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We consider the spatiotemporal evolution of a wave packet in disordered nonlinear Schrödinger and anhar-
monic oscillator chains. In the absence of nonlinearity all eigenstates are spatially localized with an upper
bound on the localization length �Anderson localization�. Nonlinear terms in the equations of motion destroy
the Anderson localization due to nonintegrability and deterministic chaos. At least a finite part of an initially
localized wave packet will subdiffusively spread without limits. We analyze the details of this spreading
process. We compare the evolution of single-site, single-mode, and general finite-size excitations and study the
statistics of detrapping times. We investigate the properties of mode-mode resonances, which are responsible
for the incoherent delocalization process.
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I. INTRODUCTION

The normal modes �NMs� of a d=1-dimensional linear
system with uncorrelated random potential are spatially lo-
calized �Anderson localization�. Therefore any wave packet,
which is initially localized, remains localized for all time �1�.
Note that NMs correspond to single-particle eigenstates of
related quantum systems.

When nonlinearities are added, NMs interact with each
other �2�. Recently, experiments were performed on light
propagation in spatially random nonlinear optical media
�3,4� and on Bose-Einstein condensate expansions in random
optical potentials �5�, which serve as realizations of such
cases.

Numerical studies of wave packet propagation in several
models showed that the second moment of the norm/energy
distribution grows subdiffusively in time as t� �6–9�, with
��1 /3 for d=1. Reports on partial localization were pub-
lished as well �10�.

In a recent paper the mechanisms of spreading and local-
ization were studied for d=1, with initial excitations being
localized on a single site �11�. A theoretical explanation of
the exponent �=1 /3 was obtained, consistently assuming
that the internal dynamics of a wave packet is chaotic, lead-
ing to a partial dephasing of the NMs. The argumentation
was based on the possibility of a pair of wave-packet modes
being able to resonantly interact with each other. Among
other results, the case of weak nonlinearity showed that wave
packets localize according to the linear dynamics on long but
finite time scales, with subsequent detrapping. In the present
work, we extend this study to single-mode excitations and
more general excitations of width L. We study the details of
the detrapping process and measure the statistical properties
of detrapping times. We study the particularities of resonant
interaction between modes mediated by the nonlinearity. We
give details on the used integration schemes and perform
extensive tests which demonstrate that the observed effects
are not affected by round-off errors. We argue that the
spreading is inherently induced by the nonintegrability of the
system.

II. MODELS

We study two models of one-dimensional lattices.

A. Nonlinear Schrödinger lattice

The Hamiltonian of the disordered discrete nonlinear
Schrödinger equation �DNLS�

HD = �
l

�l��l�2 +
�

2
��l�4 − ��l+1�l

� + �l+1
� �l� , �1�

with complex variables �l, lattice site indices l and nonlin-
earity strength ��0. The random on-site energies �l are cho-
sen uniformly from the interval �− W

2 , W
2 �, with W denoting

the disorder strength. The equations of motion are generated

by �̇l=�HD /��i�l
��:

i�̇l = �l�l + ���l�2�l − �l+1 − �l−1. �2�

Equation �2� conserve the energy �Eq. �1�� and the norm S
=�l��l�2. We note that varying the norm of an initial wave
packet is strictly equivalent to varying �, therefore we
choose S=1. Equations �1� and �2� are derived, e.g., when
describing two-body interactions in ultracold atomic gases
on an optical lattice within a mean-field approximation �12�
but also when describing the propagation of light through
networks of coupled optical waveguides in Kerr media �13�.

For �=0 Eq. �1� with �l=Al exp�−i�t� is reduced to the
linear eigenvalue problem

�Al = �lAl − Al−1 − Al+1. �3�

The normalized eigenvectors A�,l ��lA�,l
2 =1� are the NMs,

and the eigenvalues �� are the frequencies of the NMs. The
width of the eigenfrequency spectrum �� of Eq. �3� is 	D

=W+4 with ��� �−2− W
2 ,2+ W

2 �.
The asymptotic spatial decay of an eigenvector is given

by A�,l�e−l/
����, where 
�����
�0��100 /W2 is the local-
ization length �14�. The NM participation number p�

=1 /�lA�,l
4 characterizes the spatial extend �localization vol-

ume� of the NM. It is distributed around the mean value p�

�3.6
���� with variance �1.3
���� �15�. The average spac-
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ing of eigenvalues of NMs within the range of a localization
volume is therefore 	�D�	D / p��	DW2 /360. The two
scales 	�D�	D determine the packet evolution details in
the presence of nonlinearity.

The equations of motion of Eq. �1� in normal-mode space
read as

i�̇� = ���� + � �
�1,�2,�3

I�,�1,�2,�3
��1

� ��2
��3

, �4�

with the overlap integral

I�,�1,�2,�3
= �

l

A�,lA�1,lA�2,lA�3,l. �5�

The variables �� determine the complex time-dependent am-
plitudes of the NMs.

The frequency shift of a single-site oscillator induced by
the nonlinearity is l=���l�2. If instead a single mode is ex-
cited, its frequency shift is given by �=�����2 / p�.

B. Anharmonic oscillator lattice

The Hamiltonian of the quartic Klein-Gordon �KG� lattice

HK = �
l

pl
2

2
+

�̃l

2
ul

2 +
1

4
ul

4 +
1

2W
�ul+1 − ul�2, �6�

where ul and pl are, respectively, the generalized coordinates
and momenta, and �̃l are chosen uniformly from the interval
� 1

2 , 3
2 �. The equations of motion are ül=−�HK /�ul and yield

ül = − �̃lul − ul
3 +

1

W
�ul+1 + ul−1 − 2ul� . �7�

Equation �7� conserve the energy �Eq. �6��. They serve, e.g.,
as simple models for the dissipationless dynamics of anhar-
monic optical lattice vibrations in molecular crystals �16�.
The energy of an initial state E�0 serves as a control pa-
rameter of nonlinearity similar to � for the DNLS case.

