equations involving

0 (z), 0¥ (x) and 0§ (v).

(1)(.,:) + Q(l)(.[) =0, (19)
09(x) + 0P (1) + ol 0P ()2 = 0, (20)
09(@) + 0P (1) + (8 — 203) 0 (1) + w3 O (D)3 + 20205 (1) 0P () = O, (21)

where the double dot stands now for a differentiation with respect to r and «,, = v,,4-1/v2. Solving this system
together with the initial conditions (17), we obtain

08(z) = cos(z). (22)
09 (1) = Saz(cos(21) - 3). (23)
09(1) = & (202 + 3w3) c08(37) + (2502 — Saz) cos(z), (24)

where we have used o2 = —a»/3 and the value for o3 given in Appendix A.

The fi rst term of the expansion (15), Q(l)(r) = cos(1), represents the linear (harmonic) part of the in-phase
motion. Higher order correctionsin X", n > 1 (i.e. £(*/2)) stem from the nonlinearity of the onsite potential. It is
important to notice that they appear a so for isochronous onsite potentials. In other words, isochronous motions are
generally anharmonic.

Reinstating the results for the Q(”)(‘c) in (15) provides the general perturbative expression for the continuation
of the linear in-phase motion, that is, a perturbative expression for the nonlinear in-phase mode
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2 .3. Out-of-phase mode (orbit I)

2.3.1_ Equations of motion

If the potential V(x) is not symmetric (V(—x) # V(x)), its Taylor expansion around O contains at least one
nonzero odd coefficient. This has no influence on the previous result concerning the in-phase motion because
any oscillator of the chain performs the same motion in the same time. This reduces the set of N Eq. (7) to
a single one (12), representing the equation of motion of a single oscillator in the onsite potential V. But as
soon as we are interested in an out-of-phase like motion, we have to consider a dimerization of the chain, each
dimer being made of two neighbouring units oscillating in opposite phase. The lack of symmetry of V induces
two different motions to the right and to the left. This prevents us from finding a pure out-of-phase solution to
(7) which would imply Q, = Q8,,, or in real space xp, = —x2,+1. Instead, we can look for a solution of the

type
Qq = Q05q,0 + er‘sq,n (25)
involving both in- and out-of-phase variables, the others being zero. Using (6), we obtain x,, = Qo + (—1)"Q, or

X2, = Qo+ O and x2,+1 = Qo — Q. Adding and substracting the equations of motion for x», and x2,,4+1, we
finally get

Qo + 3[V'(Qo + Qx) + V'(Qo — 0x)] =0,
Ox + 31V (Qo + @x) = V/(Qo — @x)] + W'(20x) — W'(=205) = 0. (26)
The total energy of the system evolving according to orbit Il is

En = H({x2, = Qo+ QOx, X241 = Qo — Qx})

= (0% + 0%+ V(Qo + 0x) + V(Qo — 0x) + W(20x) + W(~201). (27)

2.3.2_ Solution at low energy

System (26) represents a dimer. Applying the method of the first section, we are able to derive its time-periodic
solution at low energy by requiring that the corresponding orbit converges towards the linear out-of-phase mode as
the energy vanishes. However, at variance with the in-phase mode, we cannot provide an explicit expression for its
period in terms of the Taylor coefficients ofV and W. Removing the secular terms from (26) yields simultaneously
the expressions for the period and for the motions Qo(z) and Q (7).

Contrary to the previous case, we will not use an energy expansion for the diverse quantities to be calculated
but merely a small amplitude expansion. The small amplitude is denoted by y. We define a dimensionless time
T = w(y)t where w(y) stands for the frequency of orbit 11 as a function of its amplitude y. The corresponding period
is denoted by T'(y). Moreover, we define the two dimensionless potentials

S V) et o W) G Bat (X
V(x)_vz-i——%_r; n T W(x)_vz+4¢2_,; n (2) ’ (28)

as well as a dimensionless period T(y) = +/v2 + 4¢2 T(y)/27. Notice the slightly different definition of the co-
efficientsa,, = v,,11/(v2 + 4¢>) of this section as compared to the previous one. We nevertheless keep the same
notation for the sake of clarity given that these coefficients are still related to the onsite potential V(x). Functions
00, O and T(y) are expanded as follows,

o0

00(». 1) =D 00y x0.1) = 0V Tk =) T,y (29)
n=1 n=1

n=1
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Equations of motion (26) now read

Do+ ﬁ [V/(Qo + Qx) + 7/(Qo— 0x)] = O

O+ Tz(y) {31700 + 0x) — V(00— 0)] + W'(20x) - W'(-20:)} = 0. (30)

The double dot denotes the derivative with respect to 7. Inserting (29) in the previous system and collecting the
terms of same order iny givesriseto a set of differential equationsinvolving the functions Q(")(r) Q(")(r) aswell
as the unknowns 7, (to be determined by requiring the removal of secular terms). Solving them, it is not diffi cult to
obtain the following general features for the motion: by choosing a proper origin of time the solution can be made

time-reversal symmetric (the only nonzero Fourier coeffi cients of Q(")(r) and Q(”)(r) are even). Moreover, Q(")(r)
and Q(”)(t) are respectively even and odd iny. Finally, 7(y) isaso eveniny. Thus, we have

Qo(y. 7) = Z 08 (D)5 0x(y.7) =Y 0Dy T() =1+ Touy™. (31)
n=0 n=1
where
2
080 = oost), 0P(0) = 5z (G - o) 0P = 3 |:(063 +po) - } cos{3n),
—a1 o1 32 —4
~  1(Ba1—8a5 3
= 1 @D 5(053 + B3), (32)

to give afew. Notice that the even coeffi cientsfB,,, are absent from the equations of motion (30) and consequently
from the expressions (32). 81 has been eliminated thanks to the relation 81 + a1 = 1, which follows from the
defi nition of these coeffi cients in terms ofvp and ¢2 (see Egs. (2) and (28)).

Reinstating properly theexpressionsfor Qo(y, t) and O (y, T) in(27) allowsusto derive aperturbative expansion
for the energy density ¢ = Ej; /N of the nonlinear out-of-phase modein terms of itsamplitudey. Asfor thein-phase
mode, it isconvenient to defi neaquantityY = (2¢/(v2 + 4¢2))Y/? playing the samerole as X in the previous section.
We then obtain

2¢
v2 + 4o

2
=Y2=y>+ [—(ag + B3) — }(gal OB + 96)0[2} ¥+ 0G5). (33)

ay(or — 4)?

Thefi rst term of this expansion corresponds to the harmonic limit.

3. Isochronism

In the previous section, we have described the way to obtain a perturbative energy expansion for both the in-
and out-of-phase motions, aswell asfor their respective periods. We are thusin a position to express the conditions
required for a (partial) isochronism of these modes. For an isochronism of order n, this is easily achieved by
cancelling all coeffi cients of the energy expansion for the period up to ordern — 1.

3-1_ In-phase mode

Dueto itsintegral representation, the period of the in-phase mode can be explicitly expanded as a power series
in energy (see Appendix A). Obtaining an in-phase mode isochronous up to order n then amounts to zeroing the
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coeffi cientsoor+1, 1 < k < n — 1. Thishas been donein Appendix A up to order n = 4. The set of equations thus
derived induces some constraints on the Taylor (v or «;—1) coeffi cients of the potential V. It leaves nevertheless an
entire freedom on the choice of odd coeffi cients po+1, £ > 1) as dready remarked in [22]. For a (1D) potential
isochronous up to order n, the even coeffi cientsvy, are then determined by the odd ones vor+1 Upto k = 2n. The
rest of the expansionisfree.

