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Discrete time quantum walks are unitary maps defined on the Hilbert space of coupled two-level
systems. We study the dynamics of excitations in a nonlinear discrete time quantum walk, whose
fine-tuned linear counterpart has a flat band structure. The linear counterpart is, therefore, lacking
transport, with exact solutions being compactly localized. A solitary entity of the nonlinear walk
moving at velocity v would, therefore, not suffer from resonances with small amplitude plane waves
with identical phase velocity, due to the absence of the latter. That solitary excitation would also have
to be localized stronger than exponential, due to the absence of a linear dispersion. We report on the
existence of a set of stationary and moving breathers with almost compact superexponential spatial
tails. At the limit of the largest velocity v = 1, the moving breather turns into a completely compact
bullet. Published by AIP Publishing. https://doi.org/10.1063/1.5060654

In this work, we utilize a nonlinear generalization of a dis-
crete time quantum walk (DTQW), which is widely used
in the field of quantum computing including experimental
realizations. This unitary map toolbox allows one to study
numerically the dynamics of solitary type excitations in
discrete lattices with great efficiency. The linear DTQW
is fine-tuned to a dispersion relation with two flat bands
which inhibit transport and allow for compact localized
states. Nonlinearity leads to the appearance of stable mov-
ing and stationary nonlinear excitations which are super-
exponentially localized. The system further allows for fully
compact bullet excitations moving with the maximum
velocity, which may also form an intriguing interacting
gas with unusual scattering properties.

I. INTRODUCTION

Discrete breathers (DBs)1,2 are generic time-periodic
and spatially localized solutions to broad classes of nonlin-
ear Hamiltonian network equations.3 Discrete breathers have
been observed and studied in a fascinating and broad setting
of physical realizations which cover several decades of tem-
poral and spatial scales (see Ref. 2 for a detailed review). If
the band structure of the linear part of the Hamiltonian net-
work is not degenerate, then DBs are localized in space either
following an exponential decay (for analytical band structure
functions) or an algebraic one (for non-analytical ones).4 If
the band structure is degenerate and consists of flat band(s)
only, DBs localize superexponentially fast.5 For specific local
symmetries of flat bands, DBs can even maintain the compact-
ness of the corresponding compact localized eigenstates of the
linear Hamiltonian network equations.6

The generic appearance of DBs in lattice structures
comes at a price. The absence of a continuous translational
invariance (which is replaced at best by some discrete one)

makes travel hard. Attempts to obtain moving DBs through
the excitation of antisymmetric perturbations of stationary
DBs lead to the proposal of various numerical procedures.7,8

These methods typically result in excitations which radiate
during propagation and eventually stop moving. Indeed, mul-
tiple attempts to obtain lossless traveling discrete breathers
suffered from facing resonances between the velocity v of a
moving DB candidate and phase velocities of small ampli-
tude plane waves.2 These—usually unavoidable—resonances
produce nondecaying tails. Relief could only be obtained by
choosing generalized discrete nonlinear Schrödinger equa-
tions. Their global phase (or simply gauge) symmetry allows
finding stationary DBs supported by just one harmonics in
time. Then tailless moving DBs could be obtained for a dis-
crete and non-empty set of velocity values v.9,10 In contrast,
systems with continuous translational invariance not only
allow for Galilean or Lorentz boosting of solitary excitations
if their stationary parents exist but also permit the occurrence
of completely compact moving solitary excitations in nonlin-
ear partial differential equations which have a missing linear
dispersive part.11 Interestingly, James reported recently on an
attempt to find traveling DBs in a strongly nonlinear discrete
nonlinear Schrödinger chain with a missing linear dispersive
part.12 However, even in this case, nondecaying tails were
observed.