The coefficient 1 / �2W� in Eq. �6� was chosen so that the
linear parts of Hamiltonians �1� and �6� would correspond to
the same eigenvalue problem. In practice, for E→0 �or by
neglecting the nonlinear term ul

4 /4� model �6� with ul
=Al exp�i�t� is reduced to the linear eigenvalue problem
�Eq. �3�� with �=W�2−W−2 and �l=W��̃l−1�. The width of
the squared frequency ��

2 spectrum is 	K=1+ 4
W with ��

2

� � 1
2 , 3

2 + 4
W �. Note that 	D=W	K. As in the case of DNLS, W

determines the disorder strength.
The spatial properties of the NMs are identical with those

of Eq. �3�. In addition to the scale 	K, the average spacing of
squared eigenfrequencies of NMs within the range of a lo-
calization volume is 	�2=	K / p�. The two scales 	�2�	K
determine the packet evolution details in the presence of
nonlinearity.

The squared frequency shift of a single-site oscillator in-
duced by the nonlinearity is l��3El� / �2�̃l�, where El is the
energy of the oscillator. If instead a single mode is excited,
its frequency shift is given by ���3E�� / �2p���

2�, with E�

being the energy of the mode.
For small amplitudes the equations of motion of the KG

chain can be approximately mapped onto a corresponding

DNLS model �17�. In our notation, the mapping takes the
following form. For the KG model with given parameters W
and E, the corresponding DNLS model �1� with norm S=1,
has a nonlinearity parameter ��3WE. The norm density of
the DNLS model corresponds to the normalized energy den-
sity of the KG model.

C. Computational methods

We will present results on long time numerical simula-
tions. We therefore first discuss the methods and particulari-
ties of our computations. For both models, we used symplec-
tic integrators. These integration schemes replace the original
Hamiltonian by a slightly different one, which is integrated
exactly. The smaller the time steps, the closer both Hamilto-
nians. Therefore, the computed energy �or norm� of the origi-
nal Hamiltonian function will fluctuate in time but not grow.
The fluctuations are bounded and are due to the fact that the
actual Hamiltonian, which is integrated, has slightly different
energy.

Another possible source of errors is the round-off proce-
dure of the actual processor when performing operations
with numbers. Sometimes it is referred to as “computational
noise” although it is exactly the opposite, i.e., purely deter-
ministic and reproducible. We will discuss the influence of
round-off errors on our results in Sec. III F.

The KG chain was integrated with the help of a symplec-
tic integrator of order O��4� with respect to the integration
time step �, namely, the SABA2 integrator with corrector
�SABA2C�, introduced in �18�. A brief presentation of the
integration scheme, as well as its implementation for the par-
ticular case of the KG lattice �Eq. �6�� is given in the Appen-
dix. The SABA2C integration scheme proved to be very ef-
ficient for long integrations �e. g. up to 1010 time units� of
lattices having typically N=1000 sites �see, for example, the
right plots of Fig. 2� since it kept the required computational
time to feasible levels, preserving at the same time quite well
the energy of the system. For example, an integration time
step �=0.2 usually kept the relative error of the energy
smaller than 10−4.

The DNLS chain was integrated with the help of the
SBAB2 integrator �see the Appendix�, which introduces an
error in energy conservation of the order O��2�. The number
of sites used in our computations varied from N=500 to N
=2000, in order to exclude finite-size effects in the evolution
of the wave packets. For �=0.1 the relative error of energy
was usually kept smaller than 10−3. It is worth mentioning
that, although the SBAB2 integrator and the commonly used
leap-frog integrator introduce errors of the same order, the
SBAB2 scheme exhibits a better performance since it re-
quires less CPU time, keeping at the same time the relative
energy error to smaller values than the leap-frog scheme.

We order the NMs in space by increasing value of the
center-of-norm coordinate X�=�llA�,l

2 . We analyze normal-
ized distributions z��0 using the second moment m2
=����− �̄�2z�, which quantifies the wave packet’s degree of
spreading and the participation number P=1 /��z�

2, which
measures the number of the strongest excited sites in z�. Here
�̄=�� �z�. For DNLS we follow norm density distributions
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z�	����2 /������2. For KG we follow normalized energy

density distributions z�	E� /��E� with E�= Ȧ�
2 /2+��

2A�
2 /2,

where A� is the amplitude of the �th NM and ��
2=1+ ���

+2� /W.

III. WAVE PACKET EVOLUTION

Below we will mainly use the DNLS case for theoretical
considerations and also discuss crucial points to be taken into
account when considering the KG case. We will present nu-
merical results for both models.

We first consider a wave packet at t=0 which is compact
either in real space or in normal-mode space. Compactness
in real space implies a single-site excitation �l=l,l0

with the
choice �l0

=0 for the DNLS model. For the KG model we set
pl=0 and ul=cl,l0

, with �̃l0
=1 and c being a constant which

defines the initial energy E. Compactness in normal-mode
space instead implies a single-mode excitation ��=�,�0

with
��0

�0 for the DNLS model, while in the case of the KG

system we have A�=c�,�0
and Ȧ�=0, with ��0

2 �1+ �2 /W�,
i.e., ��0

2 is located in the middle of the frequency spectrum.
Again the constant c defines the initial energy of the wave
packet. We will later also consider finite-size initial distribu-
tions of width L.

A. Expected regimes

Let us consider a single-site initial excitation with a cor-
responding nonlinear frequency shift l. We compare this
frequency shift with the two scales set by the linear equa-
tions: the average spacing 	� �which corresponds to 	�D for
DNLS and to 	�2 for KG� and the spectrum width 	 �with
	 denoting 	D for DNLS and 	K for KG�. We expect three
qualitatively different dynamical regimes: �I� l�	�, �II�
	��l�	, and �III� 	�l. In case I the local frequency
shift is less than the average spacing between interacting
modes; therefore no initial resonance overlap of them is ex-
pected, and the dynamics may �at least for long times� evolve
as in the linear case ��=0 for DNLS and E→0 for KG�. In
case II resonance overlap may happen immediately, and the
packet should evolve differently. For case III the frequency
shift exceeds the spectrum width; therefore some renormal-
ized frequencies of NMs �or sites� may be tuned out of reso-
nance with the NM spectrum, leading to self-trapping. The
above definitions are highly qualitative since localized initial
conditions are subject to strong fluctuations.

If we instead consider a single-mode initial excitation, we
have to replace l by � in the above argumentation. For both
the DNLS and the KG model, it follows l� p��. The mean
NM participation number �the localization volume� p��1
depends on the disorder strength W.

