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ABSTRACT
We demonstrate experimentally the existence of compact localized states (CLSs) in a quasi-one-dimensional photonic rhombic lattice in the
presence of two distinct refractive-index gradients (i.e., a driven lattice ribbon) acting as external electric fields. Such a lattice is composed
of an array of periodically arranged evanescently coupled waveguides, which hosts a perfect flatband that touches both remaining dispersive
bands when it is not driven. The external driving is realized by modulating the relative writing beam intensity of adjacent waveguides. We find
that a y-gradient set perpendicularly to the ribbon preserves the flatband while removing the band-touching. The undriven dipole-like CLS—
which occupies two lattice sites over one unit cell—turns into a quincunx-shaped CLS spanned over two unit cells. Instead, an x-gradient
acting parallel to the ribbon yields a Stark ladder of the CLS whose spatial profile is unchanged with respect to the undriven case. We notably
find that their superposition leads to Bloch-like oscillations in momentum space.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5131501., s

I. INTRODUCTION

Flatband geometries1–12 have attracted great interest in recent
years due to the existence of at least one completely dispersion-
less band in their energy spectrum which brings new perspectives
to the study of various fascinating phenomena, including fractional
quantum Hall effect,13–16 inverse Anderson localization,17–22 con-
servative PT-symmetric compact solutions,23–28 and nonlinear com-
pact breathers.29–32 Destructive interference is the essence of a flat-
band existence, and the associated eigenmodes are compact in real

space—hence dubbed compact localized states (CLSs). The robust-
ness of the spatial compactness of such CLSs has been observed in
various models, particularly in artificial Lieb,33–37 Kagome,38,39 and
rhombic lattices.40,41 More recently, the interplay between the flat-
band and the external driving field has been investigated, leading to
intriguing phenomena such as topological flatband insulators,42–45

unconventional Landau–Zener Bloch oscillations,46–48 and magnetic
field-induced Aharonov–Bohm caging.49–52 However, a fundamen-
tal question remains elusive: how do the CLSs change in the presence
of external fields? Mukherjee and Thomson showed that the CLSs in
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a quasi-one-dimensional rhombic lattice are robust in the presence
of external driving potential,41 while Khomeriki and Flach predicted
that CLSs are also robust in the presence of direct current (dc) elec-
tric and magnetic fields.46 However, in a two-dimensional dice lat-
tice, Kolovsky et al. showed that CLSs are no longer compact in the
presence of a dc electric field, and instead, they turn into exponen-
tially (superexponentially) localized in the perpendicular (parallel)
direction of the field.53 Despite those theoretical studies, the intrin-
sic mechanism played by external fields in flatband systems is still
unclear, and in many cases theoretical predictions have not been
supported by experimental observation.

In this work, we experimentally demonstrate for the first time
the existence of quincunx-shaped CLSs in a quasi-one-dimensional
photonic rhombic lattice without band-touching formed by an array
of evanescently coupled waveguides in the presence of external dc
fields. Using a continuous-wave (cw) laser writing technique, we
experimentally establish finite-sized photonic rhombic lattices and
introduce refractive index gradients perpendicular (y-gradient) and
parallel (x-gradient) to the ribbon. A periodic distribution of the
refractive index plays a role of the periodic potential, and the refrac-
tive index gradient is the optical counterpart of an external driven
force in a quantum system. On the one hand, we show that the
y-gradient does not lift the flatband at zero energy, but it removes
the touching with the dispersive bands, introducing a gapped band
structure. The associated CLSs exhibit a quincunx pattern that spans
over two unit cells of the lattices—a shape that is preserved dur-
ing the propagation along the waveguides. Such CLSs represent a
new type of flatband modes in accelerated flatband lattices whose
intensity and phase structure are quite different from those of con-
ventional ones. In addition, the existence of such CLSs arises from
the interplay between the flatband and the external dc electric field,
which may provide insight into dynamics of flatband states under
other external fields such as a magnetic field. On the other hand, in
the presence of an x-gradient, the photonic eigenstates form an opti-
cally equivalent Wannier-Stark ladder by triplets of eigenvalues—
one of which is the CLS energy—equispaced along the real axis by a
shifting factor proportional to the field. The associated CLSs exhibit
an unaltered dipole-like spatial profile with respect to an undriven
rhombic chain. However, we find that superimposed CLSs lead to
unconventional Bloch-like oscillations in momentum space during
the propagation.