To illustrate this, let us derive the most general expansion of a (C*°) 1D potential isochronous up to order 4.
Using the results of Appendix A and V(x) = w?V(x), we obtain:

~ 1 5 1 56 14
V(x) = §x2+ %x3+ Bt 2542 (——0/21+ —Ot4a2> 284 257

18 5 6\ 27 5 7
124 592 . 36 , 848 &\ g w1
+§ (7(16(12 — 4—50(4012 + 2—5a4 + ﬁa2> X —I— Z T xk (34)

k=9

This expression is equivalent® to Eq. (34) of [22].

3-.2. Out-of-phase mode

As for the out-of -phase motion, no explicit (integral) expression is available for the period. However, we have
shown inthe previous section how to calculateit asafunction of the small amplitudey by removing the secular terms
at each step of the calculation. The period could of course be converted as a series in energy rather than expressed
as a series in amplitude. Such a transformation would be pointless however. Indeed, even if an isochronism of
order n has been previoudly defi ned throughT = Ty + T>," + 0(s™) asthe energy tendsto zero, the dependence of
the amplitude on energy (33) shows that this statement isequivalent to 7 = To + To,[(v2 + 4¢2)/2]" y2* + o(y?").
It is then equivalent to zero the coeffi cients of they or ¢ expansions up to order » — 1 as it produces the same
constraints on the Taylor coeffi cients of the potentialsV and W, although these two series have different coeffi -
cients.

Let us fi nally provide the reader with an example to illustrate the method described in the previous section.
If we require the out-of-phase mode to be isochronous up to order 3, we obtain the following constraints on the
coeffi cientsa and S (see Eq. (28) for their defi nition):

2 (301 — 8)a?
Bz=—az+--—— 2
3 (o1 — 4z (35)
2 (96 + 1502 —5601) , 9(32+ 502 —24a1) 6 (501 — 12) ,
Bs = —as5 + — 3 ay — = 3 alas03 + =3, 1020y
15 al(al — 4)2 5 al(al — 4)2 S) 051(0(1 —4)

Notice that for the sake of simplicity, we have kept the same notation «; for the coeffi cients of V for
both modes. However, the defi nition of these coeffi cients is mode dependent as they representvyyq/vy for
the in-phase mode and wviy1/(v2 + 4¢2) for the out-of-phase mode. As already displayed in the above re-
lations, it can be shown in general that the isochronism of orbit Il is easily expressed through a rela-
tion of the type B2,+1 = f({ar}) (k€ {1,...,2n +1}). This means that once the coeffi cients {«;} have
been chosen for the onsite potential V, the isochronism of the out-of-phase mode fi xes the even part of
the interaction potential. The odd part of W remains completely free as it does not enter the equations of
motion.

1 Two misprints have to be corrected in this expression. Using the notations of [22], the last coeffi cient of order 6 reads—7/2 b‘l" and the last
coeffi cient of order 8, 477/16 bS.
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4. Tangent bifurcation of orbits I and 11
4 .1 . Statement of the problem

The system of Eq. (7) is of the form O + F(Q) = 0, where Q and F(Q) denote two vectors of components Qq
and F,(Q) respectively, g € {0, 2n/N, ..., 2(N — 1)/N}. A perturbation » of the system around the solution Q
gives rise to the following variational system

i1+ DF(Q)n =0 (36)

where DF(Q) is the Jacobian matrix of F evaluated in Q whose components are DF(Q) = 0F,(Q)/3Qx.
To evaluate the Jacobian matrix, we use (8) and find

N

aF 1 i ig i i i

G0 (@ =5 2 V| B Te oy |+ -ty | 3o —e)e oy
n=1 q /

q
—e T =W | D (e — 1), | |- (37)
q/

We will now use the method already described in [13] in order to obtain the energy thresholds, if any, at
which orbits | and Il become unstable and bifurcate tangently to give rise to other types of periodic orbits
which break the translational invariance of the lattice. Before to proceed, let us briefly recall how the method
works.

Once the periodic solution for Q has been introduced in the Jacobian matrix DF(Q), the variational system (36)
presents itself as a vectorial Hill's equation for the perturbation 7. This type of systems is known as parametrically
excited as the Jacobian matrix generally depends on several parameters. In our case, such parameters are the energy
(or the amplitude) of the solution Q as well as the frequencies of the modes we are interested in. Once expanded as
a Fourier series, the Jacobian matrix may be decomposed into a static (dc-) part (its zero mode) and a driving (ac-)
part.

A paradigmatic example of Hill's equation is the Mathieu equation %(z) + (§ + 2¢ cos(2¢))x(¢) = 0. Foracompre-
hensive treatment of this equation the reader is invited to consult [21], for example. In one dimension (the Jacobian
matrix is reduced to a single element in this case), the parameter § plays the role of the static part and 2¢ cos(2¢) the
role of the driving. It is known from the stability analysis of this equation that the behaviour of its solution varies
according to the values of the parameters § and ¢. The solution can be either stable, unstable or periodic. In the
ed-plane (8 as x-axis and € as y-axis), the regions of instability present themselves as tongues (the so-called Arnold’s
tongues) starting from the §-axis at the values 8, = n?, n € N and widening as ¢ increases. In these regions, the
motion is unbounded whereas outside, it is stable (bounded).

Of particular interest are the boundaries of such regions called transition curves that separate stable from unstable
motions. Along this curves, the solution is periodic of period = (n even) or 2z (n odd). For small ¢ values, a
perturbative treatment of the Mathieu equation which consists in expanding both x(¢) and the parameter § as series
in e allows for the determination of the transition curves of the form 8, = n? + Y°, A%)%€’. The coefficients A%*
depend on the tongue (n) as well as on the branch (that is, the boundary) we are interested in. It can be shown that
one of these branches is related to time reversal symmetric solutions n (denoted by the subscript s) whereas the
second one is associated with time reversal antisymmetric solutions (a).

Let us suppose now that we fix the value of § close to a transition point 8, = n2. At € = 0, the point corre-
sponding to the state of the system in the parameter space is located in a region of stability. Let us increase the
value of ¢ at fixeds. If the corresponding vertical line crosses the transition curve nearby, the solution x(¢) be-
comes unstable above the crossing point. And right at the intersecting point, the solution is periodic. Although
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the variational Eq. (36) is more complex than the Mathieu equation, we will proceed along the same lines as
those described above to derive the energies at which the modes (in- or -out-of-phase) become unstable and bifur-
cate.

4 _2_ In-phase mode

4 _2_1_ Stability analysis
Evaluated along orbit I, the Jacobian matrix (37) is diagonal

. k
DF,u(01) = | V/(Q0) + 4asir? (5 ) | s (@)
All perturbations decouple from each other and their equations of motion are
g + | V(Q0) + 4g2sin? (2 )| ng = 0. (39)

As dready stated in [13], the perturbation no describes the continuation of orbit | along itself. It cannot be
responsible for a bifurcation of Qg asit simply operates a shift in time or modifi es the energy (or the frequency)
along the one-parameter family. Wethen look for the perturbation ableto giveriseto the required tangent bifurcation.
Thefi rst to occur will be for the closest (linear) frequency to the linear in-phase frequency, that isforge = 27/ N.

L et us now rewrite the system made of the dimensionless equations of motion for Qo(z) and n,.(z). We obtain

32 Qo(X, ao
P9 | 7207 (Qotx. 1) = 0. (40
aznqc(X’ T) 72 i
—z T (X)[V"(Qo(X, 1)) — Alng(X, 7) =0, (41)
where
A 202 (E) _M (42)
o v2 N/ v2 '

The notations used above are the same as in Section 2.2. The energy dependence of all quantities has been
emphasized through X.