In this work, we consider nonlinear generalizations of
discrete time quantum walks (DTQW) as a promising way
to overcome the above difficulties of Hamiltonian networks.
DTQW were introduced as quantum generalizations of classi-
cal random walks by Aharonov et al.13 The DTQW evolution
is given by a (discrete) sequence of unitary operators act-
ing on a quantum state of a chain of two-level systems in a
high-dimensional Hilbert space.14–16 DTQW exhibit quantum
interference and superposition,13 entanglement,17 two-body
coupling of wave functions,18 and Anderson localization.16,19
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DTQW experimental realizations were reported with ion
trap systems,20 quantum optical waveguides,21 and nuclear
magnetic resonance quantum computing.22 DTQW maps
can be considered as generated by Floquet driven quantum
Hamiltonians, without precise knowledge of the Hamiltonian.
Through a fine-tuning of the DTQW control parameters, it is
straightforward to inhibit transport by making the complete
band structure flat.16 Moreover, it is straightforward to include
nonlinear terms while keeping the unitarity of a generalized
nonlinear DTQW.23 It is worthwhile to note that linear and
nonlinear unitary DTQW are a particular case of in general
nonunitary coupled map lattices,24,25 which are widely used
to study the dynamics of populations, chemical reactions, fluid
flow, and biological networks.

By making use of direct numerical simulations and
complimentary generalized Newton schemes, we arrive at a
plethora of nonlinear DTQW breathers. The breathers lose
compactness for arbitrary weak nonlinearity and develop
superexponential tails. They can be stationary, but also mov-
ing with a dense set of velocities. Analytical results fit well
with numerical observations. The paper is organized as fol-
lows: In Sec. II, we introduce the nonlinear DTQW. In Sec. III,
we study the resulting dynamics. Section IV provides with
conclusions.

II. THE NONLINEAR DISCRETE TIME QUANTUM WALK

The dynamics of the nonlinear DTQW is evolving a two-
component wave function ψ̂n(t) = {ψ+,n(t),ψ−,n(t)} in space
and time. The nonlinear DTQW dynamics is controlled by
coin operators Ûn which are unitary matrices in general deter-
mined by four site dependent angles.16 For our purposes, we
choose the simplest and generic version controlled by only
one angle type

Ûn =
(

cos θn sin θn

− sin θn cos θn

)
, (1)

where the angles θn = θ + λSn are nonlinear functions of
ψ̂n with the norm density per site Sn = (|ψ+,n|2 + |ψ−,n|2).
Including the shift operator (see Ref. 16 for details), we arrive
at the nonlinear unitary map of the whole chain of two-level
systems (see also the schematic DTQW evolution in Fig. 1)

ψ±,n(t + 1) = cos θn∓1ψ±,(n∓1)(t) ± sin θn∓1ψ∓,(n∓1)(t). (2)

Note that for finite systems with N sites, periodic
boundary conditions are to be applied. The above evolu-
tion is unitary and preserves the total norm of the wave
function S =

∑N
n=1 Sn. Moreover, the model enjoys strobo-

scopic sublattice factorization (SSF), i.e., the evolution on
even and odd sites decouples locally if iterated over two
time units. Indeed, it follows from Eq. (2) that ψ̂n(t + 2) =

FIG. 1. A schematic representation of a general discrete-time quantum walk.
The vertical arrows indicate the quantum coin action within each two-level
system, while the horizontal ones show the action of the transfer operator.

F
[
ψ̂n−2(t), ψ̂n(t), ψ̂n+2(t)

]
. For even N , it follows that the

dynamics on even and odd sites decouples completely, simi-
lar to the two distinct sides of a Möbius band with zero twists.
Instead, for odd N , the even and odd site dynamics is globally
coupled: any excitation on an even site will explore all even
sites until it reaches the boundary where it turns odd and vice
versa. This is similar to a Möbius band with a nontrivial twist.

In the linear regime λ = 0, the coin operators turn iden-
tical and space-index independent. That allows one to seek
solutions in the form of plane waves ψ̂n(t) = ψ̂ exp[i(ωt +
kn)]. The corresponding dispersion relation reads16

cos(ω) = cos(θ) cos(k). (3)

We note that for the particular choice θ = π/2, the result-
ing band structure is composed of two flat bands ω = ±π/2.
In this case, compact localized eigenstates exist,16 and the
quantum walk dynamics is quenched resulting in the halt of
any propagating wave. Adding back the nonlinear terms with
λ ̸= 0, any possible observed transport will be entirely due to
the nonlinear terms which lead to an interaction between the
compact localized states. For the remaining part of this work,
we will use θ = π/2 only.