II. MATERIALS AND METHODS
A photonic rhombic lattice consists of three sites (a, b, and c)

per unit cell [Fig. 1(a)]. Such a geometry has been previously used
to theoretically and experimentally study various interesting effects
mentioned above.19–21,30,40,41,46,49–52 Although being a simple flat-
band geometry, it allows us to clarify the effects of the refractive
index gradient fields on the model’s CLSs. We investigate this sys-
tem in the tight binding approximation, whose Hamiltonian can be
written as40,41,46,49–52

Ht = ∑
n

t(b†
nan + b†

nan−1 + b†
ncn + b†

ncn−1 + H.c.),

Hy = ∑
n
Δβy(a†

nan − c†ncn),

Hx = ∑
n

2nΔβx(a†
nan + b†

nbn + c†ncn) − Δβxb†
nbn,

(1)

where a†
n, b†

n, c†n and an, bn, cn are the creation and annihilation oper-
ators in the n-th unit cell on the a, b, and c sites, respectively. Here,
Δβx and Δβy denote the wave-number spacing between adjacent
waveguides and define the applied linear refractive index gradient
Δn parallel and perpendicular to the lattices. The effective propaga-
tion constant (or the on-site energy) of the waveguides is determined
by the index gradient strength and its direction. In the presence of
the y-gradient field, we assume that sites a, b, and c of the same unit
cell have onsite energy difference Δβy along the y direction. Also, in
the presence of the x-gradient, sites a and c of the n-th unit cell have
the same effective propagation constant that is shifted by 2Δβx com-
pared to the same sites of the (n + 1)th and the (n − 1)th unit cell,
respectively.

In the absence of external fields (Δβx = 0, Δβy = 0), the Bloch
representation yields the dispersion relation of the uniform lattices,
which is composed of three spectral bands: a completely degenerated
flatband at zero energy βflat = 0 located between two dispersive bands
β± = ±

√
8t2 sin2(kd/2), where d is the lattice constant. These energy

bands can be observed in Fig. 1(b) for t = 1 (solid red lines). All three
bands touch at a high symmetry point of the first Brillouin zone.
The irreducible CLS of the flatband is sketched in Fig. 1(c) which
only occupies a and c sites within one unit cell, with equal ampli-
tude and opposite phase, ensuring destructive interference in the
neighboring b sites. Following the typical characterization of CLSs

FIG. 1. (a) Schematic diagram of a rhombic lattice with a y-gradient. Each unit cell consists of three sites (a), (b), and (c) and a quincunx-shaped U = 2 CLS structure is
marked by a dashed square. (b) Band structure of the rhombic lattices for the coupling coefficient t = 1, with a y-gradient Δβy = 0.4 (dashed blue lines). Solid red lines
represent the spectrum of uniform lattices without gradient (Δβy = 0). (c) A dipolelike U = 1 CLS structure (shown in a dashed rectangle) of rhombic lattices with an x-gradient.
Sites with nonzero amplitude in (a) and (c) are denoted by blue and red circles, and the numbers and sign near the sites represent the amplitudes and phases, respectively.
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in one-dimensional settings by the integer number U of unit cells
they occupied,54 the CLS shown in Fig. 1(c) is of class U = 1. When a
y-gradient is applied (Δβx = 0, Δβy ≠ 0), the rhombic chain equation
(1) is still translation invariant with the following dispersion rela-

tions: βflat = 0 and β± = ±
√

(Δβy)
2 + 8t2 sin2(kd/2). As shown in

Fig. 1(b) for t = 1 and Δβy = 0.4 (dashed blue lines), band-touching
vanishes and two symmetric gaps open between the central flatband
and two dispersive bands. Since the y-gradient breaks the local sym-
metry perpendicular to the rhombic lattices, the conventional U = 1
CLSs no longer exist. Instead, the CLS for βflat = 0 located at the n-th
unit cell has the spatial profile

Ψβ=0 =
⎛
⎜
⎝

(an + an−1)

−(Δβy/t)bn
−(cn + cn−1)

⎞
⎟
⎠

. (2)

This compact state consists of five nonzero amplitude sites (two
a, one b, and two c sites) arranged in an x-shaped profile coined
quincunx—as shown within the square in Fig. 1(a). We can see that
all the a and c sites in this new-type CLS (covering two unit cells)
have the same amplitude but a π-phase difference, ensuring destruc-
tive interference on the neighboring b sites. The excitation−Δβy/t on
the central b site of the CLS linearly depends on the strength Δβy and
direction of the index gradient while being inversely proportional to
the hopping strength t. The amplitude and phase of this central site
are crucial to balance the propagation constants on the a and c sites,
which are otherwise misbalanced by the y-gradient. Consequently,
the CLS in Eq. (2) does not follow from a superposition of the
U = 1 flatband states of uniform rhombic lattices, and it is of class
U = 2 since it occupies two unit cells.

