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a b s t r a c t 
In the study of subdiffusive wave-packet spreading in disordered Klein–Gordon (KG) nonlinear lattices, 
a central open question is whether the motion continues to be chaotic despite decreasing densities, or 
tends to become quasi-periodic as nonlinear terms become negligible. In a recent study of such KG parti- 
cle chains with quartic (4th order) anharmonicity in the on-site potential it was shown that q −Gaussian 
probability distribution functions of sums of position observables with q > 1 always approach pure Gaus- 
sians ( q = 1 ) in the long time limit and hence the motion of the full system is ultimately “strongly 
chaotic”. In the present paper, we show that these results continue to hold even when a sextic (6th 
order) term is gradually added to the potential and ultimately prevails over the 4th order anharmonic- 
ity, despite expectations that the dynamics is more “regular”, at least in the regime of small oscillations. 
Analyzing this system in the subdiffusive energy domain using q -statistics, we demonstrate that groups 
of oscillators centered around the initially excited one (as well as the full chain) possess strongly chaotic 
dynamics and are thus far from any quasi-periodic torus, for times as long as t = 10 9 . 

© 2017 Elsevier Ltd. All rights reserved. 
1. Introduction 

Anderson localization [1] , i.e. the absence of wave diffusion 
in disordered media, is a phenomenon affecting many physical 
processes, such as for example the conductivity of materials, 
the behavior of granular matter, the dynamics of Bose–Einstein 
condensates, etc. The effect of nonlinearity on the localization 
properties of wave packets in disordered systems has attracted 
the attention of many researchers, both experimentally [2–4] and 
theoretically [5–28,31] . Recent studies of nonlinear disordered 
variants of two typical one-dimensional Hamiltonian lattice mod- 
els, namely the Klein–Gordon (KG) oscillator chain and the discrete 
nonlinear Schrödinger equation, revealed the statistical character- 
istics of energy spreading and showed that nonlinearity destroys 
localization [7,8,11,13,18,19] . In these papers, the existence of 
different dynamical behaviors in different energy density regimes 
was established, their particular dynamical characteristics were 
determined and their appearance was theoretically explained. 
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However, important questions regarding the asymptotic behav- 
ior of wave-packet spreading, and the persistence of chaos in such 
systems, still remain unanswered. Some researchers have conjec- 
tured [29,30] that wave packets will eventually approach torus-like 
structures in phase space, exhibiting at the same time less chaotic 
behavior which eventually leads to the halt of energy spreading 
in the chain. Although most numerical investigations on nonlin- 
ear disordered lattices show that wave packets continue spreading 
chaotically, at least up to times accessible to computer simulations, 
some numerical indications of a possible slowing down of spread- 
ing for particular models have been reported in the literature 
[17,24] . The diversity of the models studied so far includes systems 
with different numbers N IoM of integrals of motion or conserved 
quantities, and the degree of anharmonicity σ which is related to 
a corresponding n -body interaction or equally to the number of in- 
teracting normal modes mediated by the anharmonicity. N IoM = 1 
for the mentioned case of KG lattices, while N IoM = 2 for the DNLS 
case. In most studied cases σ = 2 which corresponds to quartic an- 
harmonicity and two-body interactions. Here we will also study 
σ = 4 which corresponds to sextic anharmonicity and three-body 
interactions. 

To investigate the potential asymptotic approach to regular (or 
irregular) dynamics, the properties of the motion in the subdif- 
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fusive regime of the KG model with σ = 2 were recently studied 
[25,31] . In [25] , the computation of the maximum Lyapunov expo- 
nent (MLE) showed that although chaotic dynamics slows down 
as expected from a subdiffusive process, it does not cross-over 
to a regime of regular behavior. In [31] the dynamics of a disor- 
dered quartic (termed KG4) lattice was studied using q -statistics 
[32] by analyzing probability distribution functions (pdfs) of po- 
sition observables describing the evolution of wave packets initi- 
ated by exciting the central lattice particle. In that work it was 
shown that the overall motion displays strongly chaotic behavior 
for long times, again with no signs of the dynamics relaxing on 
quasi-periodic tori. 

