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a b s t r a c t

We investigate the spectrum and eigenstates of a Bose–Hubbard chain containing two bosons with fixed
boundary conditions. In the noninteracting case the eigenstates of the system define a two-dimensional
normal-mode space. For the interacting case weight functions of the eigenstates are computed by
perturbation theory and numerical diagonalization. We identify paths in the two-dimensional normal-
mode space which are rims for the weight functions. The decay along and off the rims is algebraic.
Intersection of two paths (rims) leads to a local enhancement of the weight functions. We analyze
nonperturbative effects due to the degeneracies and the formation of two-boson bound states.
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1. Introduction

Localization phenomena due to nonlinearity and spatial dis-
creteness in different physical systems have received considerable
interest during the past few decades. Despite the given trans-
lational invariance of a lattice, nonlinearity may trap initially
localized excitations. The generic existence and properties of
discrete breathers – time-periodic and spatially localized solu-
tions of the underlying classical equations of motion – allow us
to describe and understand these localization phenomena [1–
4]. Discrete breathers were observed in many different systems
like bond excitations in molecules, lattice vibrations and spin
excitations in solids, electronic currents in coupled Josephson
junctions, light propagation in interacting optical waveguides,
cantilever vibrations inmicromechanical arrays, cold atomdynam-
ics in Bose–Einstein condensates loaded on optical lattices, among
others (for references see [1,2]). In many cases quantum effects
are important. Quantum breathers are nearly degenerate many-
quanta bound states which, when superposed, form a spatially lo-
calized excitation with a very long time to tunnel from one lattice
site to another (for references see [1,2,4]).
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The application of the above ideas to normal-mode space of
a classical nonlinear lattice allowed us to explain many facets of
the Fermi–Pasta–Ulam (FPU) paradox [5], which consists of the
nonequipartition of energy among the linear normal modes in a
nonlinear chain. There, the energy stays trapped in the initially
excited normal modewith only a few other normal modes excited,
leading to localization of energy in normal-mode space. Recent
studies showed that, similar to discrete breathers, exact time-
periodic orbits existwhich are localized innormal-mode space. The
properties of these q-breathers [6–13] allow us to quantitatively
address the observations of the FPU paradox. A hallmark of q-
breathers is the exponential localization of energy in normal-mode
space, with exponents depending on control parameters of the
system.
On the quantum side, recently we studied the fate of

analogous states (quantum q-breathers) in a one-dimensional
lattice with two interacting bosons and periodic boundary
conditions [14]. By using perturbation theory, supported by
numerical diagonalization, we computed weight functions of the
eigenstates of the system in the many-body normal-mode space.
We did find localization of the weight function in normal-mode
space. However, at variance from the classical case, the decay is
algebraic instead of exponential. The periodic boundary conditions
allow us to introduce an irreducible Bloch representation. Since
states with different wave numbers belong to different Hilbert
subspaces, they are not coupled by a Hubbard interaction term.
Therefore, localization along the Bloch wave number is compact.
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This is also happening for the corresponding classical nonlinear
Schrödinger equation with periodic boundary conditions [12],
when searching for plane-wave-like states.
The classical case however inevitably leads to noncompact dis-

tributions in normal-mode space, once fixed boundary conditions
are considered. Indeed, also in the quantum case, these condi-
tions violate translational invariance, and lead to nonzero ma-
trix elements between states with different Bloch wave numbers,
mediated by the Hubbard interaction. That is the reason for study-
ing the properties of quantum q-breathers for finite chains with
fixed boundary conditions. From a technical point of view, the irre-
ducible normal-mode space dimension is then increased from one
to two.
In Section 2 we describe the model and introduce the basis to

write down the Hamiltonian matrix. We describe the quantum
states of the lattice containing one and two noninteracting bosons.
From the latter case we use the two-particle states as the basis
to write down the Hamiltonian matrix in normal-mode space for
the interacting case, after which the energy spectrum is computed.
In Section 3 we study localization in normal-mode space. We in-
troduce weight functions to describe localization in that space,
and obtain analytical predictions using perturbation theory. We
present numerical results from a diagonalization of the Hamilto-
nianmatrix, and compare themwith analytical estimates. Thenwe
study nonperturbative effects when increasing the interaction pa-
rameter. Finally we present our conclusions in Section 4.