In the presence of an x-gradient (Δβx ≠ 0, Δβy = 0), the rhom-
bic chain is not translationally invariant, and as a consequence, the
Bloch representation is no longer applicable. In this case, the energy
spectrum consists of a triplet ladder. This ladder is obtained from
one triplet that is shifted indefinitely and equidistantly along the
real axis with a shift proportional to the strength of the dc field
Δβx. Importantly, this parallel dc field does not lift nor deform the
class U = 1 CLSs possessed by the uniform rhombic lattices shown
in Fig. 1(c), but it turns the CLS energies to be unit-cell dependent
βflat = 2νΔβx, with ν being an integer. Indeed, since the refractive
index gradient field is parallel to the ribbon, the Hamiltonian equa-
tion (1) remains invariant under the symmetry a(c) → c(a), ensur-
ing the destructive interference of two waves with the same ampli-
tude and π-phase difference located in the a and c sites of one unit
cell. Consequently, the energy spectrum is a Stark ladder of triplets of
eigenenergies, where the CLS energy 2νΔβx is part of a triplet com-
pleted by the two energies 2νΔβx and (2ν − 1)Δβx. The parallel field
alone leads to Bloch oscillations of the dispersive states with oscil-
lation length proportional to L ∼ 2Dd/Δβx, with Dd being the width
of the undriven bands. When the parallel field is applied simulta-
neously with the perpendicular field instead, two scenarios emerge:
(i) for Δβx ≪ G (with G being the band gap between the dispersive
bands opened by the vertical field), the states of different bands do
not mix and show oscillation length L/2 for the dispersive bands, and
an oscillation length of one unit cell for the flat band; (ii) for Δβx ≥G,
the states of different bands mix, leading to a novel oscillation length
L2 = (2Dd + 2G)/Δβx.

To demonstrate the flatband CLSs experimentally, we use a cw-
laser writing technique to establish the finite-sized photonic rhom-
bic lattices with the desired refractive index gradient (Fig. 2). The
technique relies on site-to-site inducing or writing of waveguides in
a nonlinear photorefractive crystal (SBN), and it has already been
successfully used in our previous work to design two-dimensional
Lieb lattices.55 A laser beam (λ = 532 nm) is used to illuminate a
phase-only spatial light modulator (SLM1), which creates a quasi-
nondiffracting writing beam propagation through a 10-mm-long
crystal with reconfigurable input positions (beam path 1). Owing
to the noninstantaneous self-focusing nonlinearity, all waveguides
remain intact within the one-by-one writing and data acquisition
period. Moreover, refractive index gradient fields can be introduced
and tuned by varying the writing beam intensity or the bias field.
To generate the probe beams, another SLM (SLM2) is used so that
we can control the intensity pattern, as well as the phase structure
of the probe beam (beam path 2). We simultaneously encode the
amplitude and phase information onto the SLM by designing a holo-
gram (phase mask) consisting of several phase gratings arranged in a
dipolelike or quincunx-shaped structure. An extraordinarily polar-
ized quasiplane wave is sent to the SLM2, and the first order of the
diffracted light whose intensity distribution has a desired pattern is
imaged to the facet of the crystal as a probe beam. The size of each
spot of the probe beam is controlled by the imaging lens, and the
relative intensity of each spot can be tuned by adjusting the input
beam width. At the same time, the phase structure is controlled
by changing the relative locations of the gratings. Once the probe
beam is shaped for the desired exciting condition, it is sent into the
induced rhombic lattices, and the output pattern is monitored at the
back facet of the crystal. Beam path 3 is the interfering beam for
measuring the output phase structure.

