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Excitation of localized condensates in the flat band of the exciton-polariton Lieb lattice
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We propose a way to directly excite compact localized condensates in a nearly flat band of the exciton-
polariton Lieb lattice by short Laguerre-Gaussian pulses and investigate the dynamics of these condensates in
the presence of repulsive polariton-polariton interactions and distributed losses in the lattice. The evolution of
a low-density compact polariton condensate shows fast Rabi oscillations between its excitonic and photonic
components, with slow beatings of the Rabi oscillation amplitude. At higher polariton densities the Rabi
oscillations are still present, but their beatings are smeared out due to the polariton-polariton repulsion and
distributed losses in the lattice. We further show that an incoherent background pumping can be used to increase
the lifetime and stability of compact localized states.
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Introduction. The full quench of single-particle kinetic
energy is the main feature of dispersionless or flat bands
(FBs) [1–3]. In many-body physics, it leads to a severe
manifestation of even weak interactions between particles. A
prominent example of unusual fermionic correlations is the
fractional quantum Hall effect showing itself in flat Landau
levels. Particles with bosonic statistics are also expected to
dramatically change their properties in the FB settings. Due to
the high degeneracy of the FB energy level, one can construct
compact localized states (CLSs), which extend over a few
lattice sites only for a specific tight-binding model. The first
such observation in a two-dimensional dice lattice is due to
Sutherland [4]. If the concentration of bosonic particles is low,
they can be distributed over several CLSs in such a way that
their wave functions do not overlap, so that the total energy
is minimized in the case of a repulsive interaction between
particles. As a result, depending on the number of occupied
sites, the bosons can develop a supersolid phase, featuring
periodic density modulation [5].

Can bosons with a finite lifetime be loaded into a FB
and what are the expected effects in this case? We address
this question using exciton polaritons, that represent strongly
coupled states of microcavity photons and semiconductor
quantum well excitons [6]. Driven-dissipative condensates of
exciton polaritons have been reliably observed in semicon-
ductor microcavities [7,8]. The potential of polariton conden-
sates in artificial lattices for both applied and fundamental
research has been intensively explored ever since. The π
condensates at the edges of bands in one-dimensional (1D)
periodic potentials [9] and d condensates in two-dimensional
(2D) square lattices [10] have been demonstrated. There exist
various methods of polariton trapping. In particular, polariton
condensates subject to spatially periodic acoustic phonon
fields have been successfully created and studied [11,12].
It was also shown that a periodic long-range order in a
polariton condensate under resonant excitation can appear
spontaneously [13].

There is now a growing interest in exciton-polariton con-
densation in more complicated artificial periodic potentials,
which target topologically protected [14–19] and single-
particle FBs. They have been studied in honeycomb [20],
kagome [21,22], 1D Lieb [23], and 2D Lieb [24,25] lattices.
A rather short coherence length characterizes the polariton
condensates observed in FBs, and it is unclear whether this
happens due to the potential disorder, or whether fragmenta-
tion is a generic feature of out-of-equilibrium condensation in
FBs.

In this Rapid Communication, we consider a 2D Lieb
lattice, with a geometry similar to Ref. [24]. We investigate the
combined effect of distributed dissipation and exciton-photon
coupling on the miniband structure. First, by examining both
the energy and lifetime of the particles, we identify possible
candidate states for condensation in each miniband. We show
that while there is no perfect FB in this continuous, “non-tight-
binding” system, the concept of long-lived strongly localized
states, maintained by the destructive interference of propagat-
ing waves, is still valid to some extent.

Second, we suggest a solution to the problem of cultivating
compact localized condensates (CLCs) of exciton polaritons
by using a resonant Laguerre-Gaussian pump targeted at a
particular plaquette of the Lieb lattice and maintaining the
CLC for some operational time by the background close-to-
threshold incoherent pump. This method is different from the
existing experimental ways to excite a polariton FB that utilize
prolonged in space (cigar-shaped) incoherent pumps. Then
the formation of the FB condensate requires a fast relaxation
time for particles to scatter down in energy. The FB can be
populated only under certain conditions to avoid condensation
into different bands. Moreover, multiple states get filled by the
incoherent pump, decreasing the signal-to-noise ratio.