4 _2_2_ Arnold tongue corresponding to a tangent bifurcation

Recall that due to the time scaling © = w(e)z the period of Qo(X, t) isnow 2. So that looking for a tangent
bifurcation of this orbit through n,.(X, t) requires n, (X, t + 2m) = n4.(X, ) as well. However, this condition in
itself, although necessary, is not suffi cient for our purpose. We have indeed to require the frequency ofn, (X, 7) to
be the same as (and not a multiple of) the driving frequency in the limit of vanishing energy (or as X — 0). In other
words, expanding n,.(X, ) asaFourier series, we must have

Nge(X, 7) = ZZAH(X)ei"T with  ¥in| # 1, Ay(X) — 0. (43)

Thisimplies that we have to investigate the first instability zone of the Hill's Eq. (41).
At astrictly zero energy (X = 0), thisimposes A = 0 for in thislimit, (41) becomes

ﬁ% +[1- A]n% =0,
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(we again use the dot as a derivative with respect to t). The previous equation has afrequency equal to 1 for A = 0
only. Thus, in adiagram (A, &), the Arnold tongue we are concerned with starts from the point (A = 0, ¢ = 0).

To evaluate the boundaries of thisinstability zone, we need to solve (41) by expanding n, (X, ) and A as power
seriesin X:

o0
nqc(x’ -[) Z n(m)(.’:) Xm, A = Z A(m) Xm (44)
m=0

As for the Mathieu equation, removing the secular terms from (41) gives rise to two critical curves Ag(X) and
Aa(X) associated respectively with the periodic time reversal symmetric solution 4, s(X, ) = 14.,s(X, —7) and the
periodic time reversa antisymmetric solution 1y, a(X, 7) = —n4c,a(X, — 7).

4 _2.3. Frsttransition curve .
Differentiating (40) with respect to t and dividing by X shows that

82 QO faud <71 QO
1 (52) + 07 ot (§2) o (9

As Qo(X, 1) istime reversal symmetric and equivalent to cos(r) X + O(X) when X tends to zero (see (15) and
(22)), Oo(X, 7)/ X istime reversal antisymmetric and satisfi es(43). We then deduce that, for all X, Qo(X, 7)/ X is
an eigensolution of (41) for the eigenvalue A = 0. In other words, 1, a(X, 7) = 00(X, )/ X isthe eigenfunction
corresponding to the eigenvalue A = 0 whatever the energy (or X) is. We have then shown that the boundary Aa(X)
of the instability zone we are concerned with isthe e-axis of the A — ¢ plane.

4 _2_.4 . Second transition curve for a partial isochronism of order n
To calculate the second curve, Ag(X) related to the time reversal symmetric solution n, s(X, 7) of (41), we
differentiate (40) with respect to X:

2 2
7 (22) + orion (12) + 07109~ (46

This equation is not of the Hill type because of its last term which is not linear in 9Qo/9X.

Suppose now that the potential V isisochronous up to order n. By defi nition, we haveT2(X) = 1 + 275, X" +
o(X2"). That isdT2/dX = 4nT2, X2~ 4+ o(X2~1) and 7’ (Qo) = X 05 (x) + o(X?). The last term of Eq. (46) is
then of order X",

This means that, up to order X2*~1, Eq. (46) reads

& 300 2 % Qo . -1 <
5z (5) + oo (52)] =0 osks2i-1 @

(Here and hereafter, the symbol [ £(X)]x will denote the terms of order X* of £(X), [f(X)]x = ,3 dxk (O)) Since
0Q0/0X = cos(1) + O(X) as X — 0, it satisfi es(43) and is moreover time reversal symmetric. Now, because of
(47), up to order X2*~1, 50¢/0X represents the time reversal symmetric eigenfunction Nge,s(X, T) Of (41) for an
eigenvalue Ag which, up to this order, is equal to 0. This means that

900

o
40 = Y 40X ad o) = st 0, = [ 2

}, O<k<2n-1 (48)
m=2n k
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L et us write now

20 = [ 52 -+ ()

where ¢(7) is afunction to be determined. Taking into account (48) and (47), we are able to calculate the terms of
order X2 of (41) and obtain

|:8277qc (X, 1)

o+ T2 {V(Qo(X, 1)) — A} nge(X, r)} =0

— {(0) + ¢(r) — A2 08 (2) — 4T, 0P (2) = 0.

As le)(r) = cog(t), removing the secular terms from this last equation requires A?” = —4nT>,. Hence, the
equation of the second branch of the instability zone

As(X) = —4nT2, X?" + o(X?). (51)

4 _2_5. Bifurcation energy B
Coming back to the defi nitions, A = (o — @ o)/v2, X = (2¢/v2)"/?, TA(X) = vp/wf and w§ = 0§ +

Yo.n € + o(e™) (wé’o = vp), we can use (51) to obtain the leading order expression for the energy sg") at which
anonlinear in-phase mode isochronous up to order n bifurcates:

3o~ 2o\ [ =200sin%(r/N)\ "
o) — (200~ ¥4e0 — (22T LNy, N - . (52)
2nyon nY0.n

Let usfi rst noticethat the existence of acritical energy at which thein-phase mode undergoesabifurcationimplies
that yo,, is negative which, in turn, requires the corresponding frequency to decrease with increasing energy. This
condition, already known for non isochronous potentials (or, in our terminology, isochronous up to order 1) [13],
till holdsin case of partia isochronism.

As already mentioned in the introduction, expression (52) shows a very deep relation between the low-energy
behaviour of the frequency of the in-phase mode and its bifurcation energy. We will see in the next section that the
same relation holdsin fact for the out-of-phase mode. As n may now take on arbitrary positive integer values, (52)
treats the case of all possible analytic potentials with nonzero harmonic frequency (v2 > 0). Itsvalidity is however
not restricted to such potentials and we remark that it still holds for the class of non analytic potentials studied
recently by Kastner in relation with the possible existence of energy thresholds for discrete breathers[25,26]. From
this point of view, this relation seems quite general.

4_2_6. Examples

The coeffi cientsyy,,, = —2v2(2/v2)" T», are easily obtained from the expression (A.6) for the period T. Indeed,
Eq. (A.6) shows that T, = 02,11 (2n + 1)!!/(2n)!!. Then, zeroing the oo41, k € {1, ..., n — 1} as explained in
Appendix A and re-introducing the corresponding constraintsin o, 1, allows us to derive the expression for 7>,
for apotential isochronous up to order n.

For » = 1 (non isochronous potential),

-3 3/5, 1 3vg 503
= —az—zas :>y0’1:2_v2_ﬁ
2
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then,
@  12¢2v3sin?(/N)
& =
0 10v% — 9vovg

which is exactly the expression (3.13) of [13].
Forn = 2,

+ O(N_z), N — oo, (53)

- 10 , ~ 15 1 28 , 7
T2=O=>(x3=§a2=>T4=— ——a5——a2+Ea4a2

=nw2== 52 s 6w
Hence,
oy 1/2
v
£ = a2 ) wesn($)+o(NY), N (54)
378vzusvs — 280v5 — 1350605 N

4 _2_7. Pure isochronism .
Let us suppose now that the in-phase mode is purely isochronous. Then, 7(X) = 1. Differentiating (40) with
respect to X as we have done in the previous section givesrise to

# (300 =+, 900\

At variance with Eq. (46), this equation is of the Hill type and dQo/9X represents the time reversa sym-
metric eigensolution of the instability zone under investigation. Its eigenvalue is As = 0 for al X, i.e. what-
ever the energy is. We have thus found that, in case of pure isochronism of the onsite potential, the bound-
aries Ay(X) and Ag(X) of the instability zone merge and make it disappear. The merging of two transition
curves is a phenomenon known in stability theory as a coexistence. It occurs for instance in Ince's or Lamé's
equations and general conditions for its appearance are given in [27,28]. We natice incidentally that for an
“isotonic” potential, V(x) = w?(x + 1 — 1/(x + 1))2/8, which is isochronous (see for example [29]), the varia-
tional Eq. (41) reduces to an Ince's equation. This alows for an explicit verifi cation of the general result stated
above.