III. EXPERIMENTAL RESULTS AND ANALYSIS
Experimental results are shown in Fig. 3. To visualize the

induced rhombic lattices, we illuminate a weak extraordinarily
polarized quasiplane wave to probe the waveguides induced in the
crystal. At the back facet of the crystal, one can clearly find that
the otherwise uniform probe beam is guided into each lattice site
(see the first column of Fig. 3). In our work, we first establish a

FIG. 2. Experimental setup for observation of flatband CLSs in optically induced
driven photonic rhombic lattices. SLM: spatial light modulator; ID: iris diaphragm;
SBN, strontium barium niobate; L: lens; M: mirror; BS: beam splitter. The phase
mask shown here represents the phase pattern used to generate a quincunx-
shaped probe beam. Red arrow 1 shows site-to-site writing of photonic lattices
with a cw laser in a nonlinear crystal, and arrows 2 and 3 show the probe beam
and the interfering beam for measuring the output phase structure, respectively.
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FIG. 3. Experimental observation of CLSs in cw-laser writing photonic rhombic lattices. First column: (a1) a uniform lattice without gradient and [(b1) and (c1)] a driven lattice
with a y-gradient and an x-gradient, respectively, where the dashed circles indicate the initially excited sites (at z = 0) and inset in (a1) shows discrete diffraction by exciting
a single b site (marked by the white dashed circle) with a Gaussian beam. Red line in (b1) indicates the average peak intensity profile of the three sublattices, and that in
(c1) represents the intensity profile of sublattice in the first row, which indicates different gradient fields of the lattices. Second column: in-phase output at the back facet of
the crystal: discrete diffraction appears. The insets show the intensity patterns of the input probe beams. Third column: out-of-phase output at the back facet of the crystal:
the CLSs stay in the same position as the input without diffraction. Fourth column: corresponding interferograms. The middle row corresponds to the quincunx-shaped U = 2
flatband states.

uniform rhombic waveguide structure without refractive index gra-
dient. Figure 3(a1) shows the finite photonic lattices with nine unit
cells. The lattice spacing is about 29 μm. To probe the energy cou-
pling property of the lattices and diffractionless feature of CLSs, we
show the propagation dynamics of a Gaussian beam and the fun-
damental localized flatband mode. As can be seen in the inset of
Fig. 3(a1), after propagating through the 10-mm crystal, a single-
site excitation leads to discrete diffraction with the energy coupling
mainly to the nearest waveguides. The coupling therefore occurs
mainly among nearest-neighboring waveguides, which satisfies the
tight-binding approximation equation (1). Then, a dipolelike beam
[inset of Fig. 3(a2)] that excites sites a and c of one unit cell is
set as the input. If the dipolelike beam is out-of-phase, the probe
beam stays well localized in the initially excited lattice sites, expe-
riencing no diffraction [Fig. 3(a3)] due to the excitation of the
U = 1 CLS shown in Fig. 1(c). Moreover, the phase measurement
obtained by interfering the output with an inclined plane wave
further confirms that the initial out-of-phase structure is well pre-
served [Fig. 3(a4)]. However, if the input dipolelike beam is initially
in-phase, the CLS is not excited and the output displays discrete
diffraction with beam intensity evolving into nearby lattice sites
[Fig. 3(a2)].

Next, a y-gradient field (Δβy ≠ 0) is introduced in the uniform
rhombic lattices by fine tuning the relative writing beam intensities
corresponding to the three sublattices. The measured peak inten-
sity profile is indicated with the solid red line in Fig. 3(b1). The
intensities of the sublattices increase by about 30% perpendicular
to the ribbon. Experimentally, such a distinct intensity difference
ensures that we can easily observe the effect of the y-gradient field.
As mentioned above, U = 2 CLSs occupy two unit cells and have a
unique phase and intensity structure. To match the flatband mode,
we launch a probe beam [inset of Fig. 3(b2)] which consists of five
spots and set the upper two spots in phase to excite the a sites, while
the lower three spots to excite the b and c sites with a π phase differ-
ence with a sites. The amplitude of the central b site should match the
flatband mode shown in Fig. 1(a). For simplicity, we set the inten-
sity of the central spot 1.2 times higher than that of the rest four
spots. Figure 3(b3) shows the output intensity pattern, and no sig-
nificant tunneling of light into the surrounding sites emerges. The
interference pattern [Fig. 3(b4)] also reveals that the phase structure
is well preserved, indicating that the input beam stays localized dur-
ing propagation. On the contrary, when we set the central spot of
the input beam with a π phase shift, i.e., maintaining the a and the
c sites with out-of-phase structure and keeping other experimental
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parameters fixed, a completely different behavior is observed. The
input beam cannot localize and the light energy couples to nearby
waveguides [Fig. 3(b2)]. Therefore, our study reveals that such a
U = 2 CLS is highly sensitive to the phase alterations at the extremi-
ties of the quincunx.

