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Quench dynamics in disordered two-dimensional Gross-Pitaevskii lattices
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We numerically investigate the quench expansion dynamics of an initially confined state in a two-dimensional
Gross-Pitaevskii lattice in the presence of external disorder. The expansion dynamics is conveniently described
in the control parameter space of the energy and norm densities. The expansion can slow down substantially if the
expected final state is a nonergodic non-Gibbs one, regardless of the disorder strength. Likewise stronger disorder
delays expansion. We compare our results with recent studies for quantum many-body quench experiments.
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I. INTRODUCTION

Quench dynamics is a common way to explore the cooling
process of nonequilibrium states in Hamiltonian systems. It
implicitly assumes the ability of the system to thermalize
and equilibrate. The quench dynamics is particularly impor-
tant when investigating localization-delocalization phenom-
ena and the related presence or absence of thermalization [1].
Quench dynamics is therefore also widely used for measuring
the different time scales involved in a thermalization process.

Recent experiments with interacting ultracold bosonic
atomic gases loaded into two-dimensional disordered optical
potentials used the quench dynamics to explore the signatures
of the many-body localization-delocalization transition [2].
The atomic gas was confined and prepared in a thermal state
and then allowed to expand into a previously empty part of
the random potential. Localization-delocalization transitions
were observed upon varying the disorder strength and the
atom-atom interaction strength. Subsequent computational
studies with quantum many-body platforms using Gutzwiller
mean-field methods [3] and tensor network methods [4]
pointed to a number of open questions such as the impact of
the system size and measurement times.

The dynamics of ultracold bosonic atoms in a deep op-
tical lattice can be modeled with a Bose-Hubbard Hamil-
tonian (BH). For sufficiently large occupation numbers its
classical counterpart—the discrete Gross-Pitaevskii (DGP)
Hamiltonian—serves as a reasonable approximation [5]. The
experimental studies of Choi et al. were performed deep
in the quantum regime with at most double occupancy per
lattice site (see supplement of Ref. [2]). Despite that discrep-
ancy, the merit in the DGP approach is that large systems
can be evolved up to large times using standard computa-
tional approaches and average computational resources. The
DGP Hamiltonian is also known as the discrete nonlinear
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Schrödinger (DNLS) Hamiltonian [6] and serves as a platform
to study various properties of nonlinear wave dynamics.

Many-body localized phases are expected to be noner-
godic and nonthermalizing [7], at variance to their delocalized
(metallic) counterparts. Many-body localized phases are as
well expected to be unique for quantum many-body dynam-
ics, at variance to classical wave dynamics. Therefore the
DGP model can be expected not to possess a many-body
localization-delocalization transition. However, the classical
DGP model, as well as its quantum BH counterpart, exhibit
a non-Gibbs phase, which is characterized by at least partial
nonergodic properties and absence of full thermalization [8,9].
An intriguing question is therefore whether these non-Gibbs
phases have an impact on the outcome of the quench
dynamics.

The article is organized as the following. In Sec. II we
introduce the DGP model and its statistical description. In
Sec. III we present our results on the quench dynamics of the
DGP. In Sec. IV we compare our numerical results with the
experimental results reported in [2]. Section V concludes and
discusses the results.

II. THE MODEL

We consider the following two-dimensional DGP Hamilto-
nian in dimensionless units:

H =
∑

n

∑
m

U

2
|ψm,n(t )|4 + Vm,n|ψm,n(t )|2

− J[ψ∗
m,n(t )ψm+1,n(t ) + ψm,n(t )ψ∗

m+1,n(t )

+ ψ∗
m,n(t )ψm,n+1(t ) + ψm,n(t )ψ∗

m,n+1(t )], (1)

where J is the hopping strength, (ψm,n(t ), ψ∗
m,n(t )) represent

the conjugated variables, and the indices (m, n) represent the
lattice sites in a square lattice. Here U is the nonlinearity
parameter and Vm,n represents the uncorrelated onsite disorder
potential of the form,

Vm,n = εm,n for 1 � m � L, 1 � n � L;

= ∞ otherwise. (2)
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The uncorrelated onsite energies εm,n are taken from a uniform
distribution with the range ∈ [−W

2 , W
2 ]. This potential en-

forces fixed boundary conditions ψm,n = 0 outside the bound-
ary (m = 1, L; n = 1, L) at all times t .

The Hamiltonian Eq. (1) gives the following equations of
motion:

i
∂

∂t
ψm,n(t ) = U |ψm,n(t )|2ψm,n(t ) + Vm,nψm,n(t )

− J[ψm+1,n(t ) + ψm−1,n(t )

+ ψm,n+1(t ) + ψm,n−1(t )]. (3)

Equation (3) possesses two conserved quantities, the total
norm N = ∑

m,n |ψm,n|2 and the total energy H. Correspond-
ing to the two conserved quantities, we define the norm den-
sity a = N

L2 and the energy density h = H
L2 . In the absence of

nonlinearity U = 0 and disorder the solutions are plane waves
exp[i(kmm + knn − ωkt )] with ωk = −2J (cos km + cos kn). It
follows that the linear system (even with disorder) has a
spectrum of eigenfrequencies (or eigenenergies) whose width
amounts to �ω = 8J + W .

If the microcanonical dynamics generated by (3) is ergodic,
then infinite time averages of observables are equal to their
phase space averages, and the statistical properties of the
system can be described using the Gibbs grand-canonical
partition function,

Z =
∫

e−β(H+μN )
L∏

m=1

L∏
n=1

dψm,ndψ∗
m,n. (4)

Here β is the inverse temperature and μ is chemical poten-
tial. It follows that the density pair {a, h} can be mapped
onto a pair of Gibbs parameters {μ, β} and vice versa. In
the following we will use scaled densities x = Ua and y =
Uh. Since the seminal publications [10,11] it is known, that
the one-dimensional ordered discrete nonlinear Schrödinger
lattice has a ground-state line y0(x) on which the tempera-
ture vanishes β−1 = 0. At the same time there is a second
line y∞(x) = x2 > y0(x) on which the temperature diverges
β = 0. All microcanonical states y(x) > y∞(x) cannot