2. Model and spectrum

We consider a one-dimensional periodic lattice with f sites
described by the Bose–Hubbard (BH) model. This is a quantum
version of the discrete nonlinear Schrödinger equation, which has
been used to describe a great variety of systems [15]. The BH
Hamiltonian is Ĥ = Ĥ0 + γ Ĥ1 [16], with

Ĥ0 = −
f∑
j=1

â+j (âj−1 + âj+1), (1)

and

Ĥ1 = −
f∑
j=1

â+j â
+

j âjâj. (2)

Ĥ0 describes the nearest-neighbor hopping of particles (bosons)
along the lattice, and Ĥ1 the local interaction between them
whose strength is controlled by the parameter γ . a+j and aj are
the bosonic creation and annihilation operators satisfying the
commutation relations [âj, â+j′ ] = δj,j′ , [âj, âj′ ] = [â+j , â

+

j′ ] =

0, and the system is subject to fixed boundary conditions. The
Hamiltonian (1) commutes with the number operator N̂ =∑f
j=1 â

+

j âj whose eigenvalue is n, the total number of bosons in
the lattice. Here n = 2. It is of interest due to its direct relevance to
studies and observation of two-vibron bound states in molecules
and solids [17–31]. More recently, two-boson bound states have
been observed in Bose–Einstein condensates loaded on an optical
lattice [32].
To describe quantum states,we use a number state basis |Φn〉 =

|n1 n2 · · · nf 〉 [16], where ni = 0, 1, 2 represents the number of
bosons at the i-th site of the lattice. |Φn〉 is an eigenstate of the
number operator N̂ with eigenvalue n =

∑f
j=1 nj.

2.1. One-particle states

For the case of having only one boson in the lattice (n = 1)
a number state has the form |0 · · · 0 1l 0 0 · · · 0〉 ≡ |l〉, where l
denotes the lattice site where the boson is. This number state can
be also written as
|l〉 = â+l |0〉, (3)
where the operator â+l creates a boson at the l-th site of the lattice,
and |0〉 is the vacuum state.
We write down the Hamiltonian matrix in the basis of the

above-defined number states. For the single-boson case, the
interaction term Ĥ1 has no contribution to the matrix elements.
The eigenstates of Ĥ0, for fixed boundary conditions, are standing
waves:

|Ψk〉 =

f∑
l=1

√
2
f + 1

sin (kl) |l〉 ≡ |k〉, (4)

where k = qπ/(f + 1), and q = 1, . . . , f . The corresponding
eigenenergies are
εk = −2 cos(k). (5)
We define bosonic operators âk, â+k satisfying the commutation

relations [âk, â+k′ ] = δk,k′ , [âk, âk′ ] = [â+k , â
+

k′ ] = 0, such that the
state (4) may be written similar to (3):

|k〉 = â+k |0〉, â+k =
f∑
l=1

Sl,kâ+l , (6)

where the operator â+k creates a boson in the single-particle
state with quantum number (wave number or momentum) k. The
bosonic operators âk, â+k are related to the operators âl, â

+

l in direct
space through the transformation matrix

Sl,k =

√
2
f + 1

sin(kl). (7)

2.2. Two-particle states

For the two-boson case (n = 2), we define the number state
basis in a similar way as in the single-boson case:

|l1, l2〉 =

√
2− δl1,l2
2

â+l1 â
+

l2
|0〉, (8)

where l2 ≥ l1 because of the indistinguishability of particles. â+l1
and â+l2 respectively create one boson at the lattice sites l1 and l2.
The number of basis states is d = f (f + 1)/2. The interaction term
Ĥ1 in (1) contributes to the matrix elements of the Hamiltonian in
the above-defined basis.
In the noninteracting case (γ = 0) the eigenstates of Ĥ in terms

of bosonic operators in the normal-mode space read [see Eq. (6)]:

|k1, k2〉 =

√
2− δq1,q2
2

â+k1 â
+

k2
|0〉, q2 ≥ q1. (9)

â+k1 and â
+

k2
respectively create one boson in the single-particle

states k1 and k2 of the form (4). Using Eqs. (6) and (7), the relation
between the basis states in normal-mode space (9) and the basis
states in direct space (8) reads:

|k1, k2〉 =

√
2− δq1,q2
√
2

×

[
f∑
l1=1

f∑
l2>l1

(Sl1,k1Sl2,k2 + Sl2,k1Sl1,k2)|l1, l2〉

+
√
2

f∑
l=1

Sl,k1Sl,k2 |l, l〉

]
. (10)

In the interacting case (γ > 0), we represent the eigenstates
of the Hamiltonian (1) in the normal-mode basis (10) of the
noninteracting case. This leads to a d× dmatrix [d = f (f + 1)/2]
whose elements H(i, j) (i, j = 1, . . . , d) are

H(i, j) = 〈k′1, k
′

2|Ĥ|k1, k2〉 ≡ 〈q
′

1, q
′

2|Ĥ|q1, q2〉. (11)
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Fig. 1. Energy spectrumof the two-boson BH chainwith fixed boundary conditions
for different values of the interaction strength γ . The eigenvalues are plotted as a
function of the eigenvalue label (see text). Here f = 40.