As a consequence of the disappearance of the instability region, the in-phase mode never undergoes a tangent
bifurcation. Remark that, at variancewith theresultsobtained for apartial isochronism, thisresultisnon perturbative.
Indeed, Egs. (45) and (55) are exact and their respective eigensolutions n, a(X, ) = Qo/X and ny (X, 7) =
900/0X aswell.

To conclude, let us notice that expression (52) shows how the instability zone shrinks as n tends to infi nity (see
also Fig. 1). Nevertheless, asit isvalid in the limit of vanishing energies only it couldn't have been used to prove
the result above.

4 _3. Out-of-phase mode

4 _3_1_ Stability analysis
Evaluated along orbit |1, the Jacobian matrix (37) now reads

1 . ok
DFqk(QII) = E |:VU(Q0 + Qn) + VU(QO - Qn) + 4S|n2 5 {WN(ZQJT) + WN(_ZQ?T)}i| (Sk,q

+5 [V'(Qo+ Ox) = V'(Qo — Qr) — 2iSnk {W'(207) — W'(=20x)}] kg4 (56)

NI
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Egﬂ ,:;'

1/N?

Fig. 1. Schematic representation of the bifurcation energy (41) as afunction of the inverse squared number of oscillators N for various degrees
of isochronism of thein-phase mode (n = 1-3). For agivenn, theinstability zone lies between the energy-axis (fi rst transition curve, 1/ N2 = 0)
and the curve labelled by n (=1, 2 or 3). Below (above) the latter, the in-phase mode is stable (unstable). Right on atransition curve the solution
is periodic. We see on this graph how the instability zone shrinks as n increases. In the purely isochronous case, the second transition curve
merges with the fi rst one on the energy-axis and the corresponding instability zone disappears.

and the corresponding dynamics,

1 . 1
g+ 5 | V/(Qo+ 0n) + V/(Qo — Qx) +48in T {W/(20:) + W(=20:)} | n + 5[V (Qo+ )

- VN(QO — Qy)+2ising {WN(ZQTL') - W//(_ZQH)}]ﬁq+n =0 (57)

To evaluate the possible bifurcating energiesin this case, wewill proceed along the samelines asfor thein-phase
mode. Notice, however, that EQ. (57) do not decouple in the present case and that, due to the very last term, they
are complex (rea and imaginary parts are not decoupled). To deal with thisfi rst diffi culty, we will write the system
(57) in terms of real and imaginary parts.

Similar to the in-phase mode, the out-of-phase mode will eventually undergo a fi rst tangent bifurcation via
the perturbation .. whose frequency is the closest to wx,o, that is, for gc = m — 27/N. As N tends to infi nity,
g = 21/ N plays the role of the small parameter in the variational equations. But at variance with the in-phase
variational equation where A o sin?(r/N) was the unique small parameter, Eq. (57) possess two small parameters
through sin?((gc + 7)/2) ~ (=/N)? and sin(gc) ~ 7/ N. Notice that these two parameters are not of the same order.

In what follows, for the sake of clarity, we simplify further the notations by using n,, = r +ij; and ny4» =
ro + ijo (Withi = /—1) rather than the lengthy values for ¢ and gc + 7. We work with dimensionless equations
and with the same notations asin Section 2.3. Wetake § = 4sin?(x/N) as small parameter. The quantitiesro, jo, 7,
jz» O0, O and T depend on the amplitude y defi ned in Section2.3. Asthe previous quantities, the small parameter
8 hasto be expanded as a power seriesiny. Moreover, we defi ne

T2 . N . ~
T8, 7) = E[V”(Qo + 0x)+ V"(Qo — Ox) + (4= 8) {W'(205) + W'(—=20.)}],

72
Ta() = 5 [7"(Qo+ 0x) = V(00— 02)], T6.0) = T2/5(T — 5/A)W"(205) — W'(~20:)

T2 . N - -
Ta(s, 1) = 7[V”(Qo + 0x) 4+ V"(Qo — Q) + 45 {W"(20x) + W'(—=20.)}]. (58)
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System (57) now reads (from now on, dots denote 7 derivative),
i+ T1(8, T)rx + T2(t)ro — T3(8, 1) jo = 0,
Jr + Ti(. 1) jr + T2(2) jo + T3(8, T)ro = O,
7o+ Ta(8, T)ro + Ta(t)rx + T3(8. 7)jr = 0,
Jo+ Ta(8, 7) jo + Ta(t) jx = Ta(8, 7)rz = O.

(59)

As the energy (amplitude y) tends to zero, O, and Qg tend to zero as well and from (58), (31) and
(32), we obtain 71(8, t) — 1 —8B1/4, Ta(8, 1) — a1+ 881/4 and T2(8, t) and T3(8, ) both tend to 0. As
8 is a smal parameter, the only way to obtain a perturbation whose frequency is exactly 1 (as for the
mode itself) is to require § = 0 for it gives rise to 71 = 1 which is precisely the desired frequency for
the perturbation (rr, j;). Regarding (ro, jo), & 72 = a1 < 1 in this limit, we have to require (ro =0, jo =
0) in order zero in y. The origin of the instability zone is thus located a § = 0,e = 0 in the parameter
space.

4. 3 2 Hrsttranstion curve _ .
Now, proceeding asin the previous section, let us derive the equations obeyed by Qo = Qo/y and O, = Q/y.

Qr + T1(0, 1) Qx + T2(r)Qo = 0.

. (60)
Qo + 74(0, 1) Qo + T2(1)Qr = 0.

As the out-of-phase mode has been chosen time reversal symmetric, Qo and Q, are time reversal anti-
symmetric. Moreover, due to the asymptotic relations given above, they represent a motion of frequency 1
as y — 0. Having the required properties, they form the antisymmetric eigensolution of the Hill's system
(59) for a value of § equal to zero for al y (or energy). Therefore, (r:, jx) x @ and (ro, jo) x Qo. We
thus deduce that, in a diagram (8, ), one of the boundaries of the Arnold tongue is the e-axis itself which
means that, similar to the result obtained for the in-phase mode, no bifurcation can be expected from this
branch.

4. 3 3 Second transition curve for an isochronism of order n
The second branch of theinstability zone isthe curve associated with the time reversal symmetric eigenfunction.
Differentiating (30) with respect to y, we obtain

2 72 92
(%) o () + e (P2 ) - g Se =0

W ay ay ay dy ar? (61)
32 (000 900 30+ dIn72 3200
w(a—y)ﬂ‘c’”’(ﬂ*“’)(ay)‘ dy a2z 0

Again, the functions dQ,, /dy and 0Q¢/dy have the right time symmetry and Fourier properties. Nevertheless, the
system above is not a Hill's system due to the last terms. For an out-of-phase mode isochronous up to order n,
T(y) = 1+ T»,y*" + o(y?*), and we can evaluate the order of the last termsin (61). Using (31) and (32), we fi nd

din72 820,
dy 912

-~ din72 52
= 4nT>, costy? + o(y??); — on = OG> ™. (62)
dy ot

Given thislast result, we will fi rst assume, and then verify a posteriori, that the order of§ iny is 21, hence

§ = 8@my2n 4 o(ym). (63)
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We then obtain immediately
T2(5, ) = Ti(0, 7) — %6(2%2” +0(2),  Ta(r) = 2wz cosTY + 0(y),

T3(8, 7) = V8@ gy costy" 1 + o(y* 1), Ta(s, 1) = Ta(0, 7) + %a@")ﬁ" +0(y?"). (64)

We deduce from these relations that system (59) verifi es
iz + T1(0, )rz 4+ Ta(t)ro = o(y"),
Jr + T1(0, 7) jr + Ta() jo = 0o(y"),
Fo + 7a(0, )ro + T2(7)rz = 0(y"),
Jo+ Ta(0, 7) jo + Ta(v) jr = 0(").

