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We study the energy flow due to the motion of topological solitons in nonlinear extended systems
in the presence of damping and driving. The total field momentum contribution to the energy flux,
which reduces the soliton motion to that of a point particle, is insufficient. We identify an additional
exchange energy flux channel mediated by the spatial and temporal inhomogeneity of the system
state. In the well-known case of a dc external force the corresponding exchange current is shown to
be small but nonzero. For the case of ac driving forces, which lead to a soliton ratchet, the exchange
energy flux mediates the complete energy flow of the system. We also consider the case of com-
bination of ac and dc external forces, as well as spatial discretization effects. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2207307�
olitons represent one of the striking and famous aspects
f nonlinear phenomena in spatially extended systems
tudied during more than half a century. Moving solitons
ransport energy in a coherent and particle-like way for
ntegrable systems. Departure from integrability, espe-
ially when including dissipation, introduces novel fea-
ures of soliton dynamics which are different from that of

point particle. In this article we study the influence of
he nonlocality of a dissipative topological soliton on the
alance of energy flows. Especially we show that the total
nergy flow is realized along two pathways—the total in-
ernal momentum and an exchange current between the
oliton field and the external degrees of freedom which
re responsible for the dissipation. For the case of an
xternal ac force the moving soliton (ratchet effect) trans-
orts energy exclusively via the exchange current,
hereas the total field momentum vanishes exactly. Even

or the long-studied case of a constant external force the
xchange current does not vanish. These findings unam-
iguously demonstrate that a moving dissipative soliton
epresents a collective field excitation whose dynamics
annot be reduced to that of a point particle.

. INTRODUCTION

Solitary waves or solitons represent one of the striking
nd famous aspects of nonlinear phenomena in spatially ex-
ended systems. They appear as specific types of localized
olutions of various nonlinear partial differential equations
nd possess several important properties.1 These properties
nclude an exponential localization of energy remaining un-
hanged during soliton propagation, and an elastic scattering
f solitons. The latter one, i.e., the fact that two solitary
aves maintain their identity after collisions, inspired the

ntroduction of the term soliton,2 which emphasizes the anal-
gy between these objects and particles. Later it has been
ealized, however, that an essential condition for the particle-
ike behavior of solitons is the integrability of the corre-
ponding models. But the effect of dynamical localization of
nergy was found to be much more general, and the notion of

oliton has been extended nowadays to nonintegrable models

054-1500/2006/16�2�/023125/10/$23.00 16, 02312
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as well. An analogy between such “generalized” solitons and
particles is less obvious. Not only the scattering process is
generally different from the elastic scattering of particles, but
several other important physical effects may appear for soli-
tary waves in nonintegrable models. An important feature
essentially breaking the particle approach to soliton dynam-
ics is connected with the possibility of excitation of the so-
called shape3 or internal4 modes: in contrast to a rigid body,
a soliton may perform shape oscillations while propagating.
The mechanism of possible energy exchange between the
soliton kinetic energy, associated with its translational mo-
tion, and the internal energy of shape modes, can drastically
change the soliton dynamics and leads in some cases to reso-
nances during soliton-soliton interactions.3

Another important aspect of soliton dynamics in nonin-
tegrable systems, which we address in this article, concerns
the problem of energy transport associated with a directed
soliton propagation. As a soliton carries some �finite� non-
zero energy, it is naturally to assume that its translational
motion would result in a nonzero energy current in the sys-
tem. One can introduce a total field momentum, in analogy to
a particle mechanical momentum, which precisely corre-
sponds to the energy current when considering solitons in
integrable systems.1 However, an attempt to extend this
momentum-based approach to dissipative solitons may lead
to confusing and misleading results. As an example, we men-
tion here the so-called soliton ratchets: the effect of a unidi-
rectional motion of a topological soliton �kink� under the
influence of a spatially homogeneous and time-periodic ex-
ternal bias with zero mean.5–13 As an extension of single
particle ratchets,14 at a first glance soliton ratchets demon-
strate at least qualitatively a nice analogy between solitons
and particles. Indeed, applying the same symmetry analysis
as for particle ratchets,15 one observes a directed motion of
kinks not only in numerical simulations, but also in experi-
ments with annular Josephson junctions.12,13 However, a sur-
prising and puzzling result appears if one estimates the en-
ergy current for the soliton ratchet case: simple analytical

calculations tell that the averaged value of the total field

© 2006 American Institute of Physics5-1
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omentum is strictly equal to zero.16,17 An analogous effect
f nontopological soliton motion with zero total field mo-
entum has been reported also for a nonlinear Schrödinger

quation with parametric driving in the presence of
issipation.18 These results show, that the total field momen-
um is no longer an adequate quantity to describe the energy
ow due to soliton dynamics in nonintegrable damped and
riven systems.

In this article we study the energy flow due to soliton
ynamics in the framework of the sin-Gordon model with a
patially homogeneous external driving and damping. We
how, that in general the energy current associated with a
ranslational motion of the topological soliton �kink� consists
f two contributions. The above-mentioned total field mo-
entum constitutes only one component of the total

urrent—the internal current. Another path for energy trans-
ort in the system is mediated by an inhomogeneous in time
nd space energy exchange between the soliton and the ex-
ernal degrees of freedom �driving force and damping�. The
orresponding exchange current has no analogy within the
article description of a moving soliton. Its existence is
olely due to the spatial extent of the soliton. Even for the
ase of a time-independent driving, when shape modes are
ot excited, the exchange current is small but nonzero. It is
rastically enhanced by the excitation of shape modes via a
ime-periodic driving or a spatial discretization of the sys-
em.

