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received 14 March 2012; accepted 25 May 2012
published online 27 June 2012

PACS 05.45.-a – Nonlinear dynamics and chaos
PACS 05.60.Cd – Classical transport
PACS 63.20.Pw – Phonons in crystal lattices: Localized modes

Abstract – We perform high-precision computational experiments on nonlinear waves in two-
dimensional disordered lattices with tunable nonlinearity. While linear wave packets are trapped
due to Anderson localization, nonlinear wave packets spread subdiffusively. Various speculations
on the growth of the second moment as tα are tested. Using fine statistical averaging we find
agreement with predictions from Flach S., Chem. Phys., 375 (2010) 548, which supports the
concepts of strong and weak chaos for nonlinear wave propagation in disordered media. We extend
our approach and find potentially long-lasting intermediate deviations due to a growing number
of surface resonances of the wave packet.

Copyright c© EPLA, 2012

Introduction. – Anderson localization (AL) —the
halt of wave propagation in random potentials due
to exponentially localized modes— was theoretically
predicted over 50 years ago [1] and more recently
observed within a variety of experiments, including optics
[2–5] and matter waves [6,7]. These two fields are of keen
interest, in that AL can be strongly altered by nonlinear
Kerr effects in disordered photonic lattices [8–10], or
atomic Bose-Einstein condensate interactions in optical
lattices [11–15].
Research on wave dynamics in nonlinear disordered

media largely focuses on wave packet evolution in
one-dimensional (1-d) systems. Asymptotic subdiffusive
spreading is observed. An extended debate of theories
yielding different power exponents [16–22] appears to be
clarified by the theoretical predictions and their numerical
verifications in [23–27] for 1-d cases. Most studies focus
on quartic nonlinearities which correspond to two-body
interactions. Motivated greatly by experiment, e.g., in
liquid-crystal optics [28,29] or at BEC-BCS crossovers in
ultracold Fermi gases [30,31], one may also parametrize
the nonlinearity exponent. This was done for the case of
1-d systems in [24,32]. The innovation here is to extend
to two-dimensional (2-d) disordered systems. For such
lattices that are multidimensional, disordered, and have

(a)E-mail: lapteva@pks.mpg.de

variable nonlinearity exponents, spreading behaviors
were broadly conjectured within [25]. The aim of this
letter is to perform computational experiments to test
the conjectures for asymptotic spreading in 2-d lattices
with tunable nonlinearity. We also investigate the case
of small nonlinearity exponents at which the theory
predicts an anomaly in the number of wave packet surface
resonances which should grow with ongoing spreading.
We test the robustness of the theoretical predictions in
this regime as well, where subdiffusion competes with
fingering resonance instabilities.

Models. – The first model scrutinized is the general-
ized disordered nonlinear Schrödinger equation (gDNLS),
with the Hamiltonian

HD =
∑

r

[

ǫr |ψr|2+
2β |ψr|σ+2
σ+2

−
∑

n

ψrψ
∗

n

]

. (1)

Here r= (l,m) denotes a 2-d lattice vector with integer
components, ψr is the complex valued function subjected
to the r-th lattice site, and the n runs over nearest
neighbors. The disorder appears in on-site energies ǫr,
which are uncorrelated random values drawn uniformly
from an interval [−W/2,W/2] parameterizing by the
disorder strength W . The nonlinearity of strength β is
generalized to a power σ > 0. This is best seen in the
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equations of motion, derived from ψ̇r = ∂HD/∂(iψ∗r ) as

iψ̇r = ǫrψr+β |ψr|σ ψr−
∑

n

ψn. (2)

The above set of dynamic equations conserves the total
energy HD, as well as the total norm S =

∑

r
|ψr|2. The

1-d version of the gDNLS has been extensively studied:
for σ= 2 it relates to recent experimental photonics [10]
and has been investigated numerically [23–27]. For a few
integer values of σ 1-d simulations were presented in [32].
Simulations with non-integer σ were also performed [19] on
short time scales without focus on asymptotic spreading.
The second model considered is the generalized 2-d