In this paper, we apply the above methodology followed in 
[25,31] to a KG model which includes a gradually increasing sex- 
tic anharmonicity which is assumed to show an asymptotic slow- 
ing down of the wave packet spreading - if existing - at earlier 
times, since the impact of this anharmonicity is weaker than the 
quartic one, as long as small densities are considered. In line with 
what we discovered in the KG4 model [31] , both the full lattice, as 
well as groups of particles around the initially excited one at the 
center remain strongly chaotic and show no signs of approaching 
quasi-periodicity, even after very long integration times (at least 
up to t = 10 9 , with time scales dictated by the linear equations be- 
ing of order one). On the other hand, individual particles far from 
the center, after interacting with the wave-packet behave at first 
weakly chaotically, but later also tend to strong chaos for times as 
long as t = 10 9 . We find that the closer the particles are to the 
center of the lattice, the more strongly chaotic their behavior is 
(with pdfs closer to the Gaussian q = 1 case), and that the dynam- 
ics of the whole lattice is always strongly chaotic, with pdfs obey- 
ing Boltzmann–Gibbs thermostatistics. Thus, all our results indicate 
that the wave packet spreading is a truly chaotic process which 
does not show any tendency to become more regular. Our results 
are also supported by the computation of the time dependence 
of the largest Lyapunov exponent which again show no cross-over 
into a regime of regular behavior, similar to the KG4 case [25] . 

The paper is structured as follows: In Section 2 we present the 
KG model and outline the used statistical methods in the spirit 
of the Central Limit Theorem (CLT). In Section 3 we examine the 
mixed case of both quartic and sextic anharmonicities in the po- 
tential and consider the statistical properties of the dynamics as 
the sextic terms become increasingly more important. In Section 4 , 
we focus on the purely sextic anharmonicity model and describe 
the results obtained when we excite only the central particle of a 
500 particle chain and monitor the chaotic evolution of individual 
particles, groups of particles about the central one, as well as the 
whole system. Our conclusions and a discussion follow in Section 5 . 
2. Model and numerical methods 

The Hamiltonian of the disordered one-dimensional KG lattice 
studied in [11] is 
H = N ∑ 

l=1 
p 2 

l 
2 + ˜ ϵl 

2 x 2 l + | x l | σ+2 
σ + 2 + 1 

2 W (x l+1 − x l ) 2 , (1) 
where l is the lattice site index, x l and p l are respectively the gen- 
eralized canonically conjugated coordinates and momenta (with 
x N+1 = 0 ), σ measures the degree of anharmonicity and W = 4 
controls the nearest neighbour interaction strength and thus the 
effective strength of disorder. Disorder enters through the on- 
site harmonic squared frequencies ˜ ϵl which are random uncorre- 
lated numbers chosen uniformly from the interval [ 1 

2 , 3 2 ]. The to- 
tal energy E ≡ H ≥ 0 of the system serves as a control parameter 
of the nonlinearity for fixed disorder strength W . The case σ = 2 
corresponds to the typical quartic disordered KG4 model. Wave 

packet spreading in the KG4 case was studied in several papers 
[7,8,13,18,19,25,31] . The equations of motion follow as ˙ x l = ∂ H/∂ p l 
and ˙ p l = −∂ H/∂ x l . 