The article is organized as follows: In Sec. II we intro-
uce the driven and damped sin-Gordon model and the basic
efinitions of the energy balance equation and the total field
omentum �internal energy current�. In Sec. III the case of

oliton motion under the influence of a dc external force is
iscussed. We demonstrate, that the internal energy current
oes not account for the total energy flow in the system. We
ntroduce the notion of the exchange current, which com-
letes the energy flow balance. A generalization of our ap-
roach to the case of soliton motion induced by ac driving
orces �soliton ratchet� is given in Sec. IV. The effects of
iscretization are discussed in Sec. V. Finally, Sec. VI con-
ludes the article.

I. THE MODEL

We consider a topological soliton �kink� motion in the
riven and damped sin-Gordon model,19 widely used in the
eld of soliton ratchets,5,8–12 which describes the dynamics
f the superconducting phase difference across the annular
osephson junction12

�tt − �xx = − ��t − sin � + E�t� . �1�

his equation describes the evolution of a scalar field � in
pace and time. Here and in what follows, subscripts x and t
enote partial derivatives with respect to the corresponding
ariables. The parameter � regulates the strength of damping
n the system, and E�t� is an external driving force. In addi-
ion, we impose the kink-bearing periodic boundary condi-

ion

ownloaded 29 Jun 2006 to 193.175.8.27. Redistribution subject to AIP 
��x + L,t� = ��x,t� + Q, �t�x + L,t� = �t�x,t� , �2�

where Q=2� is the topological charge and L is the system
size.

The field energy density is given by

����x,t�� � ��x,t� = 1
2 ��t

2 + �x
2� + 1 − cos��� . �3�

Its dynamics is governed by the following energy balance
equation:

�t = − jx
I − ��t

2 + E�t��t. �4�

Here we introduce the internal energy current JI�t� and its
density jI�x , t�:

JI�t� = �
0

L

jIdx, jI�x,t� = − �x�t. �5�

JI is also known in the literature as the total field
momentum.19–22 By differentiating Eq. �5� and using Eq. �1�
together with the boundary condition �2� it is straightforward
to show17,20,21 that the internal current JI satisfies the follow-
ing ordinary differential equation:

Jt
I�t� = − �JI�t� − QE�t� . �6�

In the absence of an external force E�t��0 and dissipa-
tion ��0 �i.e., in the nonperturbed integrable sin-Gordon
model�, Eq. �1� with the previous boundary conditions �2�
supports the well-known kink solution,19 which in the limit
of an infinite system size L→� takes the form

�kink�x,t� = 4 arctan�exp� x − Vt
	1 − V2
� , �7�

where V is the kink velocity, �V��1. According to the energy
balance equation �4�, in this case the internal energy current
JI is the only possible pathway to mediate an energy trans-
port in the system. Using the expression �7� for the kink
solution and the definitions of the internal energy current JI

�5� and energy density � �3�, it follows, that the energy cur-
rent associated with the kink motion can be obtained in full
analogy with a moving point particle

JI � VWkink. �8�

Here the kink energy Wkink is obtained from the energy den-
sity ����,

Wkink = �
0

L

���kink�dx, WL→�
kink =

8
	1 − V2

. �9�

In the general case, when both E and � are nonzero, a
moving kink solution of Eq. �1� can persist as an attractor of
the system with all the parameters �including the kink veloc-
ity� determined by the choice of E, �, and L. Our goal is to
compute the energy current generated by such a moving
kink. As will be shown below, an inhomogeneous exchange
of energy between the kink and the external degrees of free-
dom �force and dissipation�, opens an additional path for
energy transport in the system, which, together with the pre-
vious internal current, constitute the full energy current bal-

ance generated by the moving kink.
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II. CONSTANT DRIVING FORCE

Let us start with the seemingly simple case of the per-
urbed sin-Gordon equation �1�—the case of a constant driv-
ng force E�t�=E�const.. A kink moves in this case with a
onstant velocity V �defined by a choice of the force strength
, as well as the damping constant � and the system length
�, so that the corresponding attractor solution depends only
n a single variable �=x−Vt,19

��x,t� = ��x − Vt� � ���� . �10�

Due to the time homogeneity the total energy of the
ystem W,

W = �
0

L

����x,t��dx , �11�

emains constant in time on the attractor solution. For a point
article the current balance would not change, as the energy
oss due to the damping would be compensated by the exter-
al dc field. For the spatially extended kink this will not be
he case anymore.