System schematic. The exciton-polariton condensate wave
function can be written as ! = (ϕ,χ )T, where ϕ and χ
are the photonic and excitonic components, respectively. The
mean-field Hamiltonian of the system reads (in what follows
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FIG. 1. (a), (b) System schematic and (c), (d) single-particle
spectrum. (a) The Lieb lattice plaquette which includes three pillars
(quantum wells) per unit cell: A, B, and C. (b) Probability density
of the photonic component of the single-polariton (Bloch) state of
the nearly flat (second) band at the " point. Signs indicate the wave-
function phase. The weak population of the B sites is not visible. A
CLS possesses a similar structure, and it will not propagate along
the arrow directions due to destructive interference caused by the
π -phase difference at sites A and C. (c) The real part of the energy of
the single-particle Bloch bands. (d) The lifetimes of the Bloch states
(the inverse imaginary part of the eigenvalues).
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where mc and mx are the microcavity photon and exciton
effective masses, respectively, # is the Rabi frequency, αx

is the exciton-exciton interaction strength, τx is the exciton
lifetime, and V (r) = Vr (r) − iVi (r) is the complex-valued
potential experienced by the photonic component separately
from the excitonic component [26]. The real part of the poten-
tial Vr is defined by the quantum wells forming the Lieb lattice
[see Fig. 1(a)], and the imaginary part Vi describes the
distributed losses in the system. We set Vr = 0 and Vi =
0.1 meV inside the wells, while Vr = 30 meV and Vi =
2.1 meV in the barriers. It should be noted that the lifetime of
the photons is expected to be nonuniform. Indeed, the barriers
are usually produced by partial etching of the distributed
Bragg mirror, which introduces additional leakage of the
photons from the barrier area. The diameter of each quantum
well is 3 µm and the lattice constant is a = 6 µm. The other
parameters are h̄# = 9.5 meV, mc = 3.2 × 10−5me, mx =
105mc, τx = 100 ps, and the detuning is δ = −4.0 meV. Note
that τ−1

x ≪ −2 Im{V (r)}, so that the losses in the polariton
system are controlled by the photonic component.

An elementary cell of the Lieb lattice is composed of three
quantum wells, labeled as A, B, and C, as shown in Fig. 1(a).

It is well known that in the framework of a tight-binding
model the system spectrum possesses a FB. The CLS in the
tight-binding FB is located on the A and C sites of the single
plaquette. The phases on A and C are shifted by π , and the
CLS maintains due to the destructive interference of waves
propagating from sites A and C to B [27]. The Bloch state of
the second (nearly) FB at the " point, shown in Fig. 1(b), has
a similar structure, except it is, of course, extended over the
whole lattice. This state also shows a π -phase shift between
the A and C sites, and in addition a very weak excitation of
B sites.

Figure 1(c) shows the three lowest minibands in the system
which represent the spectrum of noninteracting polaritons
(αx = 0). Clearly, the continuous model (1) does not lead to
a perfect FB. The second miniband—flat within the tight-
binding model with nearest-neighbor hopping—possesses a
small, but finite, dispersion.

Another interesting and important feature of this system
concerns the dispersion of losses in the bands shown in
Fig. 1(d). For the lowest miniband, the state with the smallest
losses occurs at the corner of the Brillouin zone (M point)
with the wave vector kx = ±ky = ±π/a. For the second
(nearly flat) band, the minimal dissipation takes place at k = 0
(" point). The wave function of this state corresponds to a
highly occupied A and C quantum wells and nearly empty B
sites, as shown in Fig. 1(b).

The Laguerre-Gaussian resonant pump. We propose to
excite the CLC of the second band (which we refer to as the
FB in what follows) by exposing the Lieb lattice structure
to a short resonant (ring-shaped) Laguerre-Gaussian pulse
centered at one plaquette. The polariton wave function, in this
case, evolves according to the equation

i!̇ = Ĥ! +
(

P (r, t )
0

)
, (2)

where the pulse profile is given by [28]

P (r, t ) = P0
(x ± iy)2

R2
exp

[
− r2

R2
− iω0t

]
θ (t )θ (tp − t ).