If an initial excitation of the DNLS model is characterized
by some exponentially localized �not necessarily compact�
distribution �l with S=1, the nonlinear frequency shift may
be roughly estimated as �����2, where the maximum norm
density ���2=supl��l�2. The left graph of Fig. 1 shows the
location of the three different regimes in the plane of the
control parameters, i.e., the frequency shift  and the disor-
der strength W. Note that 	��W3 for W�1 �15�, and the

intermediate regime II disappears around W�20, where the
participation number of a NM becomes of the order of 1, and
the NMs become almost single-site solutions. Similarly, for
the KG model we have the estimation �E and the corre-
sponding parameter space of the three different regimes is
shown in the right graph of Fig. 1.

B. Self-trapping theorem

Regime III is also captured by a theorem presented in
�10�, which proves that for ��	 �for the DNLS case� the
single-site excitation can not uniformly spread over the en-
tire �infinite� lattice. Indeed, with the notations
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FIG. 2. �Color online� Single-site excitations. m2 and P versus
time in log-log plots. Left plots: DNLS with W=4, �
=0,0.1,1 ,4.5 ��o�, orange; �b�, blue; �g� green; and �r� red�. Right
plots: KG with W=4 and initial energy E=0.05,0.4,1.5 ��b� blue;
�g� green; and �r� red�. The orange �o� curves correspond to the
solution of the linear equations of motion, where the term ul

3 in Eq.
�7� was absent. The disorder realization is kept unchanged for each
of the models. Dashed straight lines guide the eyes for exponents
1 /3�m2� and 1 /6�P�, respectively. Insets: the compactness index
� as a function of time in linear–log plots for �=1 �DNLS� and
E=0.4 �KG�.

(b)(a)

FIG. 1. �Color online� Schematic representations of the three
different regimes of spreading for the DNLS �left graph� and the
KG model �right graph� in the parameter space of disorder strength
W and of the nonlinear frequency shift  at initial time t=0. For
each regime the dependence of log m2 �blue solid curves� and of
log P �red dashed curves� versus log t are shown schematically �see
section III C for details�.
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HD = HNL + HL, �8�

HL = �
l

�l��l�2 − ��l+1�l
� + �l+1

� �l� , �9�

HNL = �
l

�

2
��l�4 	

�

2
Pr

−1, �10�

where Pr is the participation number in real space, the single-
site excitation at time t=0 yields

HL�t = 0� = 0, HNL�t = 0� =
�

2
. �11�

Due to norm conservation S=1 at all times, the harmonic
energy part HL is bounded from above and below �10�:

− 2 −
W

2
� HL � 2 +

W

2
. �12�

Due to energy conservation, for all times the anharmonic
energy part HNL can therefore not become smaller than

HNL�t� �
�

2
− 2 −

W

2
. �13�

It follows with Eq. �10� that the participation number is
bounded from above by a finite number, which diverges for
�=	:

Pr�t� �
�

� − 	
if � � 	 . �14�

Moreover, since Pr
−1=�l��l�4�supl��l�2 �10�, we conclude

that

sup
l

��l�2�t� �
� − 	

�
. �15�

Therefore, at least a part of the wave packet will not spread
and will stay localized although the theorem does not prove
that the location of that inhomogeneity is constant in time.
The norm of the part of the wave packet, which can spread
uniformly over the entire system, is bounded from above by
S��	 /�.

C. Numerical results

We first show results for single-site excitations �11�. We
systematically studied the evolution of wave packets for lat-
tices �1� and �6�. The scenario described in Sec. III A was
observed very clearly. Representative examples are shown in
Fig. 2. Regime III yields self-trapping �see also Figs. 1 and 3
in �10��, therefore P does not grow significantly, while the
second moment m2� t� with ��1 /3 �red curves�. Thus a
part of the excitation stays highly localized �10�, while an-
other part delocalizes. Regime II yields subdiffusive spread-
ing with m2� t� and P� t�/2 �7,8� �green curves�. Regime I
shows the Anderson localization up to some time �d which
increases with decreasing nonlinearity. For t��d both m2
and P are not changing. However for t��d a detrapping

takes place, and the packet starts to grow with characteristics
as in regime II �blue curves�. The simulation of the equations
of motion in the absence of nonlinear terms �orange curves�
demonstrates the appearance of the Anderson localization.

The second moment m2 is sensitive to the spreading dis-
tance of the tails of a distribution, while the participation
number P is a measure of the inhomogeneity of the distribu-
tion, being insensitive to any spatial correlations. Thus, P
and m2 can be used to quantify the sparseness of a wave
packet. To this end, we introduce as a measure of the com-
pactness of a wave packet the compactness index

� =
P2

m2
. �16�

Let us consider a wave packet of K sites �K�1�. In the
case where all the K sites are equally excited the compact-
ness index is given by �=12. In the case of a symmetric
wave packet formed by a sequence of an excited site fol-
lowed by a nonexcited one, where all the K /2 excited sites
have the same amplitude, �=3. Distributions with larger gaps
between the equally excited isolated sites attain a compact-
ness index ��3. For the extreme case of a sparse wave
packet formed by two equally excited sites located at the two
edges of the packet, i.e., when only sites 1 and K�K�1� are
excited to an amplitude 1/2, the compactness index is �
=16 /K2. So, smaller values of � correspond to more sparse
wave packets.

We expect that � in regime I will remain constant for t
��d and will behave as in the case of regime II for later
times. In regime II � would either be constant or decay in
time, while in regime III it should decay since P remains
practically constant. The time evolution of � for excitations
in regime II is shown in the insets of Fig. 2. As one can see
the compactness index oscillates around some constant non-

0 100 200 300 400 500
N

10
-24

10
-18

10
-12

10
-6

|ϕ
ν|2

750 1000 1250
N

0

0.01

0.02

0.03

0.04

|ϕ
ν|2

p p

FIG. 3. Norm density distributions in the NM space at time t
=108 for the initial excitations in the regime II of the DNLS model
shown in the left plots of Figs. 2 and 5. Left plots: single-site
excitation for W=4 and �=1. Right plots: single-mode excitation
for W=4 and �=5. ����2 is plotted in linear �logarithmic� scale in
the upper �lower� plots. The maximal mean value of the localization
volume of the NMs p̄�22 �shown schematically in the lower plots�
is much smaller than the length over which the wave packets have
spread.
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zero value both for the DNLS and the KG models. This
means that the wave packet spreads but does not become
more sparse. For the particular cases of Fig. 2 the compact-
ness index attains the values �=3.5 for the DNLS model at
t=108 and �=1.7 for the KG chain at t=1010. The corre-
sponding wave packet of the DNLS model is shown in the
left plots of Fig. 3.