The dynamics of wave packet spreading in the Hamiltonian 
(1) was analyzed in detail in [11] for several anharmonicity values 
σ , following the evolution of the normalized energy density 
z l = E l ∑ N 

i =1 E i (2) 
of the site-energies E l = p 2 

l 
2 + ˜ ϵl 

2 x 2 l + | x l | σ+2 
σ+2 + 1 

4 W [(x l+1 − x l ) 2 + 
(x l−1 − x l ) 2 ] . The main goal was to monitor the evolution of the 
second moment m 2 
m 2 = N ∑ 

l=1 (l − l̄ ) 2 z l , l̄ = N ∑ 
l=1 lz l (3) 

which quantifies the wave packet degree of spreading, and the par- 
ticipation number 
P = 1 

∑ N 
l=1 z 2 l , (4) 

which measures the number of the most strongly excited sites in 
the system. In [11] it was found that the wave packet spreads in- 
coherently and subdiffusively with m 2 ∝ t α and P ∝ t α/2 with the ex- 
ponent 
α = 1 

σ + 1 (5) 
up to the largest computed times, indicating no loss of incoherent 
(chaotic) dynamics and no cross-over to coherent (regular) dynam- 
ics. 

In the present paper we consider a hybrid model (termed KG46 
here) which interpolates between the quartic σ = 2 and sextic 
σ = 4 cases by including sextic terms in (1) . We expect that sex- 
tic terms are generating weaker nonlinear terms in the equations 
of motion, and could amplify a crossover to regular dynamics, if 
present. In all our models we follow the evolution of single-site 
excitations of the central particle in the subdiffusive regime de- 
fined in [11] (see Fig. 1 in [11] ), by considering N = 500 sites and 
setting the total energy of our lattice to some constant energy E . 
In particular, for a given set of ˜ ϵ values, we choose x l = 0 and 
p l = √ 

2 E δl,N/ 2 , where δi, j is the Kronecker delta, thus exciting pre- 
cisely one oscillator in the center of the system which has N sites. 

To study the resulting trajectories, we integrate numerically the 
equations of motion of Hamiltonian (1) by the 4th order Yoshida’s 
symplectic integrator [33] . In our simulations, we set the integra- 
tion time step to τ = 0 . 05 , which typically keeps the relative en- 
ergy error at about 10 −6 . Furthermore, to obtain reliable statistical 
results that are independent of the particular realizations, we con- 
sider an ensemble of 64 disorder realizations, i.e. 64 random se- 
quences of ˜ ϵl values in (1) . Apart from the computation of m 2 and 
P , we also evaluate the MLE λ1 . For this purpose, we use the same 
symplectic integration scheme for the integration of the variational 
equations of system (1) according to the tangent map method [34–
36] . The variational equations govern the evolution of small de- 
viation vectors from the studied trajectory and are used for the 
evaluation of the MLE according to the so-called standard method 
[37–39] . 

We use the solutions of the equations of motion of Hamilto- 
nian (1) to construct pdfs of suitably rescaled sums of M values of 
a generic observable η(t i ) , i = 1 , . . . , M, which depends linearly on 
the position coordinates of the solution. Viewing these as indepen- 
dent and identically distributed (iid) random variables (in the limit 
of M → ∞ ), we evaluate their sum 
S ( j) 

M = M ∑ 
i =1 η(t i ) ( j) , j = 1 , . . . , N ic , (6) 
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Fig. 1. Entropic indices averaged over 64 random disordered realizations for the hybrid quartic-sextic KG46 chain of N = 500 particles with A = 0 . 5 , as well as the purely 
sextic KG6 chain with A = 0 . We first present indicative results for the mixed case A = 0 . 5 : (a) ⟨ q 21 ⟩ , 21 particles around the central particle and (b) ⟨ q 500 ⟩ , the whole chain, 
as well as individual particles in (c) ⟨ q (200) ⟩ and (d) ⟨ q (300) ⟩ for the 200th and 300th particles respectively. We also show entirely analogous results for the case A = 0 in 
(e)–(h). All simulations correspond to single site excitations of the central particle i = 250 . All pdfs considered for the evaluation of the entropic indices are computed for 
100 time windows in [0, t f ], where each time window starts always from t = 0 . 
for N ic initial conditions and study the statistics of quantities 
(6) centered about their mean value ⟨ S ( j) 

M ⟩ and rescaled by their 
standard deviation 
s ( j) 

M ≡
S ( j) 

M − ⟨ S ( j) 
M ⟩ 

σM , (7) 
where σ 2 

M = ⟨ S ( j)2 
M ⟩ − ⟨ S ( j) 