III. DISCRETE BREATHERS

A. Numerical observations

We study the evolution of a single-site initial condi-
tion ψ̂n(0) = δn,n0√

2
{1, 1} with the wave function norm S = 1,

launched at site n0. We use a system with size N = 2000 and
periodic boundary conditions and evolve up to time t = 104.
The resulting evolution of the norm density distribution is
shown in Fig. 2 for λ = 0.1. A part of the excitation remains
in a relatively narrow core region which spreads, albeit very
slowly. Our main observation is that the core emits solitary
type excitations at various times, which then continue to travel
separately at various velocities. These objects are obvious
candidates for traveling discrete breathers. In the following,
we will analyze them in detail.

FIG. 2. Typical temporal and spatial pattern of the nonlinear DTQW dynam-
ics. Norm density Sn is plotted versus time and space with color coding on
a logarithmic scale. λ = 0.1, with initial condition ψ̂n(0) = δn,n0√

2
{1, 1} and

n0 = 1000. The arrow indicates the moving solitary excitation analyzed in
greater detail in Fig. 3.
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B. Cut and paste

Since the moving solitary type excitations are well sep-
arated in space, we apply a “Cut and Paste” procedure. We
(i) evolve the system up to an appropriate cutting time tc, (ii)
identify the position nc of the core of a single isolated object,
(iii) obtain the distance lc from the core at which the wave
function amplitudes decay to noise levels ∼10−3, and (iv)
zero the wave function amplitudes for all sites n < nc − lc and
n > nc + lc. With a trivial re-shifting of time and space coor-
dinates, we continue the evolution of the single moving object
and its analysis. In particular, we repeat the “Cut and Paste”
procedure several times, in order to allow the excitation to
converge to a state which is almost radiationless, i.e., which is
not leaving weakly excited sites behind. In order to get a real-
valued object, we take an absolute value of each component
of ψ̂ and repeat the procedure.

An example is shown in Fig. 3. It corresponds to an orig-
inally found moving solitary object with approximate speed
v ≈ 1/37 indicated by the arrow in Fig. 2. The profile of the
norm density distribution Sn(tc) is shown in Fig. 3(a). It is
almost compactly localized. To zoom into the tails, we plot
log10 Sn(tc) in the inset of Fig. 3(a) and observe tails which are
decaying faster than exponential, i.e., superexponential (see
more details below). Due to the small velocity of that solitary
excitation, it is much more instructive to observe the evolution
by following the time dependence of the wave function ampli-
tude at a given site. Using the SSF symmetry, we will monitor
the evolution of ψ̂n for a few particular even sites at even
times. The time-dependence of |ψ±,n|2 for the right-moving
excitation from Fig. 3(a) is shown in Fig. 3(b) for six consec-
utive even sites n = 40, 42, 44, 46, 48, 50 and for even times
t = 2te. We observe equidistantly shifted curves for each of
the wave function components which indicate a motion at con-
stant speed v, and a symmetry between the evolution of both
wave function components:

ψ±,n+2

(
t + 2

v

)
= ψ±,n(t), ψ+,n

(
t + 1

v

)
= −ψ−,n(t).

(4)
Together with faster than exponential tail decay it follows that
the rear tail profile of that right moving solitary excitation
satisfies the inequalities

|ψ+,n(t)| ≪ |ψ−,n(t)| ≪ |ψ+,n+2(t)|. (5)

Note that it is straightforward to generalize these inequalities
to the front tail of a right moving solitary excitation and to
left moving excitations as well. We will use these conditions
below to obtain analytical results. Finally, we plot the time
dependence of the norm S40(te) in Fig. 3(c) on a double log-
arithmic scale. The superexponential decay of both the front
and the rear tails are clearly observed.

C. Tail analysis

In order to describe the tails of a moving solitary excita-
tion, we expand Eq. (2) to first order in λSn ≪ 1:

ψ±,n(t + 1) = −λSn∓1(t)ψ±,n∓1(t) ± ψ∓,n∓1(t). (6)

Reducing the analysis to even times and sites (SSF symme-
try) and accounting for the inequalities (5) in the rear tail, we