We remark now that the solution (14.(t), ng.+=()) Of (57) is defi ned up to a global phase only (i.e. if
(14¢(7), nge+=(7)) is a solution of (57), (e"f’nqc(r), e'¢nqc+n(r)), ¢ € R is also a solution). Using this freedom,
we solve (65) by requiring

0 d
rff>=[&}? o =[&]: M=0 jgl=0 1<k=n (66)
dy li dy Ik

(65)

without loss of generality (the brackets have the same meaning as in the previous section). Reinstating in (59) and
using (64) wefind

00z | . & 9Q0
”(Tk)z[a_y}k’ ré)z[a_y]k’ l<k<2n—1 (67)

Asinthelast section, we now solve the fi rst and the third equation of (59) at order 2» by introducing two functions
¢ (7) and ¢o(t) according to

00, » d
rn = [—Q } + ns réz )= [—QO} + ¢o = Co. (68)
From (61) and (62) we have

2
[8—2 (aQ”> + T71(0, 1) (aQ”> + Ta2(7) (@)] + 4nTy, cost = 0,
T ay dy dy 2

69)
? (900 900 90+ (
e () +en (572) v ()| <o
and from (59) and (64)
[Fz + T1(0, T)rz + T2(7)rolon — %8(2”) cost =0, (70
[Fo + T4(0, )ro + T2(7)rz]2, = 0.

Therefore,

; PLsen | 4 5 _
[ Cn +Cn — (Z(S + 4nT2n> cost =0, (71)

o+ 10 =0.
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Removing the secular term from thefi rst equation leads eventually to the equation of the second transition curve

16115, "
§=— y? 4 o(y?). (72)
p1
Discarding the sol ution of the homogenousequation [21] gives ¢, = 0. The second equationissatisfi ed by setting

Zo = 0 as well (because its frequency «g # 1). Hence, r,(,Z") =[0Qx/dy]2, and rng) =[0Q0/dy]2,. Remark that

these results are correct provided we are able to justify a posteriori the initial assumption (63) regarding the small
parameter §. This amounts to proving that the remaining equations for j, and jo in (59) never develop any secular
terms up to order 2». Thisis done in Appendix B by showing that these equations verify the adequate solvability
conditions.

4. 3 4. Bfurcation energy
Using the leading order relation between the amplitude and the energy density, y? = 2¢/w? ; + 0(¢?), @2 5 =
v2 + 4¢2, together with the relation

02 = 024+ Yane" + 0(e"), (73)

and noting that § = 4Sin?(wr/N), T2,y = —yrue" /202§ + o(e"), wefi nally obtain from(72)

1

() 70~ Vge0 " 2p25in%/N) | " ~2/

eW = | o2} (=2 ) 4 o(NY"), N— oo, (74)
2nYmn nYmn

which issimilar to the expression obtained for the in-phase mode. We natice thistime that the existence of acritical
energy at which the out-of-phase mode undergoes a bifurcation implies that yg, is positive. This requires the
corresponding frequency to increase with the energy. This condition, aready known for non isochronous motions
[13], till holdsin case of partial isochronism.

As seen in Section 2.3.2, the period of the motion is more conveniently expressed as a series in the square of
the amplitude, y?, rather than as a seriesin the energy «. For this reason, we also provide the bifurcation energy in
terms of the coeffi cientsT>, defi ned in(31),

2 .
) _ “n0 <—¢2 sin’(wr/N)
e =

1/n
> ) +o(N"%"), N — . (75)

=
nwn,OTZﬂ

4. 35 Examples

We are now in a position to give an explicit expression of 85?) for an out-of-phase mode isochronous up to order
nin terms of the parameters v; and ¢; defi ningV(x) and W(x) (see (2) and (28)). This amounts simply to fi nding
the leading order of the low-energy (or low-amplitude) behaviour of the corresponding frequency as explained in

Section 2.3.2 (see also Section 3.2).
For a non isochronous out-of-phase mode (» = 1), from (32) and (75), we fi nd
4
e® = (b2 + 442)¢ s sn? (L) +o(N3), N oo (76)
3(v4 + 16¢4) 4 (2v5)/(3v2 + 16¢2) — (4v5)/(v2) N

Let usnoticefi rst that, whenvz = 0 thisexpression reducesto formula(3.20) of [13] obtained in the special case
of asymmetric onsite potential V(x). The correction introduced by the asymmetry of V(x) (i.e. theterm proportional
to v% inthe denominator of (76)) hastheinteresting featureto be alwaysnegative. Therefore, thefollowinginequality

o 3v2(v4 + 16¢4)(3v2 + 16¢2)

E 2(5v; + 32¢7) 7
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hasto be satisfi ed for the out-of-phase mode to undergo atangent bifurcation. This corresponds, as we have seen in
the section above, to requiring that the frequency increases with the energy.

Another interesting result easily drawn from (76) concerns the case of partially isochronous onsite potentials. It
isfound inthis casethat acertain amount of nonlinearity (¢4) in theinteraction potential is needed in order to ensure
abifurcation of the out-of-phase mode. Indeed, the relation between thefi rst coeffi cients of the Taylor expansion of
V(x)is 101;% = 9vovy4 in this case. The denominator of (76) isthen positive provided

1 w2
%4> 53+ 160 (78)
So that, in a chain of harmonically coupled partially isochronous oscillators, no discrete breather (if any) stems
from the tangent bifurcation of the out-of-phase mode. At the same time we can conclude, that breathers appear for
fully isochronous harmonic oscillators (v4 = 0) when coupled anharmonically (¢4 > 0). This statement isto some
extent confi rmed by a recent proof that breathers exist and can be continued from zero anharmonic coupling for
harmonic oscillators coupled by a purely quartic interaction [31].
For afi rst degree of isochronism ¢ = 2), we obtain from (75)

_ 1/2
2 2(v2 + 4¢2) T4
where
. 1502 + 96 — 5601)as 9(32 + 5a? — 24 2 3(5a; — 12 5
Poo (LB MRS - My Ao — Lz st (@)
2403 (o1 — 4)2 16a2(ag — 4)2 8ai(a1 — 4) 16

With o, = v,11/(v2 + 4¢2) and B, = 2"+1¢, 1 1/(v2 + 42). Notice that, to enforce a partia isochronism of the
out-of-phase mode up to order n = 2, we have used the fi rst of the relations(35) (B3 = f({«;})) to derive (80).
Again, atangent bifurcation of this mode will take place provided the inequality 74 < 0 is fulfi lled.

Weremark fi nally that expression(74) for the bifurcation energy of 7-modesstill holdsin case no onsite potential
is present (V(x) = 0) providing the interaction potential is even. For instance, it can be applied to the generalized
(FPU)-B interaction potential, W (x) = (x2/2) + x2P*tD /2(p + 1), p € N, investigated in [23]2. The case of azero
onsite potential and an interaction potential containing odd terms has to be treated separately (as already proved in
[13]) and (74) does not apply in this case. The reader isfor example referred to [13] or [24] for the stability analysis
of -modes in such potentials.

