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We investigate the dynamics of electrically ac-driven nanoelectromechanical shuttle arrays. The
electromechanical coupling enforces long-range interactions. We find multistability regimes upon
changing the voltage and frequency. We show that the instability driven by parametric amplification
of sinusoidal mechanical waves leads to the creation of spatially localized mechanical oscillations,
discrete breathers, and subsequently to an abrupt change in the electrical transport properties. In
particular, we find current rectification, which is induced by the excitation of discrete breathers. This
is of potential interest and use for nanomechanical sensor application. © 2008 American Institute of
Physics. �DOI: 10.1063/1.3043434�

Nanomechanical resonators have become of interest to a
diverse physics community due to their utility for highly
sensitive mass sensing as well as signal processing.1 A nano-
mechanical charge shuttle,2 which is basically a charge car-
rying mechanical resonator, has interesting dynamics due to
its coupling to the electrical degrees of freedom.3 Further, the
multistability of interacting pairs of shuttles4 �double shuttle�
is of potential interest for applications of sensitive measure-
ment and signal processing.

It has been shown that the left-right symmetry of an ac-
driven double shuttle can be spontaneously broken at certain
frequencies, which results in the current rectification.4 This is
due to an instability driven by parametric amplification. The
amplification is caused by a time-periodic interaction be-
tween the shuttles, which is generated by oscillating charges
and the driving voltage. Here, we show that the parametric
instability in an array of nanomechanical shuttles leads to the
formation of intrinsic localized modes or discrete breathers
�DBs�.5–9

A DB8,9 is a time-periodic and spatially localized mode
in nonlinear lattice systems. DBs exist in diverse physical
systems such as photonic crystals,10 Josephson junction
networks,11 Bose–Einstein condensates in periodic
potentials,12 and micromechanical systems,13 among
others.14 In the present study, DBs are spontaneously gener-
ated due to parametric instability and abruptly change the
electric transport properties, which might be useful for the
design of small force detectors.

The N shuttles are arranged in a one-dimensional struc-
ture, as shown in Fig. 1. The shuttle array might be realized
by miniaturization of semiconductor structures3,15 or can be
produced using molecules �nanopeapod�.16 The displace-
ments from the equilibrium positions x= �x1 , . . . ,xN� are gov-
erned by the equations of motion

ẍj + �ẋj + �0
2xj = −

V�t�
mL

Qj , �1�

where �, �0, m, and Qj denote the friction constant, the
frequency, the mass, and the net charge of the jth shuttle. The

drain lead is on the left, and the source lead is at distance L
to the right, where the voltage V�t�=V0 sin��t� is applied.
We assume that the capacitance c of an individual shuttle
does not depend on its displacement xi. Charges that pass
between shuttles experience a tunneling resistance

Rj�xj − xj−1� = Rj�0�e�xj−xj−1�/�, �2�

with j=1, . . . ,N and x0=xN+1=0. Here, � is a tunneling
length beyond which charge transport is suppressed.

Recent techniques for fabrication of shuttle structures3,15

yield tunneling resistances R of the order of G�, junction
capacitances c of the order of 10 aF, and the mechanical
oscillation frequency �0 of the order of 0.1 GHz. Thus the
product Rc�0�1 and the shuttle operates at the border of the
adiabatic regime where the electronic relaxation is much
faster than the mechanical motion. From now on, for the
simplicity of the calculation, we will assume the adiabatic
regime Rc�0�1. The full calculations, which do not rely on
the adiabatic assumption, show that the adiabatic approxima-
tion is qualitatively valid concerning the parametric instabil-
ity relevant to this work.4 For the geometry in Fig. 1, it
follows qj /Rjc=qj+1 /Rj+1c and V�t�=� j=1

N+1 qj

c , where qj are
the charges accumulated in each capacitor. Then, the net
charge of each island Qj =qj −qj+1 satisfies

Qj�x,t� = c�Rj�xj − xj−1� − Rj+1�xj+1 − xj��I�x,t� , �3�

with the current

I�x,t� =
V�t�

�
j=1

N+1

Rj�xj − xj−1�

.

a�Author to whom correspondence should be addressed. Electronic mail:
ahnkh@cnu.ac.kr. FIG. 1. �Color online� Sketch of N coupled nanoelectromechanical shuttles.
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The dc rectified current is obtained by a time averaging
over one period of the ac voltage

Idc = �
2��

0

2�/�

I�t�dt .

We integrate the equations of motion starting with all
shuttles close to their rest positions. Depending on the con-
trol parameters, this state can be stable or unstable, leading
to the formation of new structures. Figure 2 exemplarily de-
picts some of the outcomes in the multistable regime, which
lead to time-periodic and spatially localized oscillations—
DBs. In Figs. 2�a�–2�c�, we plot the local mechanical energy
Ei=

1
2mẋi

2+ 1
2m�0

2xi
2 versus lattice site i in units of 1

2m�0
2l2,

where l=L / �N+1� is the equilibrium distance between two
neighboring shuttles. We observe spatially highly localized
oscillations. Figures 2�d� and 2�e� show that the dynamics is
periodic in time with the same period as and therefore mode
locked to the driving voltage.

At some distance from the DB, the shuttles perform
small amplitude oscillations. These oscillations, which are
unstable in the absence of the DB, are stabilized in its pres-
ence due to long-range interactions between the mechanical
degrees of freedom, mediated by the electrical current. This
follows from Eq. �3� since the net charge Qj of the jth shuttle
is a function of all shuttle displacements.