Klein-Gordon (gKG) lattice with the Hamiltonian

HK =
∑

r

[

p2
r

2
+
ǫ̃ru

2
r

2
+
|ur|σ+2
σ+2

+
1

4W

∑

n

(un−ur)2
]

,

(3)
where ur and pr, respectively, are conjugated coordinates
and momenta on the lattice site r, with an energy density

Er =
p2
r

2
+
ǫ̃ru

2
r

2
+
|ur|σ+2
σ+2

+
1

4W

∑

n

(un−ur)2 . (4)

The positive numbers ǫ̃r have uncorrelated random values
drawn uniformly from an interval [1/2, 3/2]. From ür =
−∂HK/∂ur, the equations of motion read

ür =−ǫ̃rur− |ur|σ ur+
1

W

∑

n

(un−ur) . (5)

This set of dynamic equations conserves only the total
energy HK =

∑

r
Er. The 1-d version of the gKG has

also been extensively studied, as it can be considered
as a model for dynamics of anharmonic optical lattice
vibrations in molecular crystals [33]. The quartic 1-d case
was heavily used in numerical investigations [23–27], and
different values of σ have also been addressed [34].
Note, that in gKG the scalar value HK acts as

the nonlinearity control. Several works [35–37] draw
an approximate equivalence between the two models.
For quartic (σ= 2) nonlinearity, this translates into
βS ≈ 3WHK. It connects the KG initial parameters
HK and W to the total initial norm S and nonlinear
parameter β of the corresponding quartic DNLS model.
We generalize this condition to any power σ

β
∑

r

|ψr|σ ≈ aσW
∑

r

Eσ/2
r
, aσ ≡

8(σ+1)Γ(σ)

σ(σ+2)Γ2(σ/2)
.

(6)
Neglecting nonlinear terms both eqs. (2), (5) reduce

to an identical eigenvalue problem, giving a set of expo-
nentially localized eigenstates (denoted as normal modes,
NM) with frequencies λr in a spectrum of width ∆D =
8+W in the case of gDNLS. Linear reduction for the gKG

1 2 3
σ
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Fig. 1: Parameter space of the nonlinearity power σ and the
energy E of a single-site excitation. Dashed lines show the
variation of the boundary obtained from variation of V (see
inset). The symbols correspond to the set of parameters (σ, E)
used in numerical simulations: “∗” for (2, 0.3), (2, 2.0); “+”
for (0.5, 0.00001), (0.7, 0.0005), (1.0, 0.006); “◦” for (1.3, 0.025),
(1.5, 0.04); “×”for (0.5, 0.005), (0.7, 0.03). Inset: the depen-
dence of localization volume V on disorder strengthW . Squares
(diamonds) are for the linear version of eq. (1) (eq.(3)). The
gray region denotes an overall standard deviation. The solid
line guides the eye.

is similar, but with squared frequencies ω2
r
in a spectrum

of width ∆K =∆D/W = 1+8/W . We will focus mainly
on analytics of the gDNLS, since it is straightforward to
adapt results for the gKG using eqs. (6).

Expected regimes. – Consider the time-dependent
normalized norm density distribution, zr ≡ |ψr|2 /S.
The gKG counterpart is the normalized energy density
distribution, zr ≡Er/HK. Distributions are analyzed
by means of the second moment, m2 =

∑

r
|r−m1|2 zr,

where the first moment m1 determines the distribution
center. The second moment quantifies the squared width
of the packet, hence, its spreading. The participation
number, P = 1/