(3)

Here, P0 is the pulse amplitude, R is the radius of the pulse
ring, ω0 is the frequency of the pulse coinciding with the
frequency of the FB at the " point, θ (t ) is the Heaviside
step function, and tp is the pulse duration. We are aiming
at creating the CLC shown in Fig. 1(b). The transport of
polaritons to the B sites should be blocked due to the π -phase
difference of the wave function on the A and C sites. The
phase and intensity plot presented in Fig. 2(a) shows that we
can achieve this π -phase difference by centering the pump
beam at the center of the unit cell [the center of the white
square in Fig. 1(a)].

Dynamics of the CLC. To characterize the CLC dynamics,
it is convenient to use the functions

NCLS(t ) = Nc(t ) + Nx (t ) =
∫

A,C
(|ϕ|2 + |χ |2)d2r, (4)

which measure the total number of particles residing at sites A
and C of the excited plaquette [shown in Figs. 1(a) and 2(a)].
We trace the evolution of the system just after the pulse is
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FIG. 2. (a) Phase and intensity of the Laguerre-Gaussian pulse
with the radius R = 1.5 µm centered at the Lieb lattice plaquette.
(b) Decay of the CLC for different magnitudes of the interaction
strengths αx in units of µeV µm2 and the coherent strength P0

in units of meV µm−1. (c)–(f) Dynamics of the CLC in the ab-
sence of dissipation. (c), (d) The snapshots of the CLC particle
density distribution, (|ϕ(r, t )|2 + |χ (r, t )|2), at two different times
for αx = 10 µeV µm2. (e), (f) The Rabi oscillations of the pho-
tonic component from the A and B sites for (e) αx = 0 and (f)
αx = 10 µeV µm2 with P0 = 100 meV µm−1.

switched off at t = 0. Figure 2(b) shows the decay rate of
particles in the CLC for different intensities of the interaction
strength and coherent pumping.

A counterintuitive result that one can see from Fig. 2(b) is
the decrease of the particle loss from CLC with increasing the
polariton-polariton interaction strength αx , or, equivalently,
with increasing the coherent pumping amplitude P0, which
puts more particles in the condensate and elevates the role of
interaction. Apparently, in spite of the repulsive nature of the
exciton-exciton interaction, it has the focusing effect on the
CLC in the Lieb lattice.

Apart from a gradual decay of the excited CLC, we observe
fast Rabi oscillations of particle number and more complex

short- and long-time dynamics. To highlight these effects
arising from the two-component (exciton and photon) nature
of the polaritons and their continuous, “non-tight-binding”
propagation, we also present the peculiarities of the CLC dy-
namics in the absence of dissipation [Vi (r) = 0 and τ−1

x = 0].
Figures 2(c) and 2(d) show snapshots of the particle density
(|ϕ(r, t )|2 + |χ (r, t )|2) at two different times, t = 1.6 and
30 ps, respectively. Due to the shape of the Laguerre-Gaussian
pulse, the condensates excited in the A and C wells are smaller
than the well size. These condensates bounce against the well
boundaries with a period ∼2 ps (see videos of this motion in
the Supplemental Material [29]).

Another interesting effect is slow modulation of the am-
plitude of the Rabi oscillations of the photonic component,
which is usually measured experimentally [30]. Figures 2(e)
and 2(f) show the time dependence of the total number of
photons in an A site (the same as in a C site), as well as
in a B site. For the interaction-free case [Fig. 2(e)], one can
see that the condensate dynamics at the A and C sites is
characterized by fast Rabi oscillations and a slow beating of
their amplitude. The beating half period tb is about 30 ps, and
it matches the width of the FB, $Ef ≃ 0.02 meV ≃ h̄/tb, so
that the effect appears presumably due to the finite width of
the band. The beatings of the Rabi oscillations on the A(C)
sites are suppressed and smeared out in the presence of a
polariton-polariton interaction [Fig. 2(f)]. Note that the B site
occupation is very low.