Partial nonlinear localization in regime III is explained by
self-trapping �10�. It is due to tuning frequencies of excita-
tions out of resonance with the NM spectrum, takes place
irrespective of the presence of disorder, and is related to the
presence of exact t-periodic spatially localized states �also
coined discrete breathers� for ordered �19� and disordered
systems �20� �in the latter case also t-quasiperiodic states
exist�. These exact solutions act as trapping centers.

Note that for large nonlinearities ���	 for DNLS or
large energy values E of the KG model� almost the whole
excitation is self-trapped. This behavior can be seen in the
left plots of Fig. 4, where the time evolution of m2 and P for
different values of the energy E of the KG chain is shown.
The value of W is kept to W=4 as in the cases presented in
the right plots of Fig. 2. As the energy increases the portion
of the wave packet that stays self-trapped increases with re-
spect to the part that diffuses. Thus, we observe a change in
the evolution of m2 from subdiffusive increase to practical
constancy. On the other hand, P is not affected as it contin-
ues to fluctuate around some constant value.

The Anderson localization on finite times in regime I is
observed on potentially large time scales �d, and as in regime
III, regular states act as trapping centers �20�. For t��d, the
wave packet trajectory finally departs away from the vicinity
of regular orbits with subsequent spreading. Increasing the
value of W results to small localization lengths of NMs and
thus, the Anderson localization will persist for extremely
long time intervals. Since our numerical computations are
limited in time, we are not able to observe the detrapping
phase of the evolution when W increases significantly. This
behavior can be seen in the right plots of Fig. 4 where we

consider initial single-site excitations which, for W=4 �see
right plots of Fig. 2�, belong to regime I. In these plots we
observe a direct transition from regime I to practical con-
stancy of m2 and P as W increases, at least up to the final
integration time used.

For single-mode excitations we find a similar outcome but
with rescaled critical values for the nonlinearity strength
which separate the different regimes. Examples of the three
different regimes are shown in Fig. 5. As in the case of
single-site excitations presented in Fig. 2, the compactness
index � plotted in the insets if Fig. 5 remains practically
constant for excitations in regime II, attaining the values �
=1.5 at t=108 for the DNLS model and �=3.3 at t=109 for
the KG chain. The final norm density distribution for the
DNLS model is plotted in the right plots of Fig. 3. The av-

erage value �̄ of the compactness index over 20 realizations
at t=108 for the DNLS model with W=4 and �=5 was found

to be �̄=2.95�0.39.

D. Spreading

The subdiffusive spreading takes place in regime I for t
��d, in regime II, and for a part of the wave packet also in
regime III. For single-site excitations the exponent � does
not appear to depend on � in the case of the DNLS model or
on the value of E in the case of KG. In Fig. 6 we show
results for m2�t� in regime II for different values of the dis-
order strength W. Again we find no visible dependence of the
exponent � on W. Therefore the subdiffusive spreading is
rather universal and the parameters � �or E� and W are only
affecting the prefactor. Excluding self-trapping, any nonzero
nonlinearity will completely delocalize the wave packet and
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FIG. 4. �Color online� Single-site excitations for the same dis-
order realization of the KG model. m2 and P versus time in log–log
plots. Left panels: plots for W=4 and initial energy E
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FIG. 5. �Color online� Single-mode excitations. m2 and P versus
time in log–log plots. Left plots: DNLS with W=4, �
=0,0.6,5 ,30 ��o� orange, �b� blue, �g� green, and �r� red�. Right
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solution of the linear equations of motion, where the term ul

3 in Eq.
�7� was absent. The disorder realization is kept unchanged for each
of the models. Dashed straight lines guide the eye for exponents
1 /3�m2� and 1 /6�P�, respectively. Insets: the compactness index �
as a function of time in linear–log plots for �=5 �DNLS� and E
=1.1 �KG�.
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destroy the Anderson localization. We performed fittings by
analyzing 20 runs in regime II with different disorder real-
izations. For each realization we fitted the exponent � and
then averaged over all computational measurements. We find
�=0.33�0.02 for DNLS, and �=0.33�0.05 for KG. There-
fore, the predicted universal exponent �=1 /3 �11� appears to
explain the data.

On the other hand, in the case of single-mode excitations
the numerically computed values of the exponent � seem to
be slightly larger than �=1 /3, as can be also seen from the
results of Fig. 5. In particular, m2 in regimes II and III of the
DNLS model and in regime III of the KG model increases
slightly faster than �t1/3, which is represented by the dashed
lines in the upper plots of Fig. 5. In addition, the value of the
exponent seems to slightly vary with respect to the nonlin-
earity parameter � for DNLS and E for KG. The reason of
the slightly different behavior between single-site and single-
mode excitations is still an open issue.

E. Detrapping

In the intermediate regime II the wave packet starts to
spread almost from scratch. We do not observe any satura-
tion and crossover into localization on later times. Let us
assume that the wave packet spreads without limitations. The
initial nonlinear frequency shift l was larger than the aver-
age level spacing in a localization volume 	�. However, l
will become smaller than 	� at some later time since
supl��l�2 �supl El for KG� decreases in time as the wave
packet spreads. Therefore, there will be a large but finite time
td, at which we cross over from the intermediate regime II
into the weak nonlinearity regime I. The arresting of the
wave packet up to a time �d in the weak nonlinearity regime
I can be explained by a correspondingly large spreading time
scale �d. For t��d no spreading is observed when monitor-
ing the second moment m2, with subsequent spreading ob-
served on larger time scales t��d.

We test the above conclusions by the following simple
scheme. We start a single-site excitation in the intermediate
regime II, measure the distribution at some time td, and re-
launch the distribution as an initial condition at time t=0.
The results are shown in Fig. 7. We find that the relaunched
runs yield a second moment m2 which appears to be constant
up to the time �d� td with a subsequent spreading, similar to
the previously obtained detrapping in regime I.