∑

r
z2
r
, measures the number of effectively

excited sites. The packet sparseness is measured by the
compactness index [23], which for 2-d models is ζ = P/m2.
The NMs of the linear equations interact with each other

in the presence of the nonlinear terms. In order to estimate
the number of other NMs a given NM will be interacting
with, we measure the localization volume V . It is simply
obtained from the linear equations by evolving a single-
site excitation up to times when the second moment m2
saturates signaling a halt of linear wave spreading due
to Anderson localization. We measure the participation
number P and average it over 100 disorder realizations
to obtain V . The dependence of V on W is shown in the
inset of fig. 1, where squares (diamonds) are for the linear
version of eq. (1) (eq. (3)), the gray cloud is the overall
standard deviation, and the solid line is a line that guides
the eye. Similar curves also appear in [38,39].
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Next we can estimate the average frequency spacing of
NMs within the localization volume which is d=∆D/V .
The two linear frequency scales d and ∆D are expected
to control the details of packet spreading. Nonlinearity
introduces an additional frequency scale —the nonlinear
frequency shift of a single oscillator, proportional to
βρσ/2 for the gDNLS, where ρ is the average norm
density of a packet. Note that the frequency shift is
controlled by the nonlinearity and the density, and can
therefore take different values relative to ∆D and d <∆D.
Both the initial norm/energy density of a packet and
its typical size were suggested [25] as the major control
parameters for the dynamics at given W and σ. Under
strong enough nonlinearity, a fraction of a wave packet
(or even the whole packet) exhibits self-trapping [40]. For
weaker nonlinearity (such that self-trapping is avoided),
two possible dynamical outcomes are possible. The packet
spreads in an intermediate regime of strong chaos with
subsequent dynamical crossover into an asymptotic regime
of weak chaos, or spreading starts directly in the weak-
chaos regime. For single-site excitations the prediction
turns into [25]

β(ρ/V )σ/2 < d, weak chaos,

β(ρ/V )σ/2 > d, strong chaos, (7)

βρσ/2 >∆D, self-trapping.

The spreading of nonlinear wave packets is due to
an incoherent energy transfer between NMs inside the
packet to nearby exterior NMs [23,25,41]. This incoher-
ent transfer appears due to deterministic chaos which
in turn is controlled by Chirikov-type nonlinear reso-
nances [25]. The connection between the diffusion rate
D and the probability P(βρσ/2)≈ 1− exp

(

−βρσ/2d−1
)

for packet NMs to be in nonlinear resonance is conjec-
tured as D∼ β2ρσ(P(βρσ/2))2. For large enough nonlin-
earities (i.e., βρσ/2d−1≫ 1) it follows P ≈ 1, hence nearly
all modes interact in the regime of strong chaos. For
weaker nonlinearities (i.e., βρσ/2d−1≪ 1) it turns to P ≈
βρσ/2d−1, i.e., only a small fraction of modes resonantly
interact in the regime of weak chaos. The subdiffusion is
finally obtained from m2 ∼ ρ−1 which leads to power laws

m2, P ∼ tα, α=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

1+2σ
, weak chaos,

1

1+σ
, strong chaos.

(8)

Note that for σ→ 0 both regimes yield normal diffusion.
At the same time, the system dynamics should approach
the behavior of the linear system (σ= 0) which is charac-
terized by Anderson localization and therefore absence of
diffusion. This is possible, since the prefactors in (8) will
also depend on σ. As was shown in ref. [34], the prefactors
indeed tend to zero in 1-d systems, leading to a vanishing
of the corresponding diffusion constant.

Since the packet norm/energy density decreases in time
during spreading, eventually the condition for strong chaos
will be no longer satisfied —spreading will cross into the
regime of weak chaos. Still, the duration of the strong-
chaos regime can be greatly prolonged, so much that the
crossover occurs at infeasible computation times.
In the regime of weak chaos, the number of resonances

in the packet volume NRV and on its surface NRS are
estimated [25] as

NRV ∼ βρσ/2−1, NRS ∼ βρ(σ−1)/2. (9)

According to the above equation, for the 2-d case there
are critical values of nonlinearity power: the number of
volume resonances will grow for σ < 2, likewise σ < 1
for surface resonances. We therefore expect these critical
values may manifest unusual effects in the course of packet
spreading.

