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Abstract – Single-particle states in a chain with quasiperiodic potential show a metal-insulator
transition upon the change of the potential strength. We consider two particles with local
interaction in the single-particle insulating regime. The two-particle states change from being
localized to delocalized upon an increase of the interaction strength to a nonperturbative finite
value. At even larger interaction strength the states become localized again. This transition of two-
particle bound states into correlated metallic ones is due to a resonant mixing of the noninteracting
two-particle eigenstates. In the discovered correlated metal states two particles move coherently
together through the whole chain.

Copyright c© EPLA, 2012

Introduction. – The interplay of localization and
many-body interactions has been a highly active research
topic since the discovery of Anderson localization [1].
While the direct theoretical study of such systems is quite
complex and recently hotly debated (see, e.g., [2]), another
route is taken by studying few interacting particles. The
potential applicability to recent experimental activities
with ultracold atoms in optical lattices [3] increased the
interest in corresponding theoretical studies. Localiza-
tion of single-particle states in a one-dimensional lattice
can be realized in spatially inhomogeneous potentials. An
external dc field leads to Wannier-Stark localization and
Bloch oscillations [4], random field yields Anderson local-
ization [1], and quasiperiodic modulation evokes Aubry-
Andre localization [5]. Two interacting particles (TIP)
in a dc field lead to no substantial change of the local-
ization length due to the Stark ladder structure of the
single-particle eigenenergies (disregarding some resonant
tunneling events which, however, are also suppressed for
large distances) [6]. TIP in the random case do lead to
an increase of the localization length with some contro-
versial discussions about the quantitative outcome [7–9],
but do not yield complete delocalization, For TIP in the
quasiperiodic potential case few numerical results give

(a)E-mail: khomeriki@hotmail.com

varying predictions from incremental increase of localiza-
tion length to opposite reports of decrease of localization
length in the insulating regime [10–12].
In this work we consider the TIP problem in a quasiperi-

odic chain at finite (nonperturbative) strength of interac-
tion, deep in the single-particle insulating regime. We find
strong evidence for a complete delocalization of certain
two-particle bound states, in which both particles keep
a relative distance less than the one-particle localiza-
tion length. The interaction renormalizes eigenenergies of
different classes of localized TIP eigenstates with different
strength, and leads to a resonant overlap of these ener-
gies in a certain range of the interaction constant. In this
nonperturbative window the overlap between these groups
of eigenstates leads finally to a complete delocalization of
a finite fraction of states. This results in the novel observa-
tion of a correlated metal state built from only two inter-
acting particles.

TIP model. – We study the TIP in the framework of
the Hubbard model with Hamiltonian

Ĥ=
∑

j

[

b̂+j+1b̂j + b̂
+
j b̂j+1+ ǫj b̂

+
j b̂j +

U

2
b̂+j b̂

+
j b̂j b̂j

]

, (1)

where b̂+j and b̂j are creation and annihilation operators of
indistinguishable bosons at lattice site j, and U measures
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the onsite interaction strength between the bosons. The
potential

ǫj = λ cos(β+2παn) (2)

controls the single-particle problem via its strength λ. The
incommensurability parameter α= (

√
5− 1)/2 (golden

mean). β is an arbitrary phase which controls wave packet
dynamics and is irrelevant for the properties of extended
metallic eigenstates.
For a single particle the interaction term does not

contribute. Using the basis |j〉 ≡ b̂+j |0〉 the eigenstates |ν〉
of Hamiltonian (1) with eigenvalues λν are computed
using |ν〉=

∑

j A
ν
j b
+
j |0〉 , Ĥ|ν〉= λν |ν〉. Aνj ≡ 〈j|ν〉 are the

eigenvectors. As was first shown by Aubry and Andre [5]
(see also [13,14]), for λ< 2 all eigenstates are delocalized
(metallic phase) and for λ> 2 all states are localized (insu-
lating phase) with a localization length ξ1 = 1/ln(λ/2).
Consequently the probability distribution function (PDF)

p
(ν)
l = 〈q|b̂+l b̂l|q〉 ∼ exp [−2|l|/ξ1] is exponentially localized
in the insulating regime. The bounded eigenvalue spec-
trum shows fractal properties (see, e.g., [15]). At the value
λ= 2.5 (which is the main reference parameter for compu-
tational studies in this work) the spectrum has three main
minibands called SP1, SP2, and SP3 with centers around
λ=−2.5, 0, 2.5 and ordered with increasing energy.
For two particles we expand the eigenstates |q〉 of the