FIG. 3. Analysis of a moving solitary excitation with total norm S = 0.175
and λ = 0.1. (a) Snapshot of the norm density distribution Sn(t) versus n. (b)
The time evolution of |ψ±,n|2 for n = 40, 42, 44, 46, 48, 50 (from left to right).
Solid lines, |ψ+,n|2; dashed lines, |ψ−,n|2. The vertical black line guides the
eye for the observation of a symmetry between both (see text for details).
(c) S40 versus even time te on double logarithmic scale (blue solid line).
Red dashed lines show the predicted superexponential decay [see Eqs. (12)
and (13)].

arrive at

ψ+,2n(2t) + ψ+,2n(2t − 2) = −λG
[
ψ−,2n(2t − 2)

]
,

ψ−,2n(2t) + ψ−,2n(2t − 2) = λG
[
ψ+,2n+2(2t − 2)

]
,

(7)

where G [ψ] = |ψ |2ψ . To solve the above equations, we use
the traveling wave ansatz

ψ+,2n(2t) = (−1)t+ngr(2vt − 2n),

ψ−,2n(2t) = (−1)t+n+1gr(2vt − 2n − m),
(8)

with a yet to be determined argument shift m. The real-valued
rear tail function gr(x) satisfies the difference equations

gr(y) − gr(y − 2v) = −λg3
r (y − m),

gr(y − m) − gr(y − 2v − m) = −λg3
r (y − 2),

(9)
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with y = 2vt − 2n. Since both equations have to deliver the
same solution, we conclude that m = 1, confirming the valid-
ity of Eq. (4).

If the velocity of the moving solitary excitation with core
position y = nc is small, i.e., v ≪ 1, we can replace the differ-
ence equations (9) by a nonlinear differential equation with a
discrete delay to describe the rear tail dynamics:

2vg′
r(y) = −λg3

r (y − 1), y ≪ nc. (10)

A straightforward generalization to the front tail dynamics
yields

2vg′
f (y) = λg3

f (y + 1), y ≫ nc. (11)

Both rear and front tail differential equations (10) and (11)
yield the super-exponential decay solution

g(y) = A exp
[
−αe|y|/ξ + β|y|

]
, |y − nc| ≫ 1. (12)

Indeed, by substituting (12) into (10) and (11), we obtain the
super-exponential decay length ξ :

ξ = 1/ ln 3, β = 1/(2ξ), 2vα/ξ = λe−3βA2. (13)

The super-exponential decay is plotted in Fig. 3(c) and agrees
very well with the numerically observed front and rear tails.

Both tail solutions have to be glued together in the core
of the moving excitation, where the above analysis does not
hold. Therefore, in general, A could be different in front and
tail for asymmetric profiles. However, the numerical results
in Figs. 3(b) and 3(c) clearly indicate that the profiles are
symmetric. Together with the reasonable assumption that the
square amplitude in the tails is proportional to the total norm
S of the whole moving solitary excitation |A|2 ∝ S, we arrive
at the scaling relation

v ∝ λS. (14)

To test this scaling relation, we perform a single “cut and
paste” procedure to a number of moving solitary excitations
as shown, e.g., in Fig. 2, measure their norm and velocity, and
plot the result in Fig. 4. We observe good agreement with (14)
for λS ≤ 0.7 and corresponding velocities v ≤ 0.4.

FIG. 4. The dependence of the discrete breather velocity v on the parameter
λS. Green triangles: Newton-generated periodic solutions; red circles: quasi-
periodic solutions; blue squares: transient chaotic solutions. Black diamond:
analytical bullet solution. The insets show the corresponding generalized
Poincaré sections.

D. Moving discrete breathers

For the range of parameters λS < 0.9, we were able to
obtain a number of moving discrete breathers by applying
the procedure of “cut and paste” once. We characterize the
internal dynamics of these objects by computing a general-
ized Poincaré section in a comoving frame. At each time t,
we obtain the position m of the largest value of Sn(t) and plot
Sm+2 versus Sm. The results are shown in Fig. 5. We find three
different types of discrete breathers: periodic, quasiperiodic,
and chaotic.

Periodic moving discrete breathers are characterized by
a rational value of their velocity which leads to a finite num-
ber of points on the Poincaré section as shown in Fig. 5(a),
where v = 1/37, λ = 0.1, and S = 1. The profile of the mov-
ing discrete breather is fully restored after 37 iterations and
one additional shift along the lattice (up to a global phase).