Maintaining the CLC. The lifetime of polaritons in etched
microcavities is typically short, making it hard to keep and
operate the CLC for times longer than several ps. It follows
from Fig. 1(d) that the lifetime of particles in the CLS (second
band at the " point) is τCLS ≈ 4.5 ps. One way to increase the
operation time would be to use microcavities with higher qual-
ity factors. However, the losses can also be compensated by
an incoherent background pumping, utilized to maintain the
CLC. When the incoherent background pumping is present,
the evolution of the system is described by the equations

i

(
ϕ̇
χ̇

)
= Ĥ

(
ϕ
χ

)
+ icnr

2

(
0
χ

)
+

(
P (r, t )

0

)
, (5a)

ṅr = I − τ−1
r nr − c|χ |2nr, (5b)

where nr is the density of reservoir particles, τr = 10 ps
is their lifetime, c = 0.005 ps−1 µm2 is a phenomenologi-
cal reservoir-system coupling rate, and I is the intensity of
the homogeneous incoherent pumping. Here, we consider
the reservoir dissipation rate τ−1

r to be of the same order
of magnitude as the polariton dissipation rate −2 Im{V (r)},
which is usually assumed for polariton systems under nonres-
onant pumping [31,32], including polariton lattices [33–35].
To avoid excitation of polaritons in the first, the third, and
higher minibands, we consider the intensity I to be below
the polariton condensation threshold. In what follows, we use
as a reference the threshold intensity Ith = (cτrτx )−1 for the
excitonic component as a lower bound.

Figure 3(a) shows the decay of particles residing in the
CLC for different intensities of (both incoherent and coherent)
pumping, together with the reference curve of the decay
at I = 0. The increase of I does compensate the decay of
particles from the CLC. The corresponding photonic decay
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FIG. 3. (a) Decay of the CLC for different incoherent pumping
intensities I and various coherent pumpings P0. The Laguerre-
Gaussian resonant pulse radius is R = 1.5 µm. (b) Photonic decay of
the CLC for different incoherent pumping intensities. (c) Evolution
of the ratio of the CLC particles and the total number of particles for
different incoherent pumping intensities. (d) Snapshot of the particle
density in the CLC at 20 ps.

also shows similar behavior, as it is shown in Fig. 3(b). One
can see from both panels that the Rabi oscillations persist in
the presence of incoherent background pumping, indicating
that the CLC maintains the coherence.

There are several shortcomings of the use of incoherent
pumping. First, it leads to the excitation of particles in other
(nonflat) bands and thus increases the occupation of the
B sites. Second, although the background pumping allows
maintaining the CLS for longer times, the price to pay is the

generated noise. Figure 3(c) shows the ratio of particles in
the CLC to the total number of particles in the system. The
larger the intensity I , the worse is the single-to-noise ratio. At
I = 10Ith and after 20 ps, about 60% of polaritons already left
the CLC. However, even though the four CLC quantum wells
contain only 40% of polaritons, they still remain the most pop-
ulated wells. That is following from Fig. 3(d), which shows a
snapshot of the polariton condensate occupation density. Thus
we conclude that the background pumping allows one to keep
the CLC for times which are one order of magnitude larger
than the single-polariton lifetimes.

The coherent excitation of compact polariton condensates
opens different possibilities to use the polariton Lieb lattice
as a platform for network computations. In particular, it
permits one to construct graphs of compact localized conden-
sates, similarly to recent proposals for classical [36,37], and
quantum [38] simulators. Both the phase and polarization of
localized condensates can be used to encode information. The
main benefits of the FB states in the Lieb lattice consist of
their compactness and suppressed in-plane spreading, as well
as in better control of a multiple CLC arrangement, where the
underlying Lieb structure sets all distances between CLCs.

In conclusion, using an example of a realistic two-
dimensional exciton-polariton Lieb lattice with distributed
losses, we have shown that the (nearly) flat band in this
system possesses a small but finite dispersion, both in the
energy and the lifetime of the states. We have demonstrated
the possibility to excite compact localized condensates in
this nearly FB using resonant Laguerre-Gaussian pulses. In
spite of the small dispersion of the band, the localization
and coherence of compact localized condensates remain well
defined. They exhibit an unusual dynamics, manifested by
modulated fast Rabi oscillations. The coherent compact lo-
calized condensates can be maintained for times much longer
than the polariton lifetime in the presence of an incoherent
homogeneous background pumping.
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