M ⟩ 2 . Plotting the normalized histogram of 
the probabilities P (s ( j) 

M ) as a function of s ( j) 
M , we then compare the 

resulting numerically computed pdfs with a q -Gaussian of the form 
P (s ( j) 

M ) = a exp q ( −βs ( j)2 
M ) ≡ a (1 − (1 − q ) βs ( j)2 

M ) 1 
1 −q 

, (8) 
where q is the so-called entropic index, β is an arbitrary parame- 
ter and a a normalization constant. Eq. (8) is a generalization of 
the well-known Gaussian pdf, since in the limit q → 1 we have 
exp q (−βx 2 ) → exp (−βx 2 ) . Moreover, it can be shown that the q - 

Gaussian distribution is normalized when 
β = a √ 

π
+
(

3 −q 
2(q −1) )

(q − 1) 1 2 +(
1 

q −1 ) , (9) 
where + is the Euler + function. Clearly, Eq. (9) shows that the al- 
lowed values of q are 1 < q < 3 for the normalization to be possible. 

The index q appearing in (8) is connected with the Tsallis en- 
tropy [32] . Systems characterized by the Tsallis entropy are said 
to lie at the “edge of chaos” and are significantly different from 
Boltzmann–Gibbs systems, in the sense that their entropy is non- 
additive and generally non-extensive [32] . 

Let us now consider the values of one (or a linear combina- 
tion) of coordinates x of the solution of system (1) at discrete times 
t i , i = 1 , . . . , M, as realizations of N ic random variables X ( j ) ( t i ), j = 
1 , . . . , N ic and study in detail their statistics. Typically, the re- 
sults presented in this work are obtained by setting N ic = 10 6 and 
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M = 10 3 . According to the CLT [40] , if these variables are random, 
their sum-distributions yield a Gaussian pdf, whose mean and vari- 
ance are those of the X ( j ) ’s. This happens for many dynamical sys- 
tems in strongly chaotic regimes, where correlations decay expo- 
nentially and the system obeys Boltzmann–Gibbs statistics. How- 
ever, in weakly chaotic regimes, these pdfs do not rapidly converge 
to a Gaussian, but instead are approximated for long times, by a 
q -Gaussian distribution (8) with 1 ≤ q < 3. 
3. Results for the hybrid quartic-sextic (KG46) case 

Let us consider a Hamiltonian that includes quartic as well as 
sextic order terms in the on-site potential, i.e. 
H = N ∑ 

l=1 
p 2 

l 
2 + ˜ ϵl 

2 x 2 l + A x 4 l 
4 + (1 − A ) x 6 l 

6 + 1 
2 W (x l+1 − x l ) 2 , (10) 

where 0 ≤ A ≤ 1. Note that the introduction of the parameter A in 
(10) allows us to investigate a family of Hamiltonians that ranges 
from the KG4 ( A = 1 ) to the KG6 ( A = 0 ) system. 

Following [31] , we have used energy values E = 0 . 4 and E = 0 . 6 
in (10) , which corresponds to the subdiffusive regime of the KG4 
system. Although we studied the behavior of system (10) for vari- 
ous values of parameter A , we present in Fig. 1 illustrative results 
for A = 0 . 5 only. Fig. 1 shows the time evolution of the entropic in- 
dex averaged over 64 realizations for four indicative cases: ⟨ q 21 ⟩ 
corresponding to 21 particles about the center, ⟨ q 500 ⟩ for the full 
chain, and ⟨ q (200) ⟩ and ⟨ q (300) ⟩ for the 200th and 300th particles. 
Here ⟨ . . . ⟩ indicates averaging of the quantity over all 64 disorder 
realizations. We first plot these indices in Fig. 1 (a)–(d) for the hy- 
brid quartic-sextic KG46 case A = 0 . 5 and then repeat the calcu- 
lation for the same indices in the purely sextic KG6 case A = 0 
in Fig. 1 (e)–(h). The only difference is that particle groups have 
indices that rapidly converge to q = 1 , while individual particles 
behave weakly chaotically with indices significantly higher than 
unity, but also show a tendency to approach q = 1 for very long 
times. From these results we conclude that the dynamics of the 
chain is strongly chaotic as the q -values are close to 1, especially 
when large parts of the lattice are considered, just as was observed 
in the purely quartic KG4 case studied in [31] . 