4. 3 @ Pureisochronism

Similar to the pure isochronism of the in-phase mode, the pure isochronism of the out-of-phase mode leadsto a
merging of the two transition curves which makes the instability zone disappear. Thisis clear from the fact that, as

T(y) = 1, 3Q~/dy and 8Qo/dy obey
) + T2(7) <%> =0,
dy dy 81)

32 (00,
e () e (7

i () w0 (52) +70 () o

2 Inthiscase 0, + 2W'(20,) = 0 (see (30)) with reduced period TO)=T(E)/m=1+ Tz,,yzf’ + 0o(y??) wherey isthe leading order of the
amplitude of Ox relatedtoitsenergy by e = 2y? + o(y?) andwhere 72, = —(2p + 1)!/2p!(p + 1)!. Thismodeisthuspartially isochronousupto
order p. Using 72, in (75) and e = 2)? + o(y?), the bifurcation amplitude y, reads yc = [(p!(p + 1)!/(2p + 1)12p) Sin?(sr/ N)]Y/2P 4 o(N~7),
which is the expression (16) derived in [23] when N — oc.
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and are thus exact solutions of the variational Eq. (59) for ¢ = 0 (i.e. (rz, jr) o 0Q,/dy and (ro, jo) ox dQ0/dy).
As aconsequence, if the out-of-phase mode is isochronous it does not undergo a tangent bifurcation.

5. Summary and discussion

We have examined so far the close link existing between the possible tangent bifurcation of band edge modes
and the low-energy behaviour of their frequency. We have introduced the concept of partial isochronism of order
n for these modes through the relation wj = “’5,0 + Y4.n€" + 0(e") (¢ = 0 or ). By performing a linear stability
analysisin the limit of small oscillations, we have derived a simple and general expression for the leading order of
their bifurcation energy intermsof y, ,,. We have shown that the calculation of yq ,, (in-phase mode) simply requires
to invert a series and thus reduces to a pure algebraic problem. The inversion of this series is easily implemented
with the help of any software able to perform formal calculations. The coeffi cienty;,, related to the out-of-phase
mode may be derived by means of a Lindstedt—Poincaré expansion for the motion.

In addition, we have proved by means of an exact linear stability analysis that, fully isochronous band edge
modes (i.e. with an energy-independent frequency) never undergo atangent bifurcation. At variance with the results
guoted above, this oneisnon perturbative.

In order to discuss the implications of these results on discrete breathers, we shall now assume that, at least
some of them stem from the tangent bifurcation of the band edge modes investigated so far. To our knowledge,
for aKlein—Gordon lattice with smooth (say C*°) linearizable onsite and interaction potentials (wo,o and w0 both
nonzero) no general result existswhich proves such an assumption. However, with the additional assumptionthat, in
aninfi nitelattice, the breather amplitude (measured at the level of itslargest oscillation) can be lowered to arbitrary
small values [13,15], we come to the conclusion that, in this limit, the breather frequency tends to an edge of the
phonon band and mergeswith the corresponding mode. Indeed, for small amplitudes, the motion entersaquasi-linear
regime and then approaches some phonon mode. But in the same time, the breather family (parametrised either by
itsamplitude, itsfrequency or its energy) hasto lie outside the phonon band to avoid a resonance which would lead
to its disappearance. And this is possible by approaching an edge of the phonon band only. Notice however that
one can fi nd systems with breather families which do not possess any small amplitude limit (see, e.g.[25]). Such
breather families are then not related with the instabilities discussed above.

5 1. Energy thresholds for discrete breathers

We now turn to an important implication of our results on the possible existence of energy thresholdsfor families
of discrete breathers bifurcating tangently from band edge modes. It has already been noticed in many places
that such a nonzero activation energy for discrete breathers is of practical relevance [15,25] as it surely affects
their experimental detection and presumably their contribution to thermodynamical properties of lattices (see for
example [30] for some work in this direction).

Let us consider a Hamiltonian lattice of N coupled oscillators described by (1) with families of periodic or-
bits parametrised by their amplitude. Let us follow the periodic orbit corresponding to a band edge mode as
its amplitude increases from zero. As we have seen in Section 4, under certain conditions, at a fi nite criti-
cal amplitude (or energy density) this mode will become unstable and bifurcate tangently. A family of discrete
breathers emerging from this bifurcation is, right at this point, identical to the mode from which it stems and
therefore has the same energy. Increasing the amplitude further and following this new orbit, we obtain its en-
ergy as a function of its amplitude. It is worth noticing immediately that in fi nite systems N < oo, discrete
breathers arising in this way exist above a certain energy threshold only. Indeed, due to their fi nite amplitude
their energy is surely nonzero. The question is as whether this threshold persists in the thermodynamic limit,
N — oo.
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We then turn to the determination of the (total) bifurcation energy Eé”) of a BEM partially isochronous up to
order n, in the thermodynamic limit. According to (52) and (74), the bifurcation energy density for the two possible
modes g = 0 or ¢ = 7 can be cast into the general form

W2 - — w2 1/n
) = (%) +0o(N~2™), N — oo, (82)
q,n

where the coeffi cienty, ,, is defi ned by the low-energy behaviour of the BEM frequency

a)s = “)3,0 + vg.n" +0(e"), (83)

and where the wave number ¢, istheclosestto q (g, = 2n/N if g = 0and g, = 7w — 21/ N if ¢ = 7). In any case,
w? oy — o} o~ N72. Wethenfi nd that

EW = Net) ~ NT7@/M (N — o0). (84)

We note that the same scaling has been recently derived for 7-modes in the particular case of generalized (FPU)-8
systems ([ 23] Eg. (18)). Asshown in Section 4.3.5, these modes are indeed partially isochronous, hence the resullt.

Now, if the BEM isnot isochronous, (r = 1), itstotal bifurcation energy vanishes as the lattice becomesinfi nite
and so does the breather energy in this limit. No energy threshold existsin this case as aready mentioned in [13].
However, as soon as the band edge mode bears some degree of isochronism, (» > 1), its total bifurcation energy
either convergesto afi nite value @ = 2) or simply diverges (n > 2) and energy thresholds are thus expected.

We note incidentally that expression (84), athough valid for a one-dimensional chain, bears some striking
resemblance with its multi-dimensional counterpart in the non isochronous case which reads E{) ~ N1-(2/d)
where d is the dimension of the lattice [13,15,23]. Combination of both isochronism (n) and dimensionality (d)
leads immediately to the conclusion that the total bifurcation energy of a BEM scaleslike

ECd) ~ N1-@Ind) (N s o). (85)

Energy thresholds for discrete breather families bifurcating tangently from BEMss are thus expected as soon as one
of the positive integers n or d is strictly greater than one.

Asalready mentioned in Section 4.2.5, the general expression (82) still holdsin case the analyticity of the onsite
potential isrelaxed. Recent results obtained by Kastner in [25,26] prove for example that, for (1D) onsite potentias
of theform V(x) = x2/2 + |x|"/r + o(|x|"), wherer is any real number greater than 2, (82) and (83) are till valid
and that n = r/2 — 1. This way, the exponent n governing the low-energy behaviour of the frequency (83) can be
tuned continuously over the whole range of positive real numbers and may counterbal ance the effect due to the
dimensionality d. This nonintegral partial isochronism opens up the possibility to satisfy the inequality obtained
from (85)

nd <2 neR", deNT, (86)

ensuring the absence of energy threshold in dimension d, even in two- or three-dimensional systems.

Finally, we also mention the existence of energy thresholds for breathers in one-dimensional systems with
algebraically decaying long range interactions [32]. We can then identify three lattice properties which lead to
appearance of breather energy thresholds - dimensionality, interaction range, and (partial) isochronism.