Numerical simulations. – The following numerics
present only gKG results, for two reasons. First, the
presence of a corrector scheme for gKG [24] allows two
magnitude orders greater in integration. Second, all prior
simulations of both models [23–27] show qualitatively
similar results in a wide range of parameters.
To test the analytical prediction of eq. (8), we choose
W = 10, for which the localization volume V ≈ 34. For an
initial single-site excitation (L= 1) of energy E , regime
boundaries from eq. (7) can be easily mapped into a E(σ)
form using eq. (6). This gives a parameter space, shown
in fig. 1.
We excite the central site by setting its momentum equal

to
√
2E , while coordinates are equal to zero everywhere.

The typical lattice size is 200× 200 sites. Equations (5) are
evolved using SABA-class symplectic integration schemes
[42] with a time step of 10−1 maintaining a relative energy
conservation up to 10−2. For each set of parameters, we
calculate the three measures m2, P, ζ. We then average
over 400 disorder realizations. For each parameter set,
we determine the spreading power-law exponent as local
derivative α(t)≡ d 〈log10m2〉/d log10 t (see, e.g., [26]).
Subdiffusion for σ= 2: weak chaos and self-trapping.

With single-site excitations, the strong-chaos regime is
unreachable for σ� 2. In fig. 2, the weak-chaos regime
(E = 0.3, lower “∗” in fig. 1) displays spreading with m2
and P growing (blue curves) to reach an asymptotic
spreading that follows the predicted power law of eq. (8).
This can be seen by the saturation α≃ 0.21, which is
in good agreement with the theoretical prediction of 1/5
for weak chaos. This ought to be compared to an earlier
work [43], in which the asymptotic law was hypothesized
as 1/4, with numerical integration only up to 106, and
less averaging over only 10 disorder realizations. Indeed,
at this time, we also approximately obtain the same
value (α≃ 0.234). However, upon integrating further, our
expectation of α= 1/5 is revealed by the saturation. The
numerical analysis in [43] is therefore insufficient, and
their predicted exponents may be based on incorrect
estimates of the diffusion rate D. In this regime, the

60002-p3
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Fig. 2: (Color online) Numerics for “∗” in fig. 1. The parameters
(σ, E) = (2, 0.3), (2, 2.0) correspond to the weak chaos ((b)lue)
and self-trapping ((r)ed). Left column: average log of the
second moment (top) and its power-law exponent (bottom) vs.
log time. The dashed line is the theoretical expectation for the
weak chaos α= 0.20. Right column: average log of participation
number (top) and average compactness index (bottom) vs. log
time. In both columns of the upper row the lighter clouds
correspond to a standard deviation. Inset: normalized density
distributions at t= 108, averaged first over realization and then
over the m-index.

asymptotic compactness index is ζ ≃ 2.36 (blue curve in
fig. 2), meaning that the packet spreads, yet remains
largely thermalized (ζ ≈ 3). Large values of E satisfy the
self-trapping regime. This behavior can be seen in the
red curves of fig. 2 (E = 2.0, upper “∗” in fig. 1). A
large portion of energy remains trapped on the initially
excited site, while a much smaller portion subdiffuses.
We thusly observe an increase of m2 (smaller portion
subdiffusion), while P remains largely unaffected (large
self-trapped portion). The compactness index approaches
zero —a very good indication of self-trapping [26]. In the
inset of fig. 2 we show normalized density distributions
(averaged first over realizations, then over the m-index)
for both regimes. The self-trapping regime reveals a
characteristically trapped portion in the center.

Subdiffusion for 1<σ < 2: weak chaos. Numeri-
cal findings for “◦” in fig. 1 with parameters (σ, E) =
(1.3, 0.025), (1.5, 0.04) are shown in fig. 3. Particularly
in the lower left panel, the exponent α is shown to also
asymptotically saturate. The two “I”-bars do not show
error per se, rather their lower/upper bounds dictate
the weak/strong-chaos expectations for α from eq. (8).
The asymptotic saturations are approximately α≃ 0.3
for σ= 1.3 and α≃ 0.26 for σ= 1.5, which is quite close
to their weak-chaos expectations of 0.278 and 0.250,
respectively. The compactness values of ζ ≃ 2.44, 2.10 at
t= 107 remain fairly thermalized. Therefore, these two
points fully follow our expected theory of weak-chaos
spreading.
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r
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Fig. 3: (Color online) Numerics for “◦” in fig. 1. The parame-
ters (σ, E) = (1.3, 0.025), (1.5, 0.04) are colored, respectively, as
(r)ed and (b)lue. Left column: average log of second moment
(top) and its power-law exponent (bottom) vs. log time. The
I-bar bounds denote the theoretical expectations from eq. (8)
for weak chaos (lower bound) and strong chaos (upper bound).
Right column: average log of participation number (top) and
average compactness index (bottom) vs. log time. In both
columns of the upper row the lighter clouds correspond to a
standard deviation.