Let us assume, that the system size L is chosen to be
arge enough, so that far away from the kink center the spa-
ial field distribution asymptotically approaches the homoge-
eous ground state: ���→0�→	v ,���→L�→	v+Q. Note,
hat the external force E shifts the degenerate ground state of
he system from �G

�0�=2�m ,m=0, ±1, ±2, . . . to �G
�E�=�G

�0�

�v�E� ,�v�E��arcsin�E�.
We denote by w�x , t� the amount of energy stored on the

tripe �0,x� at time t. We further assume that x=0 is far from
he kink center so that the energy current density vanishes
here. Then we can define the local energy current density
j�x , t� as

j�x,t� = −
�w�x,t�

�t
= − �

0

x

�t�x�,t�dx�. �12�

sing the attractor property �10�, we obtain

j�x − Vt� � j��� = V����� − ��0�� , �13�

nd the total energy current J is thus given by

J = �
0

L

j���d� � V��
0

L

����d� − L��0�
 . �14�

he quantity in the square brackets on the right-hand side
rhs� of Eq. �14� is the difference between the system energy
ith and without the kink. Indeed, in the presence of external

orce and damping, the ground state energy has shifted from
ero to W0=L��	v�=L��x=0�. This difference is precisely
he kink energy Wk=W−W0. Thus, we arrive to the simple
elation between the total energy current J, kink velocity V,
nd kink energy Wk

J = VWk. �15�

s expected, this expression corresponds to that of a point
article moving with velocity V and carrying energy Wk.
owever, opposite to the integrable case E=�=0, the inter-
al current JI does not coincide with the total current J :JI
J. Indeed, using the definition of the total current J given

ownloaded 29 Jun 2006 to 193.175.8.27. Redistribution subject to AIP 
in Eqs. �12� and �14� and the energy balance equation �4�, we
arrive at

J = JI + JE, �16�

where the exchange current JE16 has been introduced

JE = V�
0

L

dx�
0

x

d���V�������2 + E������ . �17�

Following the definition of the internal current JI in Eq.
�5�, we obtain

JI = V�
0

L

����x��2dx , �18�

so that all components of the current balance equation �16�
are expressed through the field �. Below we will calculate
numerically the moving kink attractor solution ���� in order
to estimate all the three currents for different values of the
model parameters. Note, that according to Eq. �6� one can
obtain the exact value for the internal current JI on the at-
tractor solution in an independent way,

Jexact
I = −

EQ

�
. �19�

We will use this expression in order to control the accuracy
of our numerical schemes.

The fact that the moving kink solution 	�x , t� depends
only on the single variable �=x−Vt allows to reduce the
original field equation �1� to the well studied driven and
damped pendulum problem. Indeed, substituting ansatz �10�
into Eq. �1�, we arrive to the following ordinary differential
equation �ODE� for the function ����,

�1 − V2��� = − �V�� + sin��� − E , �20�

which describes the evolution of an effective pendulum with
the momentum of inertia M = �1−V2�. The damping constant

=�V depends on the kink velocity V. The external force E
plays the role of an applied constant torque to the pendulum.
By introducing the effective time

� =
�

	1 − V2
, �21�

Eq. �20� can be finally rewritten for the function y���
���� /	1−V2�,

ÿ = − Gẏ + sin�y� − E , �22�

with the damping constant G defined through the original
kink parameters:

G�E,L� =
�V�E,L�

	1 − V2�E,L�
. �23�

Here we emphasize the implicit dependence of G on the
strength of the external force E and the system size L, as the
kink velocity V is unambiguously defined by these param-
eters.

Thus, a moving kink solution �10� of the original prob-
lem �1� with the boundary conditions �2� corresponds to a

ˆ
rotating solution y��� of the driven and damped pendulum

license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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22�. On this solution the pendulum performs periodic rota-
ions with the period T defined through the original system
ength L and the kink velocity V as

T =
L

	1 − V2
. �24�

ote also, that the limit of an infinite system size L corre-
ponds to a separatrix solution of the pendulum with T→�.

The existence and the characteristics of the rotating so-
ution in Eq. �22� depend on the choice of values of G and
.24–26 For each given value of E from the interval �E��1

here is a critical value of G=Gcr�E�, below which the rotat-
ng solution coexists together with a stable static pendulum
tate �the latter corresponds to the homogeneous ground state
n the kink tails�. The period of the rotating solution tends to
nfinity as G approaches Gcr from below, whereas above the
ritical value of G the rotating solution disappears. As a con-
equence, the value Gcr�E� corresponds to the limit of an
nfinite size L in the original problem �1� with the corre-
ponding drive E, whereas any lower value G�Gcr is asso-
iated with a moving kink in a finite-size system. For small
alues of �E� the critical value of the effective damping can
e approximated as26

Gcr 

�E

4
, �E� 
 1. �25�

y using relation �23� one can derive the corresponding ap-
roximation for the kink velocity in an infinite-size system at
ow power of the external drive,

V 

�E

	16�2 + �2E2
, �E� 
 1. �26�

To find the separatrix solution of �22� and the corre-
ponding value of Gcr at arbitrary values of E we use the
ewton-Raphson iterations of the shooting method in phase

pace �ẏ ,y�, rewriting Eq. �22� as26

z�y� = ẏ , �27�

dz

dy
= − G +

sin�y� − E

z
, �28�

nd computing the map

�z�y0�,y0� → �z�y0 + 2��,y0 + 2�� , �29�

y0 = arcsin�E� . �30�

or any z0�z�y0� a unique solution of �27� and �28� satisfy-
ng condition z�y0+2��=z0 can be found by tuning the pa-
ameter G, provided that the sign of z0 is chosen in accor-
ance with the sign of E. The critical value Gcr is obtained by
aking z0=0. Note, that the value of z0 is proportional to the
alue of ����=0,L�. For any finite system size L it is non-
ero due to exponentially decaying kink tails.

In Fig. 1 the computed values of Gcr, as well as the
orresponding values of the kink velocity V, are shown with
ircles. In fact, the approximation for the kink velocity �26�

orks reasonably well even at values of E close to unity,

ownloaded 29 Jun 2006 to 193.175.8.27. Redistribution subject to AIP 
whereas the critical value Gcr deviates stronger from the lin-
ear approximation �25� at values of the driving force close to
E=1.