The integer j that labels the column of the matrix element (11) is
related to the mode numbers q1 and q2 by

jq1,q2 = (q1 − 1)(f + 1)−
(q1 − 1)(q1 + 2)

2
+ q2. (12)

The same relation holds for the integer iq′1,q′2 labeling the row of the
matrix element (11).
The matrix elements (11) are

H(i, j) = H0(i, j)+ γH1(i, j), (13)
where
H0(i, j) = (εk1 + εk2)δi,j, (14)
and

H1(i, j) = fq1,q2,q′1,q′2

f∑
l=1

Sl,k1Sl,k2Sl,k′1Sl,k′2 . (15)

εk is the single-particle energy given by Eq. (5), and the coefficients
fq1,q2,q′1,q′2 are

fq1,q2,q′1,q′2 = −
8
√
(2− δq1,q2)(2− δq′1,q′2)

(f + 1)2
. (16)

In Fig. 1 we show the energy spectrum of the Hamiltonian
matrix (13) obtained by numerical diagonalization for different
values of the interaction parameter γ . In all calculations by
numerical diagonalizationwe used f = 40, which leads to amatrix
dimension d = 820. The eigenstates are ordered with respect to
their eigenvalues Eν (ν = 1, . . . , d). At γ = 0, the spectrum
consists of the two-boson continuum, whose eigenstates |k1, k2〉
are given by (10). The eigenenergies are the sum of the two single-
particle energies:

E0k1,k2 = −2[cos(k1)+ cos(k2)]. (17)
When γ > 0, eigenvalues in the lower part of the spectrum are
pushed down, and beyond γ ≈ 2 a band of f states splits off
from the two-boson continuum. These are the two-boson bound
states, with a high probability of finding the two bosons on the
same lattice site, while the probability of them being separated by
a distance r decreases exponentially with increasing r [16,15,14].
The critical value γb = 2 for which the band of two-boson

bound states splits off from the continuum may be explained as
follows. In the limit f → ∞ the unnormalized bound state with
highest energy E = −2γ is given by [14,33]:

|Ψ 〉 =

f∑
l=1

(−1)l|l, l〉. (18)

For γb = 2 the energy of that state leaves the two-boson
continuum of energies E ∈ [−4, 4].
Fig. 2. Sketch of the different lines in the two-dimensional normal-mode space
along which the weight function (21) is nonzero. The seed point P = (k̃1, k̃2)
corresponding to the unperturbed eigenstate |k̃1, k̃2〉 is represented by the black
spot. Its conjugate point P̄ = (π − k̃2, π − k̃1) is represented by the grey spot. The
axes defining the coordinates ∆+ and ∆− are indicated by the arrows emerging
from P .

3. Localization in normal-mode space

We recall that the normal-mode space is spanned by both
momenta k1 and k2. The conditions 0 < k1,2 < π and k1 ≤
k2 reduce the normal-mode space to a triangle that we call the
irreducible triangle, as sketched in Fig. 2. For finite f and γ the
eigenstates |Ψ 〉 will spread in the basis of the γ = 0 eigenstates
{|k1, k2〉}. We measure such a spreading by computing the weight
function in normal-mode space C(k1, k2) = |〈k1, k2|Ψ 〉|2.

3.1. Analysis by perturbation theory

We use perturbation theory to calculate the weight functions,
where γ is the perturbation. We fix the momentum k1 and k2,
and choose an eigenstate |k̃1, k̃2〉 of the unperturbed case γ = 0.
The wave numbers k̃1 and k̃2 define a seed point P = (k̃1, k̃2) in
the irreducible triangle (see Fig. 2). Upon increase of γ , the cho-
sen eigenstate transforms into a new eigenstate |Ψk̃1 k̃2〉, which will
have overlap with several eigenstates of the γ = 0 case. We ex-
pand the eigenfunction of the perturbed system to first order in γ :

|Ψk̃1 k̃2〉 = |k̃1, k̃2〉 + γ |Ψ
(1)
k̃1,k̃2
〉, (19)

where

|Ψ
(1)
k̃1,k̃2
〉 =

∑
k′1 6=k̃1

∑
k′2 6=k̃2
k′2≥k

′
1

〈k′1, k
′

2|Ĥ1|k̃1, k̃2〉
E0
k̃1 k̃2
− E0k′1k′2

|k′1, k
′

2〉. (20)