Subdiffusion for σ� 1: strong chaos. Moving to the
left in the parametric space (fig. 1), we cross the theoretical
division between strong and weak chaos (two representa-
tive points are shown by “×”). The corresponding numeri-
cal results with parameters (σ, E) = (0.5, 0.005), (0.7, 0.03)
are shown in fig. 4. Similarly, the I-bar bounds give weak-
chaos (top) and strong-chaos (bottom) expectations for
the respective values of σ. The asymptotic saturations for
these two representative points are approximately α≃ 0.67
for σ= 0.5 and α≃ 0.57 for σ= 0.7, which is quite close
to their respective strong-chaos expectations of 0.667 and
0.589. The compactness index fluctuates due to a slight
asymptotic slope change in the participation numbers,
nevertheless, it remains nearly thermalized (about 1.7 for
t= 106). Therefore, these two points follow our expected
theory of strong-chaos spreading.

Subdiffusion for σ� 1: intermediate behaviors. Mov-
ing down in the parametric space (fig. 1), we cross back
to the theoretical weak-chaos regime (three representative
points are given by “+”). Performed numerics are shown in
fig. 5, where red curves are for (σ, E) = (0.5, 0.00001), green
curves are for (σ, E) = (0.7, 0.0005), and blue curves are for
(σ, E) = (1.0, 0.006). These points exhibit behavior differ-
ent from those described in previous sections. Namely, in
the lower left panel the exponent power α reaches asymp-
totic values of 0.586, 0.494, 0.375, respectively, for red,
green, and blue curves. That is a clear tendency toward
saturations resting in neither regime. Namely, the expo-
nents reach asymptotic values, which lay between the two
limits of strong and weak chaos. Similar behavior was also

60002-p4



Subdiffusion of nonlinear waves in two-dimensional disordered lattices

1

2

3

〈 
lo

g
1
0
 m

2
 〉

1

2

3

〈 
lo

g
1
0
 P

 〉

2 3 4 5 6
log 

10 
t

0.4

0.6

0.8

1

α

2 3 4 5 6
log 

10 
t

2

3

〈 
ζ
 〉

r r

r r

b

b
b

b

Fig. 4: (Color online) Numerics for “×” in fig. 1. The parame-
ters (σ, E) = (0.5, 0.005), (0.7, 0.03) are colored, respectively, as
(r)ed and (b)lue. Left column: average log of second moment
(top) and its power-law exponent (bottom) vs. log time. The I-
bars denote the theoretical expectations from eq. (8) for weak
chaos (lower bound) and strong chaos (upper bound). Right
column: average log of participation number (top) and aver-
age compactness index (bottom) vs. log time. In both columns
of the upper row, the lighter clouds correspond to a standard
deviation.

hinted about σ= 1.0 for the 1-d KG model (cf. fig. 5 of
[34]). Returning to our argument of resonance probabil-
ity, this suggests both the weak/strong limits are invalid
—the value of P must be explicitly found. More than just
a few modes contribute, but certainly not enough to yield
strong-chaos regime.