Once the separatrix solution ŷ��� of �22� is found, the
values of the total �14�, exchange �17�, and internal �18�
currents for the corresponding moving kink solution can be
obtained:

JE =
�G

�2 + G2 �D − F� , �31�

JI =
2G

�
F , �32�

J =
G

�

�2 + 2G2

�2 + G2 F +
�G

�2 + G2D � JE + JI, �33�

where the functions F and D, are related to the mean pendu-
lum kinetic and potential energies:

F�E,L� = �
0

T

d�
ẏ2

2
, �34�

D�E,L� = �
0

T

d��	1 − E2 − cos�y�� . �35�

Here the implicit dependence on the original system length L
comes through the pendulum period T.

Therefore, the three functions D �35�, F �34� and G �23�,
uniquely defined for a rotating solution of �22� for a given
value of the external field E and ẏ�0�, determine all the char-
acteristics of the corresponding moving kink problem: its
spatial profile, velocity, energy, internal, exchange and total
currents. In Table I we list the values of all three currents
calculated for the damping constant �=0.2 and different
strength of the external driving force E by means of the
pendulum approach, corresponding to the limit of L→� in

FIG. 1. Kink velocity as a function of the dc force E for �=0.2. Numerical
solution of �22�, see the text for details �open circles� and approximative
solution �26� �solid line�. Inset: critical value Gcr from �23� for �=0.2.
Numerical solution �see text for details� �open circles� and approximative
solution �25� �solid line�.
the original system �1�. In order to control the accuracy of

license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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ur numerical scheme, we estimate the error of the calculated
nternal current ��JI�, for which we know the exact result

exact
I �6�. We also indicate in Table I the accuracy �J at
hich the current balance equation �16� is fulfilled, �J
J−JI−JE, and the relative strength of the exchange current

JE /J�.
To verify the pendulum approach, we performed direct

umerical integration of the original system �1� with the ini-
ial condition in the form of stationary kink solution �7� of
he unperturbed �integrable� sin-Gordon model.27 Once
ariations of the total system energy �11� over any character-
stic timescales become negligible �of the order of standard
ouble precision numerical error�, we assume that the system
volves in accordance to the moving kink attractor. Then all
he currents are calculated following their original definitions
14�, �5�, and �17�. We found perfect agreement with the
esults listed in Table I.

The surprising result of the presented analysis is that for
he case of a constant driving force, when the kink is known
o behave similar to a point particle without any internal
egrees of freedom being excited, the exchange current is
onzero. It is relatively weak, but both its absolute value and
ts relative strength are significantly larger than the estimated
umerical error and increase with increasing driving force E.

As for a constant driving force all currents are time in-
ependent, we can easily define the densities of internal and
xchange currents

jI�x� = V���x�2, �36�

jE�x� = V�
0

x

d���V�������2 + E������ , �37�

sing Eqs. �18� and �17�. The corresponding profiles are plot-
ed in Fig. 2 for the case �=0.2, E=0.2. First it is evident
rom �37�, that the exchange current density is nonzero, simi-
ar to the internal current density �36�. This is due to the
nite spatial extent of the kink, which causes a correspond-

ng spatially �and thus temporally as well� inhomogeneous
nergy exchange between the field �, the external forcing E

E

ABLE I. The values of the internal, exchange and total currents for the d
endulum approach for G=Gcr. �JI and �J are the errors of the calculated
ulfilled, respectively �see the main body text for details�.

E JI JE

−0.05 1.570 796 328 −7.649 38�10−4

−0.1 3.141 592 658 −5.531 719�10−3

−0.15 4.712 388 99 −1.610 701�10−2

−0.2 6.283 185 32 −3.210 284�10−2

−0.25 7.853 982 6 −5.211 35�10−2

−0.3 9.424 778 3 −7.503 35�10−2

−0.35 10.995 576 −9.988 3�10−2 1
−0.4 12.566 373 −1.263 08�10−1 1
−0.5 15.707 99 −1.832 6�10−1 1
−0.6 18.849 57 −2.483 2�10−1 1
−0.7 21.991 16 −3.261 7�10−1 2
−0.8 25.133 1 −4.258�10−1 2
nd the damping term. A total vanishing of J could only

ownloaded 29 Jun 2006 to 193.175.8.27. Redistribution subject to AIP 
hold due to some spatial symmetry of jE�x� which in turn has
to be generated by some symmetry of the kink profile. How-
ever the kink profile in the presence of driving force and
damping is asymmetric. That is the main reason for the non-
vanishing exchange current contribution.

Finally, we note, that the reduction to traveling solution
�10� is valid only for the case of �E��1. Indeed, in the case
of �E��1 the rotating solution of �22� persist, but the stable
fixed point disappears. This means that one no longer has a
homogeneous ground state in the kink tails. Similarly, when
�E��1 the proposed scheme for the calculation of the total
and exchange currents, Eqs. �14� and �17�, breaks, as the
homogeneous ground state in the kink tails is no longer sup-
ported by the starting equations.