Finally, we study the transport property of CLSs in waveguide
arrays with the x-gradient field (Δβx ≠ 0). The red line in Fig. 3(c1)
shows the measured intensity profile of sublattice a, which increases
by about 15% in each unit cell along the x axis. As discussed above,
the U = 1 CLS is still a compact solution of Eq. (1). We use the same
probe beam and experimental parameters as those used in uniform
lattices, and the results are shown in the third row of Fig. 3. If the
two spots of the dipolelike beam have a π phase difference, the probe
beam is trapped at the initially excited sites, as shown in Fig. 3(c3).
Instead, if the two spots of the dipolelike beam have equal phase,
a discrete diffraction pattern is obtained [Fig. 3(c2)]. It should be
noted that we get similar discrete diffraction patterns in Figs. 3(a2)
and (c2) mainly due to the weak coupling of the lattices and lim-
ited propagation length. In fact, the observation of U = 1 CLSs in
rhombic lattices with an x-gradient was first attempted in curved
arrays fabricated by the ultrafast laser inscription technique.41 In
that case, the external horizontal drivings were realized by modu-
lating the paths of the waveguides. We want to mention that though
we observe the diffraction suppression of both class U = 1 and U
= 2 CLSs in both parallel (x-gradient) and perpendicular (y-gradient)
driving of the lattice ribbon, our numerical analysis shows that the
dynamics of these two types of CLSs are quite different.

We numerically calculate the variation of light intensity along
the propagation direction using coupled-mode equations [Eq. (1)]
setting the coupling constant t to 40 m−1 while the wave-number
spacings Δβx and Δβy are set to 25 m−1 and 50 m−1, respectively,
which are similar to the experimental parameters. The results are
shown in Fig. 4, where it can be seen that our experimental results
are in good agreement with the simulation results. In particular, it
can be noticed in Fig. 4(b2) that the energy of the central spot of
the quincunx-shaped excitation shown in the inset decays very fast
with the energy coupling to nearby sites, in a striking contrast to the
robustness of the CLS in Fig. 4(b3). Moreover, note that compared to
discrete diffraction shown in Fig. 4(a2), the output in Fig. 4(c2) will
experience Bloch oscillation if the propagation length is long enough
as predicted in Ref. 41, exactly reflecting the effect of the x-gradient.
Intuitively, the presence of both the y-gradient and the x-gradient
has no influence on dynamics of flatband CLSs as they always exhibit
robust localization in real space, as illustrated in Figs. 3(b3) and
3(c3). Nevertheless, we will show in Fig. 5 that the U = 1 and the
U = 2 CLSs show different dynamics in momentum space after a
longer propagation distance.

Since it is still a challenge to experimentally study the propaga-
tion dynamics of the CLSs for long distance due to limitations on the
crystal length, we numerically simulate the behavior of both U = 1
and U = 2 CLSs with the propagation distance up to z = 120 mm. In
order to trace the evolution of Fourier spectra and phase structures,
we use the paraxial wave equation55 that describes the wave dynam-
ics close to the actual experiment. Moreover, for sake of comparison

FIG. 4. Simulation results of CLSs in photonic rhombic lattices corresponding to Fig. 3. Each output image is normalized so that the total intensity is 1.
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FIG. 5. First row: side view of beam propagation (z = 120 mm) corresponding to (a) one U = 2 CLS along the direction of the dashed white line in Fig. 4(b3) and (b) a
superposition of two neighboring U = 1 CLSs. The insets show the output intensity pattern and phase structure for z = 5, 60, 120 mm, revealing the robust localization of
CLSs in real space. Second row: Fourier spectra of U = 2 CLSs for different propagation length (z = 5, 30, 60, 90, 120 mm) under a y-gradient field. Third row: Fourier spectra
of two superimposed U = 1 CLSs, revealing oscillation under an x-gradient field. The white arrow in (b1) indicates the acceleration direction of the spectra, while the white
dashed squares indicate the boundary of the Brillouin zone.