Single-site breathers do not carry a significant dc current
as compared to two-site breathers, see, e.g., Figs. 2�a� and
2�b�. This is a natural extension of the finding in Ref. 4 that
a symmetric configuration of a pair of shuttles induces a dc
current whereas a single shuttle does not.

Let us analyze the parametric instability of the small
amplitude oscillations of the array when the displacements
are smaller than the tunneling length �. In that case, the net
charge Qj =qj −qj+1 of the jth shuttle is approximated as

Qj = cV�t�
Rj�x� − Rj+1�x�

�
i=1

N+1

Ri�x�

, �4�

�
cV�t�

��N + 1�
�2xj − xj−1 − xj+1� . �5�

Then the equations of motion are equivalent to those of
one-dimensional coupled harmonic oscillators with time-
periodic spring constants

ẍj + �ẋj + �0
2xj +

cV0
2 sin2 �t

mL��N + 1�
�2xj − xj−1 − xj+1� = 0. �6�

Let us assume periodic boundary condition xj+N=xj
for the convenience of calculations. The equations of
motion can be decoupled by introducing normal
coordinates yn , �n=0, �1, �2, . . . , � �N /2−1� ,N /2�: xj

= �1 /	N��nyn exp�i�2n� /N�j�.
The normal modes yn satisfy damped Mathieu

equations4,17

ÿn + �ẏn + �n
2
1 −

�n
2

1 + �n
2cos�2�t��yn = 0, �7�

where �n=		2 /N+1 sin�n� /N�, 	=V0
	c / �	mL��0�, and

�n is the dressed harmonic frequency for the nth normal
mode

�n = �0
	1 + �n

2 =	�0
2 +

2cV0
2

�mL�N + 1�
sin2�n�

N

 . �8�

The principal instability arises in the interval �−����+,17

where

�� = �n�1 �
1
2
	Mn

2 − �2/�n
2 +

11

16
Mn

2
 , �9�

with Mn=�n
2 / �2�1+�n

2��.
The phase diagram of 	 and � /�0 in Fig. 3 reveals the

existence of different multistable regions. The shaded re-
gions in Fig. 3 correspond to numerical runs of the original
equations, which yield instability of the small amplitude
state. We plot the border of the multistable regime using Eq.
�9� for different n which show good agreement with full
numerical data. The collection of the unstable regimes of the
Mathieu equation, also coined Arnol’d tongues,18 corre-
sponds to the multistable regimes in Fig. 3. Therefore we
confirm that the formation of the DB originates from the
instability of driven extended wave in the system. Especially,
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FIG. 2. Mechanical energy of the local oscillators Ei for different initial
conditions: �a� single-site breather with total mechanical energy E=0.248
and time-averaged current Idc / I0=−2.94
10−8, where I0�V0 / ��N+1�R�,
�b� two-site breather with E=0.203 and Idc / I0=5.67
10−3, and �c� a mul-
tisite oscillation with E=0.126 and Idc / I0=7.35
10−4. �d� and �e� show the
time evolution of the involved shuttles shown in �a� and �b�, respectively.
We choose � /�0=1.029, L /�=500, 	=V0

	c / �	mL��0�=0.87, and � /�0

=0.025. The unit of energy E is 1
2m�0

2l2.
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FIG. 3. �Color online� Phase diagram in the plane of the �scaled� amplitude
	 and the frequency of the applied ac voltage: N=20, � /�0=0.025. Shaded
regions are multistable regions in which DBs emerge. The curves denote the
boundary of the unstable regimes given by Eq. �9�.
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one can see that the instability for the smallest driving
voltage amplitude V0 is due to the largest wave number
n=N /2.

The Arnol’d tongues can be characterized by topological
numbers p=1,2 , . . . �Fig. 3�. It is interesting to note that the
low frequency border of the tongues is a straight vertical line
where the multistability is independent of the driving voltage
and sensitive only to the driving voltage amplitude. The fre-
quency �c, defining the left border of the principal multi-
stable regime �p=1�, is �c��0+� if ���0. This condition
can be obtained by imposing the condition �c=�+=�− in
Eq. �9�.

The electromechanical shuttle array is characterized by
long-range interactions. In case a breather is created, a large
amplitude oscillation arises at the core and the total resis-
tance � jRj strongly increases. Then the net charge at the
shuttles away from the breather is not given by Eq. �5� but by
the much smaller expression

Qj �
cV�t�

�

�2xj − xj−1 − xj+1�

2 cosh� xj0
�t�

� �
, �10�

where xj0
is the displacement of the jth shuttle, which is at

the core of the breather. As seen in Fig. 2, the oscillation
amplitude of the core shuttle of the breather is significantly
larger than �, thus the shuttle interactions are strongly sup-
pressed.

In experiments, to initiate the mechanical motion of the
single breather, one can impose an oscillating voltage on the
gate, which is close to one of the shuttles. It would be diffi-
cult to make identical shuttles in the array but it is not a
serious problem because our results are robust against the
mismatch of the resonance frequency within a few percent
ranges �not shown�. While we showed the numerical results
for N=20, a small number of shuttles like N=6 are enough to
observe the DB. We believe that the predicted Arnold’ tongue
structure can be observed as observed in coupled mechanical
systems.19

In summary, we investigated the dynamics of an array of
tunnel-coupled charge shuttles. The nonlinear coupling of the
mechanical and the electrical degrees of freedom gives rise
to a parametric instability and a corresponding multistable

regime. In this regime, we demonstrate the existence of DBs,
which in turn strongly affect the charge transport through the
array of shuttles. We found that small changes in the system
parameters give rise to abrupt changes in transport properties
if the system is tuned to be close to the multistable regime.
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