For a specific value of the nonlinearity � of the DNLS
model let each NM in the packet after some spreading to
have norm ����2�n�1, with n denoting the average norm
density of the excited NMs �in the case of the KG model n
corresponds to the average energy density of the excited
NMs�. The packet size is then 1 /n� p̄, with p̄=max� p�, and
the second moment m2�1 /n2. Let us assume that the second
moment grows as m2� t1/3. Let us also assume that at any
time the spreading is due to some diffusion process and is
characterized by some momentary diffusion rate D�t� such
that m2=D�t�t. Then it follows that D�t�� t−2/3 and finally
D�n4. Such a result has to be the outcome of the action of
the nonlinear terms �which always contain products �n�. A
diffusion rate is equal to an inverse characteristic time scale,
and therefore we conjecture

D = �d
−1 � �4n4. �17�

There are two ways of modifying D. We can either spread
our initial excitation over some number of sites L, therefore
varying n. Alternatively we can fix the shape of the initial
excitation and vary �.

In order to test the validity of Eq. �17� for a fixed value of
nonlinearity we considered a single-site excitation in the in-
termediate regime II for the KG model with total energy E
=0.4 so that m2 and P start to grow from the beginning
�black curves in Figs. 8�a� and 8�b�, respectively�. We also
followed the time evolution of wave packets having as initial
condition a homogeneous distribution of the energy E=0.4
among L neighboring sites. In particular, we considered ini-
tial distributions with ul=0 and pl=0 except for the central L
sites whose initial momenta were set to �
2E /L, with the
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sign changing randomly from site to site. We performed
simulations with L ranging from 1 up to 41. The time evo-
lution of m2 and P for some of these cases is shown in Figs.
8�a� and 8�b�, respectively. In accordance to the results pre-
sented in Fig. 7 we observe that distributing the energy of a
single-site excitation belonging to regime II over more sites
results in a time dependence of m2 and P similar to regime I,
i.e., both quantities start to increase after some transient de-
trapping time �d.

The behavior of the second moment m2�t� can be modeled
by a function of the form

m2�t� = M�t + �d��, �18�

where M is a constant related to the value of the second
moment of the initial distribution m2�0�=M�d

�. Equation �18�
gives a power-law dependence of m2 on t for t��d and a
slow time dependence of m2 for t��d. Thus, it can be used
to describe the behavior of m2 for L�1. Fitting the numeri-
cal data obtained for different values of L by Eq. �18� �see
Fig. 8�c� for such an example�, we can determine the depen-
dence of �d on L �Fig. 8�d��. Since L�n−1 from Eq. �17� we
conclude that �d�L4. As we can see from Fig. 8�d� the nu-
merically obtained results are in good agreement with this
assumption.

To test the dependence of D on �, we studied the weak
nonlinearity regime I for the DNLS model with W=4. We
launched single-site excitations for ten realizations for �
=0.1 and �=0.2. We estimated the detrapping times �d on
logarithmic scale for each run and averaged over each group
of realizations. As a result we obtain �log10 �d�=5 for �
=0.2, and �log10 �d�=6.9 for �=0.1 �with �¯� denoting the

mean value over the realizations�, and their difference is then
1.9. According to Eq. �17�, the difference should be 1.2
which is in relatively good agreement with the numerically
estimated value.

F. Numerical accuracy and round-off errors

We performed several tests in order to ensure that our
results are not generated by inaccurate computations. First
we varied the size of the system and found no dependence of
the results on it. Therefore we exclude finite-size effects.

Second we varied the time steps of the symplectic inte-
gration schemes by orders of magnitudes. Again we found no
visible change in the detrapping times or in the spreading
characteristics. We also used different integration schemes
and even nonsymplectic ones �eighth-order Runge-Kutta�.
No changes were obtained either. Therefore we exclude ef-
fects due to discretization of time.

Finally we studied the influence of computational round-
off errors. The above observation, in which the variation in
time steps does not change the key results, implicitly tells
that round-off errors can be excluded as well. Indeed, chang-
ing the time steps, we change the number of operations to be
performed on a given interval of integration. Therefore we
change the number of round-off operations.

In addition, we decided to perform further tests with re-
spect to the round-off error issue. These tests are inspired by
the following consideration. Floating point numbers are char-
acterized by the number of digits a after the comma which
are kept during computations. All presented data were ob-
tained with double precision, where a=16. The detrapping
and spreading can be only due to the cubic nonlinear terms in
the equations of motion. These terms are added to linear
terms, when calculating the right-hand side of Eqs. �2� and
�7�. Therefore, when for example in the case of the DNLS
model supl ��l�2�10−8, the nonlinear terms become of the
order of the round-off error of the linear terms. For all of our
simulations, the amplitudes in the packet are of the order of
10−2 or larger. Therefore the roundoff is affecting only the
amplitudes far in the exponential tails. We changed the cal-
culation to single precision, for which a=8, but we did not
observe any qualitative difference in our results. For single
precision the nonlinear terms will be affected by round-off
errors when supl��l�2�10−4, which is still realized only in
the exponential tails. We note that the times at which the
round-off errors affect the packet modes correspond to t
�1080 for a=16 and t�1030 for a=8 which are obviously
not accessible with our computation schemes.

Therefore we implemented a brute force round-off
scheme: after each time step of integration we take the dis-
tributions and perform a roundoff at a prescribed digit a
=1,2 ,3 ,4 , . . .. We expect therefore to reduce the time at
which round-off errors will become visible in order to ob-
serve that effect within the time window accessible by our
computations. Indeed, we find that strong fluctuations in the
conserved quantities set in at a time tr which decreases with
decreasing a. In particular for the DNLS we find tr
�103 ,105 ,107 for a=1,2 ,3, and for the KG model we find
tr�103 ,105 ,108 for a=1,2 ,3. When monitoring the second
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FIG. 8. �Color online� Nonlocal excitations of the KG chain
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=0.4 over L neighboring sites. �a� m2 and �b� P versus time in
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moment and the participation number, we also find strong
deviations from the above results at times t� tr. For a�4 we
do not observe any significant change in the data. Therefore
we conclude, that the round-off errors with double �or even
single� precision are not affecting our results.

IV. SPREADING MECHANISMS

We can think of two possible mechanisms of wave packet
spreading. A NM with index � in a layer of width p̄ in the
cold exterior, which borders the packet, is either incoherently
heated by the packet or resonantly excited by some particular
NM from a layer with width p̄ inside the packet. Heating
here implies a �sub�diffusive spreading of energy. Note that
the numerical results yield subdiffusion, supporting the non-
ballistic diffusive heating mechanism.