Now, for any non-zero values of A it is expected that the 
asymptotic behavior of the dynamics will be controlled by the 
quartic terms of the Hamiltonian (or equivalently by the cubic 
terms in the corresponding equations of motion), since the con- 
tribution of the sixth order part will eventually become negligible 
as the wave packet spreads and the values of x l decrease in mag- 
nitude. This is indeed what we observe for A = 0 . 5 in Fig. 1 (a),(b) 
since the overall dynamics is similar to the behavior of the KG4 
model studied in [31] . This turns out to be more generally true as 
the results for several other non-zero values of A (not presented 
here) are qualitatively similar to the ones shown in Fig. 1 (a)–(d). 
For this reason, we focus our attention in the next section on the 
A = 0 case. 
4. Results for the purely sextic KG6 case 

We set A = 0 in (10) , and present in Figs. 2 and 3 the subdiffu- 
sive indicators of single-site excitations of the central particle av- 
eraged over 64 disorder realizations. First, in Fig. 2 (a),(b) we show 
the time dependence of the second moment ⟨ m 2 ⟩ and participa- 
tion number ⟨ P ⟩ respectively, shading by grey one standard devia- 
tion away from the mean. Here ⟨ . . . ⟩ indicates averaging of the log- 
arithm of the quantity over all 64 disorder realizations. In Fig. 3 (a) 
we show the MLE ⟨ λ1 ⟩ , while in Fig. 3 (b) we depict the normal- 
ized energy z l of all particles l = 1 , . . . , 500 for one of the 64 re- 
alizations, at t = 10 7 . As we see in Fig. 3 (a), λ1 first decays as 1/ t 

during an initial transient phase, and after that continues to decay 
with a much weaker exponent as 1/ t 0.3 , which indicates that the 
motion remains chaotic in time (since regular motion would cor- 
respond to 1/ t [39] ). This behavior is similar to the one observed 
in [25] for the KG4 model, with a slightly different decay expo- 
nent 1/ t 0.25 . The results in Fig. 2 (b) are in good agreement with the 
prediction of Eq. (5) . In Fig. 3 (b), on the other hand, it is evident 
that the particles at both edges of the chain are not excited at this 
time. We have also been careful to check that the normalized en- 
ergies z l for particles close to the edges are always smaller than 
10 −10 , at least up to t = 10 9 , to guarantee that the wave packet 
did not reach the edges of the chain during the integration times. 

Let us now turn to the statistical properties of the KG6 lattice as 
the initial excitation of the central particle diffuses to its neighbor- 
ing sites. In Fig. 1 (e),(f) we present for A = 0 the time evolution of 
the same two entropic indices as in Fig. 1 (a),(b) for A = 0 . 5 , imply- 
ing again that any collection of particles around the central one, 
including the full lattice, show strongly chaotic behavior as their 
averaged entropic indices are practically equal to one. On the other 
hand, Fig. 1 (g),(h) show that single particle statistics is analogous to 
what one finds for A = 0 . 5 in Fig. 1 (c),(d). These results suggest that 
the wave packet spreading dynamics in the subdiffusive regime of 
the KG6 system also does not approach a KAM regime of invariant 
tori. This is in agreement with [11,25,31] , where similar behaviors 
were found for KG4 systems, and with Section 3 where the hybrid 
KG46 models were considered, and thus supports the conclusions 
that the overall motion in these systems never approaches a KAM 
regime of quasi-periodic motion. 