Dimensional analysis. According to eq. (9), the
concept of resonance probability may be viewed in the
light of competition between surface growth vs. volume
growth. Surface resonances more easily lead to the
density leakage into modes exterior to the packet. This
process in turn increases the packet’s perimeter, therefore
yielding more surface resonances. Packets may thusly
develop finger structures or fragment, perhaps leading to
a fractal-like structure.
As a first hypothesis, we consider the normalized energy

densities zr = Er/HK at t= 106, where an asymptotic
regime is reached (cf. figs. 2–5). In fig. 6, the largest
contour path for zr � 10

−5 is shown, corresponding
roughly to the expanding packet’s surface. The left panel
is for weak chaos with σ > 1, the middle panel is for
weak chaos with σ� 1, and the right panel is for strong
chaos. Overlaid in black is the localized linear packet
surface. A comparison of the coefficient α in figs. 3–5
can be observed. The wave packet in the left panel (α
corresponds to weak-chaos asymptotic) spreads less than
that presented in the middle panel (α in between the
weak- and strong-chaos limits), which spreads less than
the right panel (α corresponds to the strong-chaos limit).
However, the boundary shape itself provides no further
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Fig. 5: (Color online) Numerics for “+” in fig. 1. The
parameters (σ, E) = (0.5, 0.00001), (0.7, 0.0005), (1.0, 0.006) are
colored, respectively, as (r)ed, (g)reen, and (b)lue. Left column:
average log of second moment (top) and its power-law exponent
(bottom) vs. log time. Similarly, I-bar bounds denote the theo-
retical expectations from eq. (8) for weak chaos (lower bound)
and strong chaos (upper bound). Right column: average log
of participation number (top) and average compactness index
(bottom) vs. log time. In both columns of the upper row, the
lighter clouds correspond to a standard deviation.

m

l l l

Fig. 6: Largest contour for zr � 10
−5 at t= 106. The black area

in the center is the contour for the linear case, while the panels,
respectively, correspond to (from left to right): weak chaos with
(σ, E) = (1.5, 0.04), weak chaos with (σ, E) = (0.5, 0.00001), and
strong chaos (σ, E) = (0.5, 0.005).

Table 1: Box-counting dimension for the different regimes,
zr � 10

−5.

Regime (σ, E) 〈Df 〉
Linear N/A 1.498± 0.045

(2.0, 0.3) 1.621± 0.019
Weak chaos, σ > 1 (1.5, 0.04) 1.601± 0.021

(1.3, 0.025) 1.623± 0.017
(1.0, 0.006) 1.667± 0.015

Weak chaos, σ� 1 (0.7, 0.0005) 1.723± 0.011
(0.5, 0.00001) 1.740± 0.007

Strong chaos (0.7, 0.030) 1.734± 0.009
(0.5, 0.005) 1.730± 0.007
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evidence: no boundary appears to be more fragmented or
fingered than the others.
Therefore, we turn to a dimensional analysis of the

contours. Binarizing zr at the threshold � 10
−5, a box-

counting algorithm [44] is performed to extract the fractal
dimension Df of the surface. The results were averaged
over 100 different realizations and are presented in table 1.
This further suggests: there are no clear and distinct
fragmentation/fingering structures that might separate (in
a geometric sense) the weak chaos at σ� 1 from the other
two regimes.

Conclusion. – We have investigated the spreading
of a single-site excitation under a variable power of
nonlinearity within a 2-d disordered lattice, in particular
for the Klein-Gordon case of eq. (3). For such a system,
we numerically confirm the second-moment behavior of
eq. (8), as first hypothesized in [25]. In particular, we
verify the existence of both a weak-chaos and a strong-
chaos regime. We distinguish these regimes by the number
of resonant NMs in the wave packet that finally results
in faster subdiffusion in the case of transient strong-
chaos regime (nearly all modes become resonant), or,
in slower subdiffusion in the case of asymptotic weak-
chaos regime (the inter-mode resonances are rare), see
eq. (8). In addition, an intermediate regime for σ� 1
is observed, with spreading behavior between the two
limits of strong and weak chaos. We have performed an
analysis of the wave packet geometries, but so far, strong
fragmentation/fingering evidence in this regime, compared
to the other regimes, is eluding. Possible future avenues
along these lines may include lacunarity and density-
density correlation measures. The behavior between the
two regimes certainly remains open for future exploration,
as well as pushing numerically the DNLS to achieve similar
observations.
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