Thus for k1 6= k̃1 and k2 6= k̃2 the weight function
C(k1, k2; k̃1, k̃2) = |〈k1, k2|Ψk̃1 k̃2〉|

2 is

C(k1, k2; k̃1, k̃2) = γ 2
|〈k1, k2|Ĥ1|k̃1, k̃2〉|2

|E0
k̃1 k̃2
− E0k1k2 |

2
, (21)

where E0k1k2 and E
0
k̃1 k̃2
are eigenenergies of the unperturbed system

given by (17). For convenience we use new variables in normal-
mode space

k± = k2 ± k1, (22)

which are the total (Bloch) and relative wave numbers respec-
tively. They have values 0 < k+ < 2π and 0 < k− < π . Since we
are interested in the behavior of the weight function around the
core at (k̃1, k̃2), we define the coordinates relative to that point:

∆± = k± − k̃±. (23)
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Fig. 3. 3-D plot of the logarithm of theweight function in the normal-mode space for the eigenstate ν = 145, obtained by (a) numerical diagonalization, and (b) perturbation
theory using the formula (24). Here f = 40 and γ = 0.1.
Thus, (21) becomes

C(k1, k2; k̃1, k̃2) = γ 2
f 2q1,q2,q̃1,q̃2

[16(E0
k̃1 k̃2
− E0k1k2)]

2
R2
k+,k−;k̃+,k̃−

, (24)

where fq1,q2,q̃1,q̃2 is given by Eq. (16).
The coefficient Rk+,k−;k̃+,k̃− consists of a sum of eight terms of

the form

g(ζ ) =
sin
[
(2f + 1) ζ2

]
sin
(
ζ

2

) , (25)

with pairwise opposite signs (see Appendix A). For each term, the
argument ζ is a certain combination of the wave numbers k+, k−
and k̃+, k̃− (see Appendix A for details). Unless the argument of
any of the eight terms g(ζ ) vanishes, all of them cancel each other
and Rk+,k−;k̃+,k̃− = 0. Thus the condition ζ = 0 for each term
in Rk+,k−;k̃+,k̃− , together with the relations (22) and (23), defines
lines k2 = k2(k1) in the normal-mode space where the weight
function C(k1, k2; k̃1, k̃2) is nonzero. These lines are schematically
shown in Fig. 2 (the analytical derivation of these lines is given in
Appendix A). Note that these lines are specularly reflected at the
boundaries k1 = 0 and k2 = π of the irreducible triangle.
To study the localization in normal-mode space away from the

core using the formula (24), we consider the two cases ∆− = 0,
∆+ > 0 and vice versa, i.e. the mutually perpendicular directions
∆+ and∆− (Fig. 2). For each case we obtain, with |∆±| � π ,

C±(k1, k2; k̃1, k̃2) =
(

γ

f + 1

)2
(2− δq1,q2)(2− δq̃1,q̃2)

×∆−2
±

{[
cos(k̃1)+ cos(k̃2)

] ∆±
2

+ sin(k̃1)± sin(k̃2)
}−2

. (26)

The effective interaction strength is γ /(f + 1). In the limit γ →
0 or f → ∞ we have compactification of the eigenstates. The
formula (26) shows localization in normal-mode space. Depending
on the seed (k̃1, k̃2)we find algebraic decay within the irreducible
triangle, C ∼ ∆−α , with α = 2, 4. If sin k̃1 ± sin k̃2 6= 0, α = 2. If
sin k̃1 ± sin k̃2 = 0, α = 4. E.g. for k̃1 = k̃2

C− ∼
(

γ

f + 1

)2 1

cos2(k̃1)∆4−
. (27)

Note that along the ∆+ direction in the irreducible triangle,
Rk+,k−;k̃+,k̃− = 2(f + 1) at all points but P̄ = (k̄1 = π − k̃2,
Fig. 4. Weight function for different values of the interaction strength γ of the
eigenstate ν = 145 along the ∆+ direction. The dashed lines are results from
formula (24). Here f = 40.

k̄2 = π−k̃1). This is the conjugate point of the seed P (Fig. 2),where
two lines intersect. At this point Rk+,k−;k̃+,k̃− = 4(f + 1). Thus we
expect a local maximum of the weight function at the conjugate
point. The states |k̃1, k̃2〉 and |k̄1, k̄2〉have energies E0k̄1,k̄2 = −E

0
k̃1,k̃2
.