IV. TIME-PERIODIC DRIVING FORCE:
SOLITON RATCHETS

In this section we proceed to the case of a time-periodic
driving force E�t+T�=E�t� with zero mean value. For the

g constant �=0.2 and an infinite system size L→�, calculated within the
rnal current and the accuracy at which the current balance relation �16� is

J �JE /J� ��JI� ��J�

031 391 4.9�10−4 1.7�10−9 1.0�10−10

606 094 1.8�10−3 4.8�10−9 1.6�10−10

281 98 3.4�10−3 1.2�10−8 1.0�10−9

082 48 5.1�10−3 1.3�10−8 1.0�10−9

869 1 6.7�10−3 9.4�10−7 1.0�10−8

744 8 8.0�10−3 3.7�10−7 5.0�10−8

692 9.2�10−3 1.2�10−6 1.0�10−7

065 1.0�10−2 2.4�10−6 1.0�10−7

72 1.2�10−2 2.2�10−5 1.0�10−6

26 1.3�10−2 2.2�10−5 1.0�10−6

00 1.5�10−2 2.0�10−5 1.0�10−6

3 1.7�10−2 3.0�10−4 1.0�10−5

FIG. 2. The densities of the scaled internal current, 0.02 jI�x� �thin line�, and
of the exchange current, jE�x� �bold line�, for the E=0.2, �=0.2 and L
ampin
inte

1.570
3.313
4.696
6.251
7.801
9.349
0.895
2.440
5.524
8.601
1.665
4.707
=500. The region near the kink center at x
252 is zoomed.
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ase of an ac driving force, which possesses the time-shift
ymmetry

E�t� = − E�t + T/2� , �38�

he combined symmetry transformation

x → − x, � → − � + Q, t → t +
T

2
�39�

eaves Eq. �1� invariant while changing the sign of the kink
elocity V defined, e.g., as8,9

V�t� =
1

Q
�

0

L

x�txdx . �40�

f only one kink attractor persists, then on this attractor the
ink will not move, but oscillate at the best.8,16 This is the
ypical situation observed in various numerical simulations.
n the unlikely case that a kink attractor persists on which the
ink is moving with a nonzero average velocity, then by
ymmetry another attractor exists as well, on which the kink
oves with the opposite velocity. However, the previous

ime-shift symmetry �38� is generally removed by choosing
he biharmonic driving force

E�t� = E1 cos���t − t0�� + E2 cos�2��t − t0� + ��,

� =
2�

T
, 0 � � � 2� . �41�

s a consequence, the kink on the attractor solution will in
eneral have a nonzero velocity �provided no other hidden
ymmetries of the system persist�. This results in a unidirec-
ional �in average� motion of the kink under the influence of
ero-mean periodical driving force given in Eq. �41�.8,9,16

he corresponding kink ratchet effect was observed both in
umerical simulations8,10 and in experiments with an annular
osephson junction.12 In Fig. 3�a� the characteristic evolution
f the energy density �3� in the kink ratchet dynamics with
he biharmonic driving force �41� is shown. A gradual drift of
he energy density peak, associated with the kink center, is
learly observed.

The unidirectional motion of the kink should result in
he appearance of a nonzero averaged energy current. Simul-
aneously, as follows from Eq. �6�, for any zero-mean E�t�,
he time average value of the internal current JI should be
ero on the attractor.17,20,21 Therefore, the internal current
oes not contribute to the energy transport associated with
he kink motion. This is impossible from the point of view of
point particle, as then the internal current JI corresponds to

n effective particle momentum,19–22 and the kink will per-
orm a momentumless motion in the ratchet case. This cir-
umstance raised discussions of whether the observed recti-
cation of the kink motion is due to additional white noise or
iscretization effects �see, e.g., Ref. 17�. However, such a
omentumless motion does not contradict the energy bal-

nce principles, as there exists an alternative path for the
nergy flow in the system—the exchange current JE, as we
emonstrated in the previous section. In the case of bihar-
onic driving force all the energy is transported through the

xchange current, so that the time-averaged current balance

quation �16� reads

ownloaded 29 Jun 2006 to 193.175.8.27. Redistribution subject to AIP 
J = JE, JI = 0. �42�

Here we use calligraphic letters to indicate time-averaged
quantities, J��1/T�2 ·�0

Tdt�t
t+Tdt1J�t1� �details of the averag-

ing procedure will be discussed in the following, see also
Ref. 16�.

Our goal now is to estimate the energy current J gener-
ated by a moving kink. Taking the system size L much larger
than the characteristic oscillation distance Lp which the mov-
ing kink covers during a single period of the external force,
we may assume that far from the kink center the field distri-
bution in space is homogeneous. We separate the field vari-
able ��x , t� into a localized kink part, �k�x , t�, where
�k�x→0, t�=0; �k�x→L , t�=Q, and a background �vacuum�
part �v�t� which depends only on time21:

��x,t� = �k�x,t� + �v�t� . �43�

The vacuum part must satisfy Eq. �1� in the absence of the
kink, i.e., when Q=0. Therefore it does not contribute to any
energy transport.8

On the attractor the dynamics of the system �1� is given
by

�k�x,t + T� = �k�x − VT,t�, �v�t + T� = �v�t� , �44�

where V is the averaged kink velocity. Here we assume that
the ac driving force E�t� oscillates slowly, T�1, so that we
can continue periodic solution from the adiabatic limit28 �this

FIG. 3. Space-time evolution of the soliton ratchet with the E1=E1=0.2,
�=0.1, �=0, �=0.2, and L=500: �a� Contour plot of the energy density �3�
and �b� contour plot of the function 	�x , t� defined in Eq. �50�. x values are
zoomed near the kink center.
is confirmed by our numerical simulations, see Fig. 3�. Note

license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



t
e
a

c
W
w
t
t
k

w
p
e
�
e
a
d
e
b
e
i

t

w
t
a
T
g
v

e
e

�
n

023125-7 Energy flow of moving solitons Chaos 16, 023125 �2006�

D

hat all integral system characteristics, such as the total en-
rgy of the system, the kink velocity, the energy current, etc.,
re periodic functions of time with the period T.