FIG. 5. The Poincaré sectioning of moving discrete breathers (see text for
details). (a) Periodic discrete breather with rational velocity v = 1/37, λ =
0.1, and S = 1. The arrows show the iteration order. (b) Quasiperiodic dis-
crete breather with velocity v ≈ 0.041, λ = 0.5, and S = 0.15. (c) Chaotic
discrete breather with v ≈ 0.39, λ = 1.7, and S = 0.42.
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Quasiperiodic moving discrete breathers have an irra-
tional velocity with a Poincaré section which forms a dense
one-dimensional line segment for an infinite number of iter-
ations. An example is shown in Fig. 5(b) for v ≈ 0.041, λ =
0.5, and S = 0.15.

Chaotic moving discrete breathers generate a Poincaré
section which corresponds to a stripe segment with finite
width and additional fine (potentially fractal) structure inside.
An example is shown in Fig. 5(c) for v ≈ 0.39, λ = 1.7, and
S = 0.42. Chaotic moving discrete breathers cannot be cast
into the form of a traveling wave solution (8), and therefore,
cease to be exact solutions. Instead, these objects are slowly
losing the norm by radiating plane waves in their wake. These
leftovers do not propagate further due to the flat band structure
of the small amplitude equations. Thus, the chaotic moving
breathers are slowing down their speed v. The rate of that pro-
cess is probably related to the thickness of the above stripe
segments in the Poincaré sections. Still, that rate can be very
small such that we observe traveling chaotic breathers over
several thousands of lattice sites without a notable change of
their speed.

Quasiperiodic moving discrete breathers instead can very
well correspond to exact traveling wave solutions. However, it
may well be that these objects are chaotic breathers with very
narrow and thus undetected finite width of the stripe segments.
It may also well be that these objects are in fact exact traveling
waves but with rational values of their velocity v which lead
to a period which is of the order of the simulation time. We are
not aware of fine computational means to tell these different
scenarios apart.

Periodic moving discrete breathers can be obtained with
very high numerical precision using a generalized Newton
scheme. For that we compactly rewrite Eq. (2) as a unitary
map of the entire field *̂ ≡

{
ψ̂n

}
. The action of one itera-

tion in (2) is just a nonlinear unitary map *̂(t + 1) = U*̂(t).
A translation shift along the lattice by one lattice site will
be denoted by T

{
ψ̂n

}
=

{
ψ̂n+1

}
. Then, a periodic moving

breather is encoded by two integers p, q and its frequency +
such that the breather field satisfies

(
Uq − ei+qT p) *̂ = 0, v = p

q
. (15)

FIG. 6. Snapshots of spatial distributions of |ψ±|2 for two periodic mov-
ing discrete breathers are shown. Solid lines, |ψ+n|2; dashed lines, |ψ−n|2.
These periodic solitary excitations correspond to values of p = 1, q = 37
(blue lines) and p = 1, q = 3 (orange lines).

Solutions to (15) can be obtained using standard Newton
schemes which search for zeros of vector functions.26 We
found two such solutions. The first one was described above
and has velocity v = 1/37, q = 37, p = 1, and + = π/37.
The second one has velocity v = 1/3, q = 3, p = 1, and + =
2π/3. Both solutions are shown with green circles in Fig. 4.
The profiles of both solutions are shown in Fig. 6.

E. Bullets

For the particular value of the nonlinearity λS = ±π/2,
Eq. (2) admit exact moving and compact excitations, which
we coin bullets. These bullets have a nonzero field amplitude
on only one lattice site and in addition on only one of the two
wave function components. Its velocity v = ±1 (see Fig. 4).
A right-moving bullet is given by

ψ̂n(t) = (−1)st
√

S
{
eiφ+ , 0

}
δn,n0+t, (16)

with s = ±1 being the sign of λ. A left-moving bullet is given
by

ψ̂n(t) = (−1)st
√

S
{
0, eiφ−

}
δn,n0−t. (17)

Thus, the dynamics of a single bullet is characterized by two

FIG. 7. Evolution of a bullet gas with randomly chosen initial coordinates
and phases. (a) Spatial and temporal dependence of the norm density, Sn(t);
(b) Bullet phases (modulo of 2π) , φ±, as the function of space and time; (c)
Time evolution of the smallest Smin.