5 2. Energy thresholds for discrete breathers revisited
5 2 1. DNLSequationsfor the slow modulations of BEMs

To concludethis paper, we proposeto revisit certain results of the previous section by deriving adiscrete nonlinear
Schrodinger equation (DNLS) for the slow modulations of small-amplitude partially isochronous BEMs. We shall
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do it with the help of amethod based on their nonlinear dispersion relation (see for example [33—35]) which renders
its derivation almost straightforward. We would like to mention that this result, obtained by a somehow heuristic
method, is also confi rmed by amore rigorous multiple-scale analysis at least for the fi rst orders of isochronism.

The method we will use to derive the DNLS equation is not properly speaking a multiple-scale expansion for
the motions x;(#) which would read x;(t) = }_ ;-1 1 Fji(to, 11, . . .) where . < 1isasmall parameter and where
the different timescalesare given by ¢, = 1t (seefor example [36—-39]). But it represents asimilar approximation
and has the advantage to be more transparent. It is based on the nonlinear dispersion relation obeyed by a BEM
isochronous up to order n. ‘

We fi rst note that in the harmonic limit, plane wavesx,. () oc €(@=®¢0), where w, ¢ is given in (10), are
solutions of the linearised equations of motion (9). Looking for slow modulations of theqg = 0 and ¢ = = modes, we
write them

xgu(t) = A €920 e 4 o(u) (87)

where “c.c.” stands for “complex conjugate’, ¢ € {0, =} and the small amplitude A; = ;. Here n is some small
parameter.

The function v is slowly varying in space and time. It isfound typically from a multiple-scale anaysis that, for
non isochronous modes, it assumesthe form v; = (11, ul) (see for example [39]). For modesisochronous up to
order n, asi milar analysisyieldsy; = y;(u?'t, ™). Thisiseasily understood from the nonlinear dispersionrelation
a)g ~ w? 7.0 T Yane" For a slowly modulated plane wave to exist, it is known that nonlinearity has to compensate
the dlspers on of the wave packet. Now, the nonlinear term in the previousrelation is, in leading order, proportional
to ¢ ~ u?*. Therefore, the nonlinear correction to the frequency introduces the natural long-time scale 42*¢. On
another hand, the dispersion of the wave packet arisesfrom a(spatial) Laplacian. If u?l isthe space scale, dispersion
introduces acorrection of order £2”. Thiscorrection isableto compensate the nonlinear effectsonly if p = n, hence
the scaling of ;.

Now, in leading order (harmonic regime), the energy density of a BEM reads ¢, = 20?2 0|A|2 q € {0, } (the
BEM amplitude A isconstant so that it does not depend on |). Re-instating in the nonlinear dlspers on and expanding
thelatter around ¢ = 0 or ¢ = 7 yields

Y0,n

wo—woo_w—[l—cos(q)H (2woo)"|A|2" and

(88)

o wno_—aj’i[l—cos(q n)]+ (202 o)A

Asexplainedin[33-35], we can now usethe dlspers on relations aboveto fi nd the equations governing the envelope
of the slowly varying amplitude A. This merely amounts to replacing (wx — wk,0) by i9;, (g — k) by i9; (with
k =0, ), A by the slowly varying amplitude A; and fi nally to let it act on the amplitudeA;. We then obtain,

Yo (20 2 A2 A (in-phase) (89)

i0;,A; = —2¢—(A1+1 + Aj_1 — 24)) t3

Yr.n

i9,A; = (2% o) 1A/1?"A;  (out-of-phase) (90)

24)) +

Several remarks are in order at this stage. First, the above derivation is not rigorous. Nevertheless, it makes the
role of isochronism through the nonlinear dispersion rel ation transparent and allows usto derivethe DNL Sequations
for the modul ation of the BEMs very easily. Second, we remark that for non isochronous potentials (» = 1), (89) is
exactly the Eq. (6) derived by Kivshar in[40] (seealso [41], Eq. (5) or [42], Eg. (19)). In this respect, (89) and (90)
are generdisations to higher order of isochronism. We would like to mention as well that, for » = 1, (89) and (90)
have been obtained by arigorous multiple-scale expansion in [39] (up to the fact that the discrete spatial derivative
is replaced by a continuous one).
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Egs. (89) and (90) provide now a physical motivation for studying DNLS with higher order nonlinearities.
Indeed, the nonlinear exponent is shown to be directly related to the isochronism of the BEM under consideration.
We notice fi nally that,(89) and (90) describe both the BEMs and their modulations and that, for this reason they
make it possible to study the bifurcation process which leads from the plane wave to a breather (within the degree
of approximation inherent to their derivation).

5 2. 2. Rederivation of discrete breather energy thresholds

Now, the condition for the stability of a plane wave for the cubic DNLS equation on a periodic lattice has been
derived by Carr and Eilbeck in [43]. Studying an equation of the type iA; + x(A+1 + Ai_1 — 2A;) + A|A;]2A;,
with A;1y = A;, N being the number of latticesitesand V' = Y, |A;|2 = 1, these authors show that the plane wave
A; = € A is stable if and only if A < 2Ny sin?(/N). The generalisation of this result to arbitrary nonlinearity
(r|A;1%* A;) and norm N is straightforward and reads

N 2X .o (T Yn
v < [n—)\sm (ﬁ)] . (91

For a plane wave /N = |A|? and according to the mode ¢ under consideration, the amplitude and the energy
density are related via e, = 2w5’0|Aq|2. Moreover, in (89) and (90), the ratio of the coupling x, and the nonlinear

parameter A, is x,/1q = *¢2 /(sz’o)”yw, “+"for g = mand“—"for ¢ = 0. Then, eventually, wefi ndtheenergies
at which the in-phase and out-of-p%ase modes become respectively unstable

_2gpsin2(r/N)\ " 2y sin(r/N)\ "
ggﬂ:(—) and gg;o:(—) | ()

nyo,n nYrn

which are precisely the expressions obtained in the previous sections. Notice that, these energies exist provided
vo.,» < 0 and yr, > O respectively. At the level of (89) and (90), these conditions imply x,1, > 0, (¢ = 0, ),
which is precisely the condition for these equations to support bright type breathers.

Our concluding remark is that, for nonlinearities higher than the usual cubic one, the DNLS eguation is known
to possess energy thresholds for discrete breathers (see for example [44,16,15,45]). This allows us to corroborate
our previous prediction that discrete breathers stemming from the tangent bifurcation of partially isochronous band
edge modes appear above certain energy thresholds only. Egs. (89) and (90) should provide away to estimate them.

6. Conclusions

In this paper we have shown that, in network of coupled oscillators described by Hamiltonian (1), the way band
edge modes (BEMs) possibly undergo a tangent bifurcation crucially relies on the low-energy behaviour of their
frequency. This behaviour is obtained by expanding the frequency as a power series in the energy (see (83)) as
explained in Section 2.2.2 and in Appendix A for the in-phase mode or in Section 2.3.2 for the out-of-phase mode.

The energy at which such modes may bifurcate tangently isgivenin (52) for an in-phase mode and in (74) for an
out-of-phase mode. In these expressions, n is the degree of isochronism of the mode under consideration and y,, ,,,
the fi rst nonzero nonlinear coeffi cient of the low-energy expansion of the frequency as defi ned i1(83).