between U = 1 and U = 2 CLSs, we use a probe beam composed
of four spots which can be seen as a superposition of two probe
beams in Fig. 4(c2) when studying the dynamics of U = 1 CLSs,
recalling that the two U = 1 CLSs have an energy difference of 2Δβx.
Figures 5(a) and 5(b) show the side view of beam propagation corre-
sponding to U = 2 and U = 1 CLSs, respectively. These plots clearly
reveal the undistorted transmission of U = 2 CLSs under a y-gradient
and U = 1 CLSs under an x-gradient. The insets of Figs. 5(a) and
5(b) show the output intensity patterns for different propagation
distances corresponding to z = 0, 60, and 120 mm, confirming the
robust localization in real space. Nevertheless, when tracing the evo-
lution of the Fourier spectrum and phase structure, we find that the
two classes of CLSs exhibit different behaviors. The middle row of
Fig. 5 shows the Fourier spectra for z = 5, 30, 60, 90, 120 mm, corre-
sponding to Fig. 5(a). After propagating to z = 5 mm [Fig. 5(a1)], the
probe beam evolves into a stable CLS of the y-gradient rhombic lat-
tices. It can be clearly seen that the spectra are substantially invariant
for the long propagation distance. Moreover, the phase structures
in real space are also well preserved, as shown in Fig. 5(a). How-
ever, for U = 1 CLSs under an x-gradient, the Fourier spectra shift
along the direction of the driving field in Fig. 5(b1) as the propaga-
tion distance z increases. The bottom row shows the Fourier spectra
corresponding to Fig. 5(b). At z = 30 mm [Fig. 5(b2)], the beam
just experiences its first Bragg reflection, and after propagating to

z = 60 mm [Fig. 5(b3)], the spectrum transforms to the boundary
of the Brillouin zone. Additionally, the phase structure of the output
becomes a checkerboard pattern at z = 60 mm which is the charac-
teristic feature of the Bloch mode at the boundary of the Brillouin
zone. The CLS completes a full Bloch-like oscillation after propagat-
ing to z = 120 mm, i.e., both the spectrum and the phase structure are
similar to that of the initial state, as shown in Fig. 5(b5). Then, the
beam will accelerate again and experience oscillation periodically.

IV. CONCLUSION
In conclusion, we have proposed and demonstrated differ-

ent types of CLSs in photonic rhombic lattices driven by exter-
nal dc fields along two different directions. Asymmetric features of
the CLSs with respect to the driving potential applied have been
observed. On the one hand, when a y-gradient is set perpendicularly
to the ribbon, the flatband is preserved although lifting the band-
touching with the dispersive bands. In this case, the undriven class
U = 1 CLSs reform dramatically turning into class U = 2 quincunx-
shaped CLSs. Such novel CLSs cannot be obtained from a simple
superposition of the class U = 1 flatband states of the undriven rhom-
bic lattices, since the y-gradient breaks the local symmetry and lifts
the flatband-touching. On the other hand, the undriven class U = 1
dipolelike CLSs preserve with an x-gradient parallel to the ribbon,
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although their energies are equidistantly distributed Stark ladders
along the real axis. Interestingly, these two distinct CLSs exhibit dif-
ferent oscillation properties in momentum space, namely, no oscil-
lations emerge for the former U = 2 CLSs, while the superposition of
neighboring U = 1 CLSs is characterized by novel Bloch-like oscilla-
tions during propagation. Our work paves the way to experimentally
achieve nontrivial Landau-Zener Bloch oscillations in lattices when
both parallel and perpendicular fields are simultaneously applied,
as well as oscillations emerging from the interplay of external dc
fields with a uniform magnetic field.46 Possible extensions of the dis-
cussed results beyond the considered rhombic lattices include two-
dimensional flatband geometries, where it has been recently shown
that dc fields applied along specific directions lead to Wannier-Stark
ladders of edge states, as well as superexponentially localized states.53

This may also open the avenue for a plethora of further interest-
ing experiments in two-dimensional flatband lattices hunting for
fractional charge transport and topological matter, among others.
Finally, these results are general and applicable to other flatband
systems, such as electrons in crystals and ultracold atoms in optical
lattices.
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