TIP problem in the local basis,

|q〉=
N
∑

m,l�m

L(q)l,m|l,m〉, |l,m〉 ≡ b
+
l b
+
m|0〉√
1+ δlm

, (3)

where L(q)l,m = 〈l,m|q〉 are the normalized eigenvectors with
l�m. Thus, [L(q)l,m]2 is the probability to find two particles
on the sites l and m. We also compute the PDF of the
eigenmodes |q〉 as

p
(q)
l =

〈q|b̂+l b̂l|q〉
2

=
1

2

⎛

⎝

N
∑

k,l�k

L(q)2l,k +
N
∑

m,l�m

L(q)2m,l

⎞

⎠ (4)

and their participation numbers Pq = 1
/
∑N
l (p

(q)
l )

2

that are proportional to the respective localization
lengths. We note that at the noninteracting limit
U = 0 and λ= 2.5 the spectrum decomposes into
five minibands TP1, TP2, TP3, TP4, TP5 (see
fig. 1). This follows from the three-miniband struc-
ture of the single-particle spectrum, such that, e.g.,
TP1 is formed from two single-particle states SP1:
TP1= (SP1× SP1). Analogously, TP2= (SP1×SP2),
TP3= (SP2×SP2)∪ (SP1×SP3), TP4= (SP2×SP3),
TP5= (SP3×SP3), where TPp= (SPm×SPn) corre-
sponds to a two-particle product state TPp with one
of the particles being in a single-particle eigenstate in
miniband SPm and another one in SPn.

Exact diagonalization studies. – To check for the
selective character of a delocalization effect we present

Fig. 1: (Color online) (a) Participation number of interacting
particle eigenstates vs. their eigenenergies; (b) and (c) present

typical localized and delocalized eigenfunctions |L
(q)
l,m| which

correspond to the background and peaks in graph (a), respec-
tively. In (d) we plot PDFs of localized (red) and delocalized
(blue) eigenmodes. Here U = 7.9 and λ= 2.5.

participation numbers of all eigenstates vs. their eigenen-
ergies for the particular choice of the interaction constant
U = 7.9 (fig. 1(a)). The five-miniband structure of the
noninteracting case is clearly seen. This follows from the
fact, that most states correspond to two particles sepa-
rated by a distance larger than the localization length,
and, therefore, these states do not change when the inter-
action is increased. It is these states that also stay at
a small value of the participation number of the order
of P ≈ 5. However, in the minibands TP2 and TP4 we
observe candidates for metallic delocalized states with
50<P < 100 being one order of magnitude larger. Two
characteristic eigenvectors for localized and delocalized
states are shown in fig. 1(b), (c), and their correspond-
ing PDFs are plotted in fig. 1(d). The metallic state in
fig. 1(b), (d) indeed occupies the whole system. For this
state both particles stay close to each other, forming a
diagonal structure in fig. 1(b). Therefore, we coin these
correlated metallic two-particle bound states.
Next we examine the characteristics of eigenstates for
λ= 2.5 and various systems sizes and different values of
U . We start with N = 100. For each value of U we find
the state with the largest participation number and plot
this number vs. U in fig. 2. While for U < 4 and U > 10
the number stays around 10–20, three humps up to a
value of 40 are noted for 4<U < 10. Since the spatial
size of an eigenvector is roughly 2–3 times larger than
its participation number, we conclude that in the hump
regions the analyzed states extend over the whole system.
We increase the system size to N = 150, 200, 250 and
repeat the above analysis. We observe that the hump
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Fig. 2: (Color online) Top panel: dependence of the largest
participation number (of the mostly delocalized eigenstate) on
U for different lattice sizes N = 100, 150, 200, 250 (from bottom
to top) and for λ= 2.5. Inset: the dependence of the number
Q of delocalized states on the system size for the parameters
λ= 2.5 and U = 4.5. The straight line is a fitQ=N/13. Bottom
panel: dependence of the participation number (circles) on the
energy eigenvalues in the frequency range where delocalized
modes are observed for short (N = 100, left) and long (N =
1000, right) chains. Other parameters are λ= 2.5 and U = 4.5.