As the total system energy W �11� is not conserved, we
annot introduce instantaneous energy currents. However, as

is a time-periodic function on the kink attractor solution,
e estimate currents by considering energy density distribu-

ion changes over the period of attractor, when the total sys-
em energy is restored. Assuming that x=0 corresponds to a
ink tail point, the amount of energy �w�x , t�,

�w�x,t� = �
0

x

���x�,t� − ��x�,t + T��dx�

= − �
0

x

dx��
t

t+T

�t�x�,t��dt� �45�

hich the part of the system �0,x� loses or gains during one
eriod T has to be transported through the point x by the
nergy current j�x , t�=�w�x , t� /T. Both quantities, j�x , t� and
w�x , t�, are obviously periodically dependent on the refer-
nce time t. However, it is misleading to associate them with
ny instantaneous characteristics of the system, as �w�x , t� is
efined on the timescale of the attractor period T. In order to
liminate the dependence on reference time t we average
oth quantities over the period T. Finally, the total averaged
nergy current in the system is obtained by the additional
ntegration over the space

J =
1

T
�

0

L

dx�
0

T

dtj�x,t�, j�x,t� =
1

T
�w�x,t� . �46�

Using Eqs. �1� and �44� and the multiplicative integra-
ion rule23 we finally obtain �see the Appendix for details�

J = V��
0

L

����x,t��dx − L���v�t���
T

, �47�

ith �¯�T=1/T�0
T
¯dt. As before, the difference between

he total system energy W and the background energy W0,
veraged in the rhs of Eq. �47�, denotes the kink energy Wk.
herefore, the general result for the total energy current,
iven in Eq. �14�, still holds in this case, if using averaged
alues.29

Using the results �45� and �46� we can now derive an
xpression for the averaged exchange current JE from the
nergy balance equation �4�

JE =
1

T
�

0

T

dt�
0

L

dxjE�x,t� , �48�

jE�x,t� =
1

T
�

t

t+T

dt��
0

x

dx�	�x�,t�� , �49�

	�x,t� = 	��� = ��t
2 − E�t��t. �50�

Note, that similar to previously defined j�x , t� in Eq.
47�, the quantity jE�x , t� cannot be treated as an instanta-

eous current density value.

ownloaded 29 Jun 2006 to 193.175.8.27. Redistribution subject to AIP 
Again, using the multiplicative integration rule,23 Eqs.
�48�–�50� can be reduced to the more compact form �see the
Appendix for details�

JE = −��
0

L

�	�x − VT,t� − 	v�t���x − Vt�dx�
T

, �51�

where 	v�t��	��v�t��.
The appearance of a nonzero exchange current in the

system is mediated by a spatially and temporally inhomoge-
neous energy exchange between the moving kink and the
external degrees of freedom. The information about the en-
ergy exchange process is contained in the function 	�x , t�
�50� introduced earlier. In Fig. 3�b� the space-time evolution
of 	 is plotted. The energy is exchanged and transported in a
cyclic way: first the kink absorbs energy in its rare tail, then
it releases energy in its front, then it absorbs energy in its
front and finally releases energy in the rare tail.

The numerical simulations of the kink dynamics �1� con-
firm that the balance between averaged values of the total
and exchange currents holds, see Fig. 4. The absolute values
of the exchange current increased, as compared to the case of
a constant driving force �cf. with Table I�. It may be due to
the excitation of kink shape modes, which are clearly ob-
served in Fig. 3—the kink is much more compressed when
moving opposite to its average propagation direction as com-
pared to the times when it moves in the same direction.

Note that the rectification effect vanishes at a certain
value of the phase mismatch � between the two components
of the driving force. This value depends on the damping
constant �. That is due to another symmetry property of the
system �1� in the Hamiltonian limit �→0. Indeed, in that
limit the system possesses the time-reversal symmetry t→−t.
That symmetry operation changes the sign of the kink veloc-
ity �40�, provided the driving force is taken to be symmetric
in time, E�−t�=E�t�. Therefore, in the Hamiltonian limit the
rectification effect should disappear at �=0,�. In the under-
damped regime �
1 this effect persists at some value of �
close to �=0,�.8

If a dc component is added to the biharmonic driving
force �41�, a careful tuning of the parameters can lead to an

FIG. 4. Numerically computed average values of the exchange current JE

�lines� and total current J �circles� as a function of the driving force param-
eter � for �=0.2 �solid line, filled circles� and �=0.05 �dashed line, open
circles�. Other parameters are the same as in Fig. 3.
exact cancellation of both dc and ac force components, so
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hat V=0. Then the averaged total current J �47� is exactly
ero. However, according to Eq. �19�, the internal current is
I=−QEstop/�, where Estop is the dc component of the driv-

ng force. This implies an exact balance between the two
onvanishing current components

J = 0, JE = − JI. �52�

or example, taking parameter values from Fig. 3, we found
stop
0.01705 and JE=−JI
0.536. Note also, that for any
�E�Estop the sign of the total momentum of the system JI

s opposite to the sign of the kink velocity V, and the internal
urrent is pumping energy in a direction opposite to the kink
otion.