As an illustrative example of how the corresponding pdfs look 
like, we present in Fig. 4 (a), for A = 0 , a pdf with q slightly smaller 
than 1. This distribution refers to a group of 121 particles symmet- 
rically located around the particle i = 250 for one disorder realiza- 
tion of the KG6 model with E = 0 . 6 . The pdf is constructed from 
values of the observable η121 = ∑ 310 

i =190 x i for t in [9 · 10 6 , 10 7 ]. The 
analysis yields q 121 = 0 . 95 ± 0 . 017 , which is very close to the q = 1 
case of Boltzmann–Gibbs strong chaos. Entirely analogous results 
are obtained for the hybrid KG chain with A = 0 . 5 in Fig. 4 (b) for 
21 particles around the central one. 

The significance of q < 1 values is as yet unclear. Thus, we have 
performed an analysis with different summands for the calcula- 
tion of the pdfs as a function of time and have found they exhibit 
smaller than 1 entropic indices for long time intervals. This sug- 
gests that q < 1 may not be due to numerical errors as it is per- 
sistent for long enough times, but does not entirely exclude this 
possibility (e.g. finite time and size effects). Conversely, it may be 
due to a deeper reason related to a similar result reported recently 
in [41] , where large systems of coupled logistic maps near their 
chaotic threshold were also found to exhibit pdfs with q < 1 when 
subjected to a different type of randomness , namely that of additive 
noise in the equations of motion. Consequently, we believe that 
more work on this fascinating behavior should be devoted to iden- 
tify the underlying reason. 
5. Conclusions 

In this paper we have analyzed the chaotic properties of wave- 
packet spreading in KG disordered lattices with higher than 4th 
order nonlinearity in their on-site potential, using the method- 
ology of q -statistics and non-extensive Statistical Mechanics [32] . 
Our aim was to provide further evidence to strengthen the conclu- 
sions of earlier investigations [25,31] that wave packet spreading 
remains strongly chaotic for longer and longer integration times. 
Studying the entropic q index of suitably chosen probability den- 
sity functions, we showed numerically that the lattice in parts, but 
also as a whole, behaves strongly chaotically, with q → 1 as time 
increases to t = 10 9 . This suggests that the overall motion in these 
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systems does not approach the quasi-periodic regime of invariant 
tori as conjectured by some authors, due to progressively smaller 
nonlinear effects at each lattice site as time goes to infinity. 

To further establish this conclusion, we examined a class of on- 
site disordered potentials with quartic and/or sextic anharmonic- 
ities, and analyzed wave packet dynamics generated by exciting 
the central particle and spreading subdiffusively over a 500-site 
one-dimensional chain. We found that all these KG systems re- 
main strongly chaotic, in parts and as a whole, showing no sign 
of approaching quasi-periodic behavior, even after times as long 
as t = 10 9 . We also verified that individual particles close to the 
center of the lattice, after interacting with the wave, exhibit first 
weakly chaotic motion with q values significantly larger than unity, 
but eventually also show a tendency towards strong chaos, just as 
was reported in [31] for a KG4 model with purely quartic anhar- 

monicity. Focusing on the strictly sextic KG6 model, which is ex- 
pected to be closer to linear dynamics for small energy densities, 
we noted that here also strongly chaotic behavior prevails as time 
becomes very large. 

In conclusion, the indisputable fact is that when we consider 
the full lattice or groups of particles around its center, the long- 
time dynamics is always strongly chaotic with entropic index q = 
1 . Interestingly, in the purely sextic KG6 case, as well in the hybrid 
KG46 lattice, there are particle groups that attain q values slightly 
less than one (see Fig. 4 )! This is reminiscent of a similar result in a 
recently published q -statistical analysis of coupled weakly chaotic 
logistic maps in the presence of noise [41] . Of course, noise in 
[41] enters additively in the evolution equations, while in our sys- 
tem disorder is spatial and present only in the parameters. Thus, 
the occurrence of q < 1 in such models requires further study to 
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shed more light on the different types of chaotic behavior occur- 
ring in these multi-dimensional Hamiltonian systems. 
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