heights grow linearly with the system size, indicating that
for all system sizes the most delocalized eigenstates in the
hump regions spread over the whole system. This is a clear
evidence of complete delocalization of some eigenvectors in
the mentioned parameter region.
Since the eigenvalues of delocalized modes are located

within a narrow frequency range which is not affected
by the system size, we extend the diagonalization up to
N = 1000 using the standard MATLAB diagonalization
procedure tailored for square large sparse matrices. For
such large systems we are restricted to narrow frequency
ranges. We computed the dependence of the number of
delocalized modes Q on N and present the result in the
inset of fig. 2. We obtain Q≈N/13 for λ= 2.5 and U = 4.5
diagonalizing in the range of eigenvalues −3.097± 0.01.
Such a scaling is a clear evidence that the delocalized
states have a nonzero measure with respect to the number
of modes at the diagonal (which is also proportional to
N). Obviously off-diagonal Hilbert states are not relevant
in forming a wave packet since their contribution is
exponentially small if one has an initial state in a form

Fig. 3: (Color online) Time and space dependence of the PDF
of an initial state with two particles at adjacent sites for λ= 2.5
(color maps log10 PDF). Left panel: isolator phase, U = 2, right
panel: correlated metal phase, U = 4.5.

of closely placed particles. We also plot the locations of
delocalized modes in energy space for short (N = 100) and
long (N = 1000) chains. As seen from the bottom panel of
fig. 2, localized and delocalized states coexist in the same
frequency range. Increasing the length of the chain causes
a growth of the density of delocalized states proportional
to N .

Simulations on evolving wave packets. – Using
exact diagonalization we are restricted to lattice sizes
N < 1000. In order to push the limits, we compute the
evolution of the Schrödinger equation in real time without
diagonalization, starting with two particles located on
adjacent sites. When and if the extended states exist, such
initial conditions must excite them, making a part of a
two-particle wave packet propagate. Typical PDFs as a
function of space and time are shown in fig. 3. We find
ballistic spreading over the whole system with N = 2500
sites for U = 4.5, and complete localization for U = 2. This
extends the evidence for complete delocalization of the
initial state into extended eigenstates of two interacting
particles.
We perform a scan in the parameter space {U, λ} in

order to identify the region of correlated metallic two-
particle bound states. We choose a system size N = 610,
and place two particles at adjacent sites in the center
of the chain. The Schrödinger equation is evolved up to
time t= 1.5× 104. The square-root second moment of the
wave packet PDF is then measured for 60 different original
particle positions and the outcome for the fastest growing
realization is plotted in color code as a function of both
λ and U in fig. 4. For λ� 2 all single-particle states are
metallic, therefore this region is not of interest. However,
for λ> 2 single-particle states are localized. Here we find
a large region of metallic bound states for 3�U � 15 and
λ� 3. Towards larger values of λ the existence region
breaks up into two main tongues, which we observed also
in fig. 2. Note also two separate tongue structures at
around U ≈ 1.5 and U ≈ 15 which stretch up to λ≈ 2.4.
The observed correlated metallic bound states have to

form bands with a continuous spectrum. The width of

66002-p3
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Fig. 4: (Color online) The phase diagram of the TIP in a quasi-
periodic potential as suggested by the long-term wave packet
evolution (the color code maps its square-root second moment,
see text for further details). In light areas metallic eigenstates
exist, in the dark area there exist localized eigenstates only. The
dashed horizontal line marks the MIT for the noninteracting
case. Below it the system is a metal. For nonzero interactions
a new phase of a correlated metal is formed in the midst of the
insulator region.

these bands will determine the largest group velocity of
spreading fronts as in fig. 3. We found that these velocities
are in general dependent on the control parameter values.