. EFFECTS OF SPATIAL DISCRETIZATION

Up to now we discussed the energy flow due to kink
otion in a spatially extended continuous system. It is

nown, that the spatial discreteness of a system can drasti-
ally change the soliton dynamics.30 By breaking transla-
ional invariance of the system, discreteness induces a
eierls-Nabarro potential which strongly influences the

ranslational motion of the kink.30 It is also known, that ad-
itional internal modes of the kink may appear in discrete
ystems.31 Their existence can essentially modify energy ex-
hange mechanisms between the moving kink and external
riving forces and damping. As a consequence, the relative
ontributions of the internal and exchange currents to the
otal energy current can be strongly changed in the discrete
ase both for dc and ac driving forces.

Let us consider the discrete version of Eq. �1� also
nown in literature as the damped and driven Frenkel-
ontorova chain,32

¨ n − C2��n+1 + �n−1 − 2�n� = − ��̇n − sin �n + E�t� . �53�

t has been used in solid state theory for modeling disloca-
ion dynamics in crystals. This equation also describes fluxon
ynamics in one-dimensional arrays of coupled Josephson
unctions.33 It is important to note, that Eq. �53� is often used
or numerical simulations of the original continuous sin-
ordon system �1�, where C�1/h is the inverse mesh size
r the lattice spacing �i.e., C→� corresponds to the continu-
us limit�. In this respect it is also important to investigate
ossible effects of discretization which might appear during
he numerical calculation of energy currents of an underlying
patially continuous system.

In order to relate the previous results for the continuous
in-Gordon model �1� to the discrete system �53�, we use the
ransformation x→n /C, ��x , t�→��n /C , t�=�n�t�. Thus, all
patial derivatives should be replaced by finite differences
eighted by the factor 1 /h=C, whereas all spatial integrals

hould be replaced by discrete sums over lattice sites with
he weight factor 1 /C. With that we obtain the following
iscretized versions for the internal �5� and total �47� energy
urrents:

JI =
1

C
�

n

jn
I , �54�
ownloaded 29 Jun 2006 to 193.175.8.27. Redistribution subject to AIP 
J = Vd�
n

��n − N�v� , �55�

where Vd is the kink velocity calculated in units of lattice site
differences per time. The local internal current jn

I and energy
density �n are yet to be defined.

We note, that the Frenkel-Kontorova model �53� corre-
sponds to the Hamiltonian

H = �
n

�n = �
n
� �̇n

2

2
+

C2

4
���n+1 − �n�2 + ��n − �n−1�2�

+ 1 − cos��n�� . �56�

Following essentially the same steps as in Sec. II, we can
derive the discrete version of the energy balance equation �4�
for the discrete energy density �n �energy of an individual
lattice site�,

d�n

dt
= − C�jn

I − jn−1
I � − ��̇n

2 + E�t��̇n, �57�

jn
I =

C

2
��̇n+1 + �̇n���n+1 − �n� . �58�

The internal current density jn
I �also known as the local heat

flux34� is the discrete analogue of the internal current density
�5� of the continuum case.

In contrast to the continuum limit, it is not straightfor-
ward to define a discrete version of the exchange current on
the basis of the last two terms in the rhs of the balance
equation �57�. However, the exchange current can be com-
puted via the difference between the total and internal cur-
rents, JE=J−JI.

In Fig. 5 the dependencies of the computed energy cur-
rents on the discretization parameter C are plotted for the
cases of dc and ac external driving forces. Increasing C, in
both cases all the currents clearly converge to the corre-
sponding values obtained in the continuum limit: in the dc
case the dominant energy pathway is realized through the
internal current, whereas in the ac case the only remaining
path for energy transport is mediated by the exchange cur-
rent. In the latter case the internal current scales down to zero
as JI�C−2 for C2�10, which follows from the approxima-
tion of integrals by discrete sums.23 Spatial discretization can
drastically change the ratio between the two currents when
C2�10 both in the case of a constant external bias, and in
the case of a soliton ratchet.8 As for these values of C the
Peierls-Nabarro potential is still exponentially small,36 the
cause of the corrections is simply the change of the kink
shape which is of order 1 /C2.37

VI. CONCLUSIONS

We discussed the issue of soliton-assisted energy trans-
port in spatially extended systems with external driving and
damping. Considering the topological soliton �kink� motion
in the well-known sin-Gordon model, we showed, that the
conventional description of energy transport based on the

total field momentum does not provide one with the correct
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alue of energy flux in the system. In particular, in the case
f a directed soliton motion under the influence of time-
eriodic external forces with zero mean, the averaged value
f the total field momentum is known to be strictly
ero,16,17,20,21 whereas the energy transport associated with
he soliton motion is obviously nonzero. We identified a new
nergy pathway—the exchange current—which is entirely
ediated by the spatial and temporal inhomogeneity of the

ystem state. Even for the case of a dc external force, the
xchange current is found to be small but nonzero. Combin-
ng both dc and ac driving we obtain situations when the
otal field momentum is nonzero but the kink does not move
n average or moves even in the direction opposite to the
eld momentum.