As proved in Sections 4.2.7 and 4.3.6, purely isochronous modes (i.e. with an energy-independent frequency)
never undergo atangent bifurcation. Thisresultisnon perturbative. Now, in anetwork of coupled isochronousonsite
potentiass, the in-phase mode isisochronous and never bifurcates tangently according to the previous theorem. But
the out-of-phase mode, which is generically non isochronous, may bifurcate as soon as the nonlinearity of the
interaction potential is strong enough as expressed in (78).
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Bifurcation energies obtained in (52) and (74) are used in Section 5.1 to derive a condition for the occurrence
of energy thresholds for discrete breathers bifurcating tangently from BEMs. For modes isochronous up to order n
and indimension d, thisreads nd > 2. For analytic potentials (n positive integer) energy thresholds exist whenever
n > 2 (even in 1D) or when d > 2. For non-analytic potentials, n becomes a positive real number which opens up
the possibility of absence of energy threshold even in 2- or 3D.

In Section 5.2.1, wederived two DNL S equations respectively related to the slow modulations of small-amplitude
partialy isochronousin-phase (Eq. (89)) and out-of-phase (Eq. (90)) modes. These equations are the generalisation
to higher degree of isochronism of the usual cubic DNL S equation. Their nonlinearity is proportional to the degree
of isochronism of the corresponding mode.2 As shown in Section 5.2.2, they allow for an easy rederivation of the
bifurcation energies (52) and (74).
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Appendix A. Energy expansion for the period in a 1D potential

We derive in this appendix a simple method to compute the period of oscillation around the minimum of a
potential V(x) as apower seriesin the energy E. This method is, to our opinion, simpler than other methods which
have been developed earlier [18,19]. It yields the coeffi cients of this power seriesin terms of the coeffi cients of the
Taylor expansion of V(x) around its minimum. Thisisused to construct apotential partially isochronous up to order
n, which merely amounts to canceling out all the coeffi cients of the power seriesinE up to order n — 1.

We assumethat V (x) hasthefollowing properties; V(0) = 0, V/(0) = 0, V”(0) = w? # 0. Moreover, we require
that V'(x)/x > Oon aninterval | centered around the minimum. In thisinterval, V(x) can be expanded as a power
seriesin x around 0,

V(x) = w 2x —i—sz—an 1x". (A1)
n= 3

At agiven energy E, the period T is given by
X+(E) _x

T(E) = «/_/ o JEVE

where x1(E) are the two solutions of V(x) = E, (x4 (E) > 0 and x_(E) < 0). Let us make a change of variable
defi ned by V(x) = (1/2)w?X?, with dX(x)/dx > O for x € I. The last condition ensures that X is a monotonic
increasing function of x. Then (A.2) yields,

s [YVEe A(X) 2 (V2E du
T(E) = ﬁ/o T dx = 5[{) A ( > u) — (A.3)

(A2)

3 Note that the in- and out-of-phase degrees are independent of each other. For a given system, Eqgs. (89) and (90) will then generally have
different nonlinearities.
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where A(X) = x(X) — x(—X) with dx(X)/dX > 0. A’ represents the derivative with respect to X. In order to
compute the last expression of T(E), we need to invert the change of variable. Taking into account the condition
dx(X)/dX > 0O, we obtain

1 o0
V(x) = éwzxz = x(X)=X+) 0,X" (A.4)
n=2
where the coeffi cientso,, are functions of the «,,,. Hence
o
AX)=2 (1 +Y (2n+ 1)02,,+1x2"> . (A.5)
n=1

Reinstating this expression into (A.3) and performing aterm by term integration over u, we fi nally get

() = [1+Z car gt (5) } )

Theinversion (A.4) is easily done with the help of any software able to perform formal calculations. Using Maple
[20], we have computed the few fi rst odd coeffi cientsrp,, 1 1:

5 , 1
o3 1—8062 — Z(X?,
o, 7 2, 7 n 7 2 1
05 = ——0y — —Q30 40
5T 21672 T g*¥2 T 15 M2 T %3 T g%
3 33 143 9 o2 715 143 , , 11 2
o7 = ?aeaz—%a4aaaz+wa4a2+ 50 oy — 288 3+ 64a3a2 120(50124-50530(5
2431 33 5 1

*3888%2 ~ 128%3 8%

To construct a potential partially isochronous up to order n we need to zero the coeffi cientsoo; 1 Upto oz,—_1. This
constraints the coeffi cientsay to verify certain relations given below?:

10 ,
Ordern =2; a3z = 30{2
56 14
Ordern =3; ag= 270/21 + Eomaz
_ 24 592 3 36 848
Ordern =4, a7 = 70{@0{2 — Eomozz 25 + 81

Appendix B. Solvability condition for system (59)

We prove hereafter that, up to order 2n in the amplitude y, system (59) never develops any secular term.

4 Itisintended that, at order n, all previous relations hold. For example for n = 4, a3, as and a7 are given by the relations above.



J. Dorignac, S. Fach/ PhysicaD204 (2005 83-109 107

e Up to order y2", we have shown in Section 4.3.3 that the real parts r,, and rg of the two modes 7, _2,/y and
n27/N Obey the system

Pz + T1(0, T)rz + T2(t)ro = 0, 6.1)
7o + 7a(0, T)ro + T2(t)rz = 0. '
The functions 7;(t) are 2z-periodic.
e Up to the same order, the two periodic solutions of this system are given by
0 10
9\ [ o\ (3
= and = B.2
O 900 @ 1900 (8.2
0 - 0 -
ay y ot

Thefi rst solution is time-symmetric ((s)) whereas the second is time-antisymmetric ((a)).
e From order 0 to n we can take the imaginary parts j, and jo of the modes equal to 0. From (n + 1) to 2» they

obey,

Jjr + T1(0, T) jr + T2(7) jo + T3(6, r)rg) =0,
(B.3)

Jo+ Ta(0, 7) jo + Ta(v) j= — Ta(6. s =0,
where T3 istime-periodic and time-symmetric (it is afunction of 0, which istime-symmetric itself).

e The problem isto prove that from y**1 to y2*, (B.3) never develops secular terms. We will use the solvability
condition below (see for example [46]).

Theorem 1 (Fredholm alternative). Assume the subspace of T-periodicsolutions of the homogeneous system

d
Em = A(D)Ix),

A(t+T) = A(r), A € Mat(n x n) is of dimension k > 1. Denote by |n®), 1 € {1, ..., k}, k linearly independent
T-periodicsolutions of the adjoint system

d
)= —AT
dtm)_ AT(@)n).

Br |f(t+ T)) = |f(z)), theinhomogeneous system

d
g 1Y) =A@ +1£0)),

has T-periodicsolutions if and only if

T
fo(n(’)|f(z)>dt=o (Lefl, ..., k). (B.4)
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e Inour case, werewrite(B.3) asafi rst order inhomogeneoussystemwith|y) = col(ry, ro, px, po) (column vector)
and p, = ry, po = ro. We have

0 0 10 0
a| O 00 g | O ®9
~T, -Ta 0 0 Tarl®
The corresponding homogeneous adjoint systemis
mn 0 0 71 T2\ /m
d d| n 0 0 T2 Ta 12
—n) =-ATOn) & — = B.6
gm=—Aomegt =120 o0 o ollm (8.6)
na 0 -1 0 O n4
Its solutions are
m (9.3 — pr (9.3
12 _| o B7)
n3 I'n
N4 1o
e Calculating the two solvability conditions (B.4), we get
2 2
f ) f) dr = f Ta(—r9r6) +r§rP) dr = 0 (8.8)
0 0
and
2 2
/ ) f) dr = / Ta(=rPrg) + 16 de = 0 (8.9)
0 0

Indeed, to compute this last expression, we remember that 73 is time-symmetric (series of cosine terms). The
term in parenthesis being time-antisymmetric, the integrand is time-antisymmetric. Because it is 2r-periodic,
the integral is zero.

e Conclusion: The solvability conditions are fulfi lled and consequently (B.3) does not develop any secular terms
up to order 2. The way we have obtained the critical energy for the tangent bifurcation is thus correct.
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