123104-6 Vakulchyk et al. Chaos 28, 123104 (2018)

conserved quantities—the total norm S = π/(2|λ|) and the
phase φ±. Interestingly, the dynamics of a gas of left and
right moving bullets shows the conservation of the numbers
of left and right movers. Two bullets approaching each other
will experience no interaction if their relative distance is odd,
but will undergo an act of elastic scattering if that distance is
even. After such an elastic reflection, a left mover is turned
into a right mover (carrying its phase φ with it) and vice
versa. The evolution of such a gas of left and right moving
bullets is shown in Figs. 7(a) and 7(b). The dynamics of the
gas will lead to instabilities in the presence of a small noisy
background. This background is generated during the com-
putation due to roundoff errors. It is observed in Fig. 7(a)
at times t ≈ 500. The time dependence of the smallest back-
ground norm Smin during that evolution is shown in Fig. 7(c).
The background intensity is growing exponentially fast up to
times t ≈ 1400. Yet, for larger times, the system still shows
up with an interacting gas of moving solitary excitations with
various velocities [see Fig. 7(a)].

FIG. 8. (a) A snapshot of a single frequency stationary breather solution.
Solid line, |ψ+n|2; dashed line, |ψ−n|2; (b) spatial dependence of Sn show-
ing super-exponential decay in its tails [the red dashed line corresponds to the
solution of (20)]; (c) scaling of the breather frequency with the parameter λS.

F. Stationary discrete breathers

In addition to the above surfeit of moving discrete
breathers, we also report on the existence of stationary dis-
crete breathers with zero velocity. These objects are zeros of
the nonlinear map

(
Uq − ei+qI

)
*̂ = 0, (18)

where I is the unity operator. Below, we will consider the
case q = 1 only. Solutions can be again searched for by using
a generalized Newton scheme. The spatial profile of one of
these solutions is shown in Fig. 8(a). A double logarithmic
plot of the profile in Fig. 8(b) reveals its superexponential
tails. Interestingly, the deviation of the stationary breather fre-
quency + from π/2 yields a linear dependence on the control
parameter λS [see Fig. 8(c)].

To obtain an analytical solution for the tails of a stationary
breather, we use the observation from Fig. 8(a) that one of
the two components is dominating in the tail, e.g., |ψ+,n| ≫
|ψ−,n| for the right tail of the breather. Note that the final result
will be invariant on the choice of the tail. With the ansatz

ψ+,n(t) = exp[i+t + φ+]g(n),

ψ−,n(t) = exp[i+t + φ−]g(n + n0),
(19)

and Eq. (6), we obtain n0 = 1 and

2g(n) cos+ = −λg3(n − 1). (20)

The solution of the above nonlinear difference equation yields
the super-exponential decay g(n) = A exp[−αe|n|/ξ ], |n| ≫ 1
with ξ = 1/ ln 3. The frequency of the breather is determined
by both the nonlinearity and its norm: (+− π/2) ∝ λS, and
this scaling is in a good accord with numerical analysis [see
Fig. 8(c)].

IV. CONCLUSIONS

Discrete time quantum walks are unitary maps defined
on the Hilbert space of coupled two-level systems, which turn
into a very efficient unitary toolbox for addressing a variety
of problems which lack easy solutions in Hamiltonian set-
tings. In particular, we studied the dynamics of excitations
in a nonlinear discrete time quantum walk, whose fine-tuned
linear counterpart has a flat band structure. The linear coun-
terpart is, therefore, lacking transport, with exact solutions
being compactly localized. A solitary entity of the nonlinear
walk moving at velocity v is then shown to not suffer from
resonances with small amplitude plane waves with identical
phase velocity, due to the absence of the latter. That solitary
excitation also shows to be localized stronger than exponen-
tial, due to the absence of a linear dispersion. We found
a set of stationary and moving breathers with almost com-
pact superexponential spatial tails. At the limit of the largest
velocity v = 1, the moving breather turns into a completely
compact bullet. Remarkably, these bullets can form an inter-
acting gas with the bullet phases participating in the scattering
process. It remains an interesting question as to whether such
highly localized—and even compact—moving nonlinear soli-
tary excitations may be used in applications involving discrete
time quantum walks.
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