For heating to work, the packet modes ���t� should con-
tain a part ��

c�t�, having a continuous frequency spectrum
�similar to a white noise�, in addition to a regular part ��

r�t�
of pure point frequency spectrum:

���t� = ��
r�t� + ��

c�t� . �19�

Therefore at least some NMs of the packet should evolve
chaotically in time. The more the packet spreads, the less the
mode amplitudes in the packet become. Therefore its dynam-
ics should become more and more regular, implying
limt→� ��

c�t� /��
r�t�→0.

A. Are all packet modes chaotic?

In Ref. �8� it was assumed that all NMs in the packet are
chaotic, and their phases can be assumed to be random at all
times. At variance to the above expectation, it follows that
��

r�t�=0 or at least the ratio ��
c�t� /��

r�t� is constant on aver-
age. Consequently ���

c�t���n1/2, where n is the average norm
density in the packet.

According to Eq. �4� the heating of the exterior mode
should evolve as i�̇������+�n3/2f�t� where �f�t�f�t���
=�t− t�� ensures that f�t� has a continuous frequency spec-
trum. Then the exterior NM increases its norm according to
����2��2n3t. The momentary diffusion rate of the packet is
given by the inverse time T it needs to heat the exterior mode
up to the packet level: D=1 /T��2n2. The diffusion equa-
tion m2�Dt yields m2��t1/2. We tested the above conclu-
sions by enforcing decoherence of NM phases. Each 100
time units on average 50% of the NMs were randomly cho-
sen, and their phases were shifted by � �DNLS�. For the KG
case we changed the signs of the corresponding NM mo-
menta. We obtain m2� t1/2 �see Fig. 6�. Therefore, when the
NMs dephase completely, the exponent �̃=1 /2, contradict-
ing numerical observations without dephasing. Thus, not all
NMs in the packet are chaotic, and dephasing is at best a
partial outcome.

B. Mode-mode resonances inside the packet

Chaos is a combined result of resonances and nonintegra-
bility. Let us estimate the number of resonant modes in the

packet for the DNLS model. Excluding secular interactions,
the amplitude of a NM with ����2=n� is modified by a triplet
of other modes �� 	��1 ,�2 ,�3� in first order in � as Eq. �4�;

���
�1�� = �
n�1

n�2
n�3

R�,��
−1 , R�,�� �  d��

I�,�1,�2,�3

 , �20�

where d��=��+��1
−��2

−��3
. The perturbation approach

breaks down and resonances set in when 
n�� ���
�1��. Since

all considered NMs belong to the packet, we assume their
norms to be equal to n for what follows. If three of the four
mode indices are identical, one is left with interacting NM
pairs. A statistical analysis of the probability of resonant in-
teraction was performed in Ref. �11�. For small values of n
�i.e. when the packet has spread over many NMs� the main
contribution to resonances are due to rare multipeak modes
�11�, with peak distances being larger than the localization
volume. If two or none of the four mode indices are identi-
cal, one is left with triplets and quadruplets of interacting
NMs, respectively. In both cases the resonance conditions
can be met at arbitrarily small values of n for NMs from one
localization volume.

We perform a statistical numerical analysis for the qua-
druplet case. For a given NM � we obtain R�,�� 0

=min�� R�,�� .
Collecting R�,�� 0

for many � and many disorder realizations,
we find the probability density distribution W�R�,�� 0

� �Fig. 9�.
The main result is that W�R�,�� 0

→0�→C�W��0. For the
cases studied, the constant C drops with increasing disorder
strength W. Similar results are found if pairs of resonant
NMs �11� are analyzed, with the only difference that the
constant C is reduced, e.g., by a factor of 30 for W=4.

The probability P for a mode, which is excited to a norm
n �the average norm density in the packet�, to be resonant
with at least one triplet of other modes at a given value of the
interaction parameter � is given by

P = �
0

�n

W�x�dx , �21�

with x denoting R�,�� 0
. For �n�1 it follows
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FIG. 9. �Color online� Statistical properties of NMs of the
DNLS model. Probability densities W�R�,�� 0

� of NMs being reso-
nant �see Sec. IV B for details�. Disorder strength W=4,7 ,10 �from
top to bottom�.
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P � C�n . �22�

Therefore the probability for a mode in the packet to be
resonant is proportional to C�n. On average the number of
resonant modes in the packet is constant, proportional to C�,
and their fraction within the packet is �C�n. Since packet
mode amplitudes fluctuate in general, averaging is meant
both over the packet and over suitably long time windows
�yet short compared to the momentary inverse packet growth
rate�. We conclude that the continuous frequency part of the
dynamics of a packet mode is scaled down by C�n com-
pared to the case when all NMs would be chaotic. It follows
that ��

c�t� /��
r�t��C�n. As expected initially, the chaotic part

in the dynamics of packet modes becomes weaker the more
the packet spreads, and the packet dynamics becomes more
and more regular in the limit of large times. Therefore the
chaotic component ��

c�t����
r�t� is a small parameter.

Expanding the term ����2�� to first order in ��
c�t�, the

heating of the exterior mode should evolve according to
i�̇������+C�2n5/2f�t�. It follows ����2�C2�4n5t, and the
rate D=1 /T�C2�4n4 �cf. prediction �17��. The diffusion
equation m2�Dt yields

m2 � C2/3�4/3t�, � = 1/3. �23�

The predicted exponent �=1 /3 is close to the numerically
observed one, as we discussed in Sec. III D.

C. Resonant spreading?

Finally we consider the process of resonant excitation of
an exterior mode by a mode from the packet. The number of
packet modes in a layer of the width of the localization vol-
ume at the edge, which are resonant with a cold exterior
mode, will be proportional to �n. After long enough spread-
ing �n�1. On average there will be no mode inside the
packet, which could efficiently resonate with an exterior
mode. Therefore, resonant growth can be excluded.

V. SUMMARY AND DISCUSSION

We studied the spreading of wave packets in disordered
one-dimensional nonlinear chains. In particular we consid-
ered two systems, namely, the DNLS model �Eq. �1�� and the
quartic KG system �Eq. �6��. The linear parts of these two
models are equivalent in the sense that they correspond to
the same eigenvalue problem �Eq. �3��.