The approach to the energy transport in spatially ex-
ended systems which is based solely on the consideration of
he total field momentum reduces the kink motion to that of

point particle. However, the soliton motion in presence of
c driving forces is always accompanied by the excitation of
nternal modes,35 which makes the dynamical properties of
he moving soliton essentially different from those of a point
article. Although we stress here that, even in cases where no
hape modes are excited, the total field momentum is not
ufficient to obtain the total energy current �see Sec. III�. It is
he spatial extent of the soliton which makes the difference
or a damped and driven moving soliton. The appearance of
nonzero exchange current in the case of the constant driv-

ng force is connected to the asymmetry of a moving kink
rofile. We believe, that, in the limit of small dissipation and
amping, the exchange current could be estimated perturba-
ively, provided the ansatz for the moving kink solution is
odified in order to account for an asymmetric correction.
he corresponding perturbative analysis is a matter of an-
ther important investigation, which lies, however, beyond
he scope of the present work.

The relative contributions of the two current compo-
ents, the internal and the exchange one, can change when

onsidering spatially discrete systems �see Sec. V�. In par-

ownloaded 29 Jun 2006 to 193.175.8.27. Redistribution subject to AIP 
ticular, for the soliton ratchet case, discreteness induced cor-
rections to the internal current invalidate Eq. �6�, so that JI

also contributes to the total energy flow. This explains earlier
obtained numerical results from Ref. 8.

The physical origin of the exchange current is tightly
connected with the physics of the external drive and the way
it couples to the system under consideration. It corresponds
to an energy flow between the driver and the system, which
is inhomogeneous in time and space. In other words, the
energy flows at some time and in some position from the
system into the driver, and is returned into the system at
another time and another position. The sum of the internal
and the exchange currents gives then the total current.

Finally, we would like to note that our results are also
instructive for the general case of spatially extended systems
coupled to external driving forces or other degrees of free-
dom �see, e.g., Refs. 18 and 38�. We also mention that the
damped and driven sin-Gordon system in Eq. �1�, as well as
its discretized version in Eq. �53�, are relevant physical mod-
els of annular12,13 and coupled33 Josephson junction oscilla-
tors, respectively. Therefore, an intriguing question rises
about the possibility of detection of the new exchange cur-
rent mechanism on the basis of available experimental data
�current-voltage characteristics, spectra of emitted radiation,
etc.�. Indeed, as directed soliton motion is observed in such
experiments, the internal and exchange currents have a clear
physical meaning, though probably not easy to measure.

APPENDIX: DERIVATION OF TOTAL AND EXCHANGE
CURRENTS FOR TIME-PERIODIC DRIVING

Using Eq. �45�, let us rewrite the expression �47� for the
energy current J in the following form:

J =
1

T2�
0

T

dt�
0

L

dx�
0

x

dx����x�,t� − ��x�,t + T�� . �A1�

23

FIG. 5. The internal �filled circles�,
the exchange �triangles� and the total
�squares� energy currents as functions
of the discretization parameter C2. �a�
and �b�: the case of the dc external
force E=0.2; �c� and �d�: the case of
the biharmonic driving force �41� with
E1=E2=0.2 and �=0. �=0.2 for all
cases. The dash-dotted line in �b� indi-
cates the exchange current value, JE


−0.032 012 8, calculated for the
continuum limit within the pendulum
approach �see Table I�. The dashed
line in �c� corresponds to the power-
law asymptotic J�C−2.
According to the multiplicative integration rule
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�
0

L

dx�
0

x

dx����x�,t� − ��x�,t + T��

= �
0

L

�L − x����x,t� − ��x,t + T��dx . �A2�

As the total energy of the system W is a periodic func-
ion with period T, the integral �0

LL���x , t�−��x , t+T��dx
L�W�t�−W�t+T���0. Thus, expression �A1� is reduced to

J =
1

T2�
0

T

dt�
0

L

x���x,t� − ��x,t + T��dx . �A3�

et us introduce the energy-weighted center of kink

X̂�t� =
�0

Lx���x,t� − �v�t��dx

�0
L���x,t� − �v�t��dx

, �A4�

here �v�t�����v�t��. Then we obtain

=
1

T2�
0

T

dt�
0

L

���x,t� − �v�t�� · �X̂�t + T� − X̂�t��dx . �A5�

s �X̂�t+T�− X̂�t��=VT, finally we arrive to the following
xpression for the total energy current:

J =
V
T
�

0

T

dt�
0

L

���x,t� − �v�t��dx . �A6�

In a similar way one can derive the compact expression
51� for the exchange current. We rewrite the expression �48�
n the following form:

JE =
1

T2�
0

L

dx�
0

x

dx���
T

2T

dt�
T

t

	�x�,t��dt�

− �
0

T

dt�
0

t

	�x�,t��dt� + T�
0

T

	�x�,t�dt� . �A7�

Applying twice the multiplicative integration rule, we
btain

JE =
1

T2�
0

L

dx�L − x��
0

T

dt�T	�x,t + T�

− t�	�x,t + T� − 	�x,t��� . �A8�

By introducing the center of kink X̃�t� weighted by func-

ion 	�x , t� in analogy to �A4�, and using �X̃�t+T�− X̃�t��
VT, expression �A8� becomes

JE = −
1

T
�

0

T

dt�
0

L

	�x − VT,t� · �x − Vt�dx

−
V
T
�

0

T

tdt�
0

L

	��v�t��dx . �A9�

Taking into account that �	��v�t���T�0, we finally ob-

ain expression �51� for the exchange current.
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