Theoretical interpretation. – In the following we
will discuss a possible mechanism for the observed effect
of the appearance of correlated metallic bound states in
the main existence region of the correlated metal phase in
fig. 4 for λ= 2.5. Let us consider the Fock space of two
noninteracting particle eigenfunctions

|μ, ν〉= 1
√

δμν +1

∑

k,ℓ

AμkA
ν
ℓ b̂
+
k b̂
+
ℓ |0〉, (5)

where μ� ν are the indices of the single-particle eigen-
states, sorted according to their position along the chain.
For nonzero interactions we expand an eigenstate as

|Ψ(t)〉=
∑

μ�ν

∑

ν

φμν(t)|μ, ν〉. (6)

and the evolution equation for the coefficients φμν reads

iφ̇μν = Eμνφμν +
∑

μ′�ν′,ν′

U · Iμν,μ′ν′φμ′ν′ . (7)

The renormalized energies Eμν and the overlap integrals
Iμν,μ′ν′ responsible for hopping between the modes |μ, ν〉
and |μ′, ν′〉, are obtained from

Eμν = (λμ+λν)+UI0μν , I0μν =
2

δμν +1

∑

j

(

AμjA
ν
j

)2
,

Iμν,μ′ν′ =
2

√

(δμν +1)(δμ′ν′ +1)

∑

j

AμjA
ν
jA
μ′

j A
ν′

j . (8)

We are interested only in bound states where the two
particles are within a localization length distance from
each other, since these are observed to yield a transi-
tion to a correlated metal. The renormalization in each
miniband depends on the strength of the overlap integrals
I0μν . We compute them numerically and find that the aver-
age overlap integrals I0 ≈ 0.5 from TP1 and I0 ≈ 0.3 from
TP3. Note that the values for I0 for states from TP2 and
TP4 are much smaller, since the Fock states are made
of products of different single-particle states. TP5 yields
again large values of I0 but is irrelevant for reasons given
below. We also obtain that the average overlap integrals
Iμν,μ′ν′ ≈ 0.1. Let us consider only states from TP1. The
increase in U leads to a broadening of TP1 width, since
some energies get strongly renormalized and some less.
In the Fock space we therefore observe an increase of an
effective potential strength (which is similar to λ for the
noninteracting case) as 0.5U . At the same time the differ-
ent Fock states from TP1 increase their overlap (which
is similar to the hopping strength of a single particle)
as 0.1U . Therefore, the increase of the potential strength
wins, and these states do not cross over into a delocalized
regime, when no further Fock states are considered. The
same is essentially true for all TIP minibands. However, at
some value of U some renormalized states from TP1 will
resonate with weakly renormalized states from TP2. This
group of states is characterized by a zero potential strength
(since they are resonant) and any finite overlap will there-
fore lead to a complete delocalization. The expected value
of U follows from the distance between the minibands
which is around 2, and with I0 = 0.5 we predict the delo-
calization to start around U = 4 as observed in the numer-
ics. This is the rough location of the left large tongue in
fig. 4.
Using the same reasoning we predict that a resonant

mixing of renormalized states from TP3 with some from
TP4 is expected at around U = 6.7, as follows from the
miniband distance around 2 and the TP3 value I0 = 0.3.
Again this is indeed the observed location of the right
large tongue in fig. 4. It is a challenging task to extend
the above arguments to the whole phase diagram in
fig. 4.
The novel state of a correlated metal formed from two

interacting particles should be easily measured using inter-
acting pairs of ultracold Rb atoms in optical lattices [3],
due to the recent advances in single-atom control [16]. Also
the effect is expected to show up in optical beam patterns
in 2D waveguide arrays which is a classical analogy [17] of
the considered model.

Conclusions. – To summarize, we observed a nonper-
turbative delocalization of two interacting particles in
a quasiperiodic potential deep in the insulator phase
of the noninteracting problem. The corresponding corre-
lated metallic bound states keep both interacting parti-
cles at a distance less than the single-particle localization
length. This happens because the interacting particles may

66002-p4
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redistribute their total energy into different Fock states
which are coupled due to the interaction. We gave esti-
mates for the appearance of the correlated metallic phase
in the parameter space, which agree well with the numer-
ical data. It is a challenging task to extend the theory to
the whole parameter space, to make it quantitative, and
to explore the effect of a further increase of the particle
number. The spectral entanglement of localized and delo-
calized states appears to be rather intricate. We do not
observe a classical conduction band separated by mobility
edges from localized states. At the same time the spectrum
of the single-particle problem is already highly complex,
and far from having a simple one-band structure. The
spectral properties of the TIP remain therefore a highly
interesting and important open issue for future studies.
Another very intriguing issue concerns the fate of delocal-
ized TIP states in the presence of more particles, up to
finite particle densities.
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