We predicted theoretically and verified numerically the
existence of three different dynamical behaviors depending
on the relation of the nonlinear frequency shift  �which is
proportional to the system’s nonlinearity� with the average
spacing 	� of eigenfrequencies and the spectrum width
	�	��	� of the linear system. The dynamics for small non-
linearities ��	�� is characterized by localization as a tran-
sient with subsequent subdiffusion �regime I�. For interme-
diate values of the nonlinearity 	���	, and the wave
packets exhibit immediate subdiffusion �regime II�. In this
case, the second moment m2 and the participation number P
increase in time following the power laws m2� t� and P
� t�/2. Assuming that the spreading is due to an incoherent

excitation of the cold exterior induced by the chaotic behav-
ior of the wave packet, we predicted �=1 /3. Finally, for
even higher nonlinearities ��	� a large part of the wave
packet is self-trapped, while the rest subdiffuses �regime III�.
In this case P remains practically constant, while m2� t�.
The overall picture is schematically presented in Fig. 1 both
for the DNLS and the KG model.

The compactness index �= P2 /m2, which measures the
sparseness of wave packets, exhibits different behaviors for
the three dynamical regimes. In particular, the behavior of �
for wave packets in regime II imply that these wave packets
spread but do not become more sparse.

For large values of the disorder strength W and/or strong
nonlinearity the intermediate regime II effectively disap-
pears, and the evolution will start either in regime I or in
regime III. In regime I the detrapping times increase with
further increase of W. In regime III the fraction of the wave
packet which spreads decreases with increasing nonlinearity.
Therefore, large values of W and/or nonlinearity will not
allow for an observation of the destruction of the Anderson
localization on time scales which are bounded from above by
practical computational limitations.

The subdiffusive spreading is universal, i.e., the exponent
� is independent of the nonlinearity’s strength �� for the
DNLS model and energy E for the KG one� and W, which
are only affecting the prefactor in Eq. �23�. Excluding self-
trapping, any nonzero nonlinearity strength � will com-
pletely delocalize the wave packet and destroy the Anderson
localization. The exponent � is determined solely by the de-
gree of nonlinearity, which defines the type of overlap inte-
gral to be considered in Eq. �20�, and by the stiffness of the
spectrum ����. Our numerical computations confirmed the
prediction �=1 /3 in the case of single-site and nonlocal ho-
mogeneous excitations. In the case of single-mode excita-
tions the three different regimes were also detected. The nu-
merically computed exponents � get slightly larger values
than 1/3, exhibiting also a small dependence on the strength
of nonlinearity. This discrepancy between the two cases in
not clearly understood.

We studied the statistics of detrapping times �d for regime
I. We provided numerical evidences for the validity of the
conjectured dependence of �d on the nonlinearity strength
and on the average norm density of the excited NMs given in
Eq. �17�. It is worth mentioning that distributing the energy
of a single-site excitation belonging to regime II over more
sites results in a time dependence of m2 and P similar to
regime I. In addition, considering as initial condition the pro-
file of a single-site excitation in regime II at some later time
td, we observe a dynamical evolution of the type of regime I
where the detrapping time is �d� td.

The spreading of the wave packet is due to weak but
nonzero chaotic dynamics inside the packet. It is natural to
expect such a dynamics since the considered systems are
nonintegrable. If instead an integrable system is considered,
the Anderson localization will not be destroyed. Indeed, con-
sider a Hamiltonian in NM representation using actions J�

and angles �� as coordinates:
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Hint = �
�

��J� + � �
�1,�2,�3,�4

I�1,�2,�3,�4

J�1

J�1
J�1

J�1
. �24�

We assume that the set of eigenfrequencies ���� and the over-
lap integrals I�1,�2,�3,�4

are identical with those describing the

DNLS model Eqs. �4� and �5�. The equations of motion J̇�

=−�Hint /��� and �̇�=�Hint /�J� yield J̇�=0 since the inte-
grable Hamiltonian �24� depends only on the actions. There-
fore, any localized initial condition �e.g., J��t=0���,�0

� will
stay localized, since actions of modes which are at large
distances will never get excited. Thus, the observed spread-
ing of wave packets, which we studied in detail in the
present work, is entirely due to the nonintegrability of the
considered models at variance to Eq. �24�.

The more the wave packet spreads, the weaker the reso-
nances become. Corresponding structures �chaotic layers� in
phase space become thinner and thinner. Consider quantum
many-body systems. Classical phase space structures which
are finer than the action quantization induced grid become
irrelevant. Therefore we may speculate that the wave packet
will stop spreading for a quantum many-body system at
some point for zero temperature but also for temperatures
below some finite threshold. These expectations are very
close to rigorous results for interacting fermions in disor-
dered systems �21�.

In our study we considered initial conditions exciting
NMs whose eigenvalues are located close to the center of the
frequency band. Thus, the evolution of the system does not
significantly depend on the sign of nonlinearity. In contrast,
when one excites eigenstates with frequencies near the band
edges, a rather weak nonlinearity might lead either to self-
trapping or to the weak nonlinear regime depending on the
sign of nonlinearity. Such examples were presented in �4�
where NMs close to the edges of the band exhibit different
dynamical behaviors, i.e., one becomes more localized as the
nonlinearity was switched on, while the other tends to delo-
calize. If a spatially continuous system is considered, then a
proper choice of the sign of nonlinearity prohibits self-
trapping �so-called defocusing nonlinearity, corresponding to
repulsive two-body interactions�. For such a case, regime III
ceases to exist, and localization is expected to be destroyed
irrespectively of the strength of nonlinearity.
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APPENDIX: THE SABA2 AND SBAB2 SYMPLECTIC
INTEGRATORS

In �18� a family of symplectic integrators which involve
only forward integration steps was proposed. These integra-
tors were adapted for integrations of perturbed Hamiltonians
of the form

H = A + �B , �A1�

where both A and B are integrable and � is a parameter. We
briefly recall here their main properties focusing our atten-
tion on two particular members of the family of integrators
presented in �18�, namely, the SABA2 and SBAB2 integra-
tors. These integrators have already proved to be very effi-
cient for the numerical study of astronomical �18�, as well as
accelerator models �22�.