3.2. Numerical results

In Fig. 3 we show the weight function in the two-dimensional
normal-mode space obtainedbynumerical diagonalization and the
formula (24) respectively, with characteristic localization profiles.
We find agreement of the numerical data with the results from
perturbation theory. The largest value is at the point P =

( 940π,
17
40π) ∼ (0.2π, 0.4π), and it decays mainly along the lines

described in the previous section (Fig. 2). Note also the presence
of the local maximum at the conjugate point P̄ ∼ (0.6π, 0.8π) in
both cases.
In Figs. 4 and 5 we plot the weight function of the eigenstate

shown in Fig. 3 along the directions ∆+ and ∆− respectively for
different values of the interaction parameter γ . The state becomes
less localized with increasing γ , as expected from the above
analysis. The decay of the weight function is well described by
perturbation theory (dashed lines). The peak of theweight function
at the conjugate point is clearly seen in Fig. 4.
In Fig. 6we plot theweight function of different states along the

∆+ direction. It decays as a power law that ranges from ∆−4 for
states near the lower corner of the irreducible triangle (see Fig. 8)
to∆−2 for states fulfilling k̃2 ≈ π − k̃1. In Fig. 7 we plot the decay
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Fig. 8. Location P = (k̂1, k̂2) of the eigenstates, shown in Figs. 6 and 7, in the
irreducible triangle.

which perturbation theory gives a good description of the results
obtained by numerical diagonalization. However, when increasing
γ several nonperturbative effects occur. These are:
Split off of the two-boson bound state band: This effect was

discussed in Section 2.2 (Fig. 1). When γ > 2 the two-boson
bound state band splits off from the two-boson continuum, and
the corresponding eigenstates are correlated in direct space,
i.e. with large probability the two bosons are occupying identical
lattice sites. Thus, in normal-mode space these eigenstates become
delocalized as shown in Fig. 9.
Degenerate levels in the noninteracting case: The analysis using

perturbation theory is valid as long as the eigenstate which is
continued from the noninteracting case is not degenerate. Because
of the finiteness of the lattice the momenta k̃1 and k̃2 are restricted
to discrete values anddefine a grid in the two-dimensional normal-
mode space. A grid point (k̃1, k̃2) defines a line of constant energy
in normal-mode space through Eq. (17), with E0k1,k2 = E0

k̃1,k̃2
(Fig. 10(a)). The nondegeneracy condition implies that this line
should not pass through any other grid point. It is easy to see from
Eq. (17) that all states |k̃1, π − k̃1〉 are degenerate, with Ek̃1,π−k̃1 =
0. Their corresponding grid points in the irreducible triangle lie on
the diagonal k2 = π − k1 (thick line in Fig. 10(a)). In Fig. 10(b) we
show the weight function of an eigenstate that is located on that
diagonal in the noninteracting case. As expected, even for small
values of γ , the state completely delocalizes along the degeneracy
diagonal.
Avoided crossings: Upon increase of the interaction parameter

γ , the energies of continued eigenstates change, and will resonate
with eigenvalues of other states.
The first possible avoided level crossing defines a critical value

of the interaction parameter γ up towhich first-order perturbation
theory is applicable. To estimate this value, γc , we assume that
before the first avoided crossing is encountered, the eigenenergies
depend linearly on γ . This dependence may be estimated using
first-order perturbation theory in γ . The result is, for large f ,

Ek̃1,k̃2(γ ) ≈ E
0
k̃1,k̃2
+
b(k̃1, k̃2)
f

γ , (28)

where

b(k̃1, k̃2) =

2 if k̃1 = 0,
−2 if k̃2 = k̃1 > 0,
−1 if k̃1 > 0, k̃2 > k̃1.

(29)

Let us consider two levels E1 and E2 that interact in the first
avoided level crossing. At γ = 0 they are separated by δE. For
Fig. 5. Weight function for different values of the interaction strength γ of the
eigenstate ν = 145 along the ∆− direction. The dashed lines are results from
formula (24). Here f = 40.

Fig. 6. Weight function of different eigenstates (labeled by the index ν) along the
∆+ direction. Here γ = 0.1 and f = 40.

Fig. 7. Weight function of different eigenstates (labeled by the index ν) along the
∆− direction. Here γ = 0.1 and f = 40.

of the weight function along the ∆− direction, where we see the
power-law decay that ranges from∆−4 for states fulfilling k̃1 ≈ k̃2
(see Fig. 8), to ∆−2 for states fulfilling k̃2 ≈ π − k̃1. The results
from numerical diagonalization agree very well with those from
the perturbation theory analysis.

3.3. Nonperturbative effects

The results in the previous section were obtained for small
values of the interaction parameter γ up to γ = 0.1, for