Consider a Hamiltonian system of N degrees of freedom
having a Hamiltonian H�p� ,u��, with p� = �p1 , . . . , pN�, u�
= �u1 , . . . ,uN�, where ul and pl, with l=1, . . . ,N, are the gen-
eralized coordinates and momenta, respectively. An orbit of
this system is defined by a vector x��t�= (x1�t� , . . . ,x2N�t�),
with xl= pl and xl+N=ul, where l=1, . . . ,N. This orbit is a
solution of Hamilton’s equations of motion:

dpl
�

dt
= −

�H

�ul
�

,
dul
�

dt
=

�H

�pl
�

, l = 1, . . . ,N , �A2�

where t is the independent variable, namely, the time. Defin-
ing the Poisson bracket of functions f�p� ,u�� and g�p� ,u�� by

�f ,g� = �
l=1

N � � f

�pl

�g

�ul
−

� f

�ul

�g

�pl
� , �A3�

the Hamilton’s equations of motion take the form

dx�

dt
= �H,x�� = LHx� , �A4�

where LH is the differential operator defined by L�f = �� , f�.
The solution of Eq. �A4�, for initial conditions x��0�=x�0, is
formally written as

x��t� = �
n�0

tn

n!
LH

n x�0 = etLHx�0. �A5�

A symplectic scheme for integrating Eq. �A4� from time t to
time t+� consists of approximating, in a symplectic way, the
operator e�LH =e��LA+L�B� by an integrator of j steps involving
products of eci�LA and edi�L�B, with i=1,2 , . . . , j, which are
exact integrations over times ci� and di� of the integrable
Hamiltonians A and B. The constants ci and di are chosen so
that to increase the order of the remainder of this approxi-
mation.

For the SABA2 integrator we get

SABA2 = ec1�LAed1�L�Bec2�LAed1�L�Bec1�LA, �A6�

with c1= 1
2 �1− 1


3
�, c2= 1


3
, and d1= 1

2 , while the SBAB2 inte-
grator is given by

SBAB2 = ed1�L�Bec2�LAed2�L�Bec2�LAed1�L�B, �A7�

with c2= 1

2

, d1= 1
6 , and d2= 2

3 . Using these integrators we are
actually approximating the dynamical behavior of the real
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Hamiltonian A+�B by a Hamiltonian H̃=A+�B+O��4�
+�2�2�, i.e., we introduce an error term of the order �4�
+�2�2.

The accuracy of the SABA2 �or SBAB2� integrator can be
improved when the term C= ��A ,B� ,B� leads to an integrable
system, as in the common situation of A being quadratic in
momenta p� and B depending only on positions u� . In this
case, two corrector terms of small backward steps can be
added to the integrator SABA2,

SABA2C = e−��3�2g/2�LC�SABA2�e−��3�2g/2�LC. �A8�

A similar expression is valid also for SBAB2. The value of g
was chosen in order to eliminate the �2�2 dependence of the
remainder which becomes of order O��4�+�4�2�. In particu-
lar we have g= �2−
3� /2 for SABA2 and g= 1

72 for SBAB2.
We note that the SABA2 and SBAB2 integrators involve only
forward steps which increases their numerical stability,
while, the addition of the corrector results to better accuracy
of the schemes, introducing simultaneously a small back-
ward step.

1. Integration of the KG lattice

Hamiltonian �6� is suitable for the implementation of the
SABA2C integration scheme since it attains form �A1� with

A 	 �
l=1

N
pl

2

2
,

B 	 �
l=0

N
�̃l

2
ul

2 +
1

4
ul

4 +
1

2W
�ul+1 − ul�2,

� = 1, �A9�

where N is the number of anharmonic oscillators. The opera-
tors e�LA, e�LB, and e�LC, which propagate the set of initial
conditions �ul , pl� at time t, to their final values �ul� , pl�� at
time t+�, with l=1,2 , . . . ,N, are

e�LA:�ul� = pl� + ul

pl� = pl,
� �A10�

e�LB:�ul� = ul

pl� = �− ul��̃l + ul
2� +

1

W
�ul−1 + ul+1 − 2ul��� + pl, �

�A11�

e�LC:�
ul� = ul

p1� = 2�� 2

W
+ �̃1 + 3u1

2��− u1��̃1 + u1
2� +

1

W
�u2 − 2u1�� +

1

W
�u2��̃2 + u2

2� −
1

W
�u3 + u1 − 2u2���� + p1

pl� = 2� 1

W
�ul−1��̃l−1 + ul−1

2 � −
1

W
�ul−2 + ul − 2ul−1�� + � 2

W
+ �̃l + 3ul

2��− ul��̃l + ul
2� +

1

W
�ul−1 + ul+1 − 2ul���

� +
1

W
�ul+1��̃l+1 + ul+1

2 � −
1

W
�ul+2 + ul − 2ul+1���� + pl, for l = 2,3, . . . ,N − 1

pN� = 2� 1

W
�uN−1��̃N−1 + uN−1

2 � −
1

W
�uN−2 + uN − 2uN−1�� + � 2

W
+ �̃N + 3uN

2��− uN��̃N + uN
2 � +

1

W
�uN−1 − 2uN���� + pN

�
�A12�

since

C = �
l=1

N �ul��̃1 + ul
2� −

1

W
�ul−1 + ul+1 − 2ul��2

�A13�

and u0=uN+1	0.

2. Integration of the DNLS lattice

We use the SBAB2 integrator scheme to integrate the
equations of motion �2�, by splitting the DNLS Hamiltonian
�1� as

A 	 − �
l=1

N

��l+1�l
� + �l+1

� �l� ,

B 	 �
l=1

N

�l��l�2 +
�

2
��l�4,

� = 1, �A14�

with N being the number of lattice sites. The action of the
operator e�LA on �l, with l=1,2 , . . . ,N at time t, leads to the
computation of �l� at time t+� and includes three steps: �a�
the transformation of the wave function from the real ��l� to
the Fourier ��q� space, through a fast Fourier transform
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�FFT�, �b� a rotation of �q, and �c� the inverse FFT of the
wave function �q� evaluated at the previous step, i.e.,

e�LA:��q = �
m=1

N

�me2�iq�m−1�/N

�q� = �qe2i cos�2��q−1�/N��

�l� =
1

N
�
q=1

N

�q�e
−2�il�q−1�/N.� �A15�

On the other hand, the action of e�LB on �l reduces to a
simple rotation in real space, namely,

e�LB:��l� = �le
−i��l+���l�

2��� . �A16�

Note that for the DNLS model we do not apply the two
corrector steps since the term C= ��A ,B� ,B� does not lead to
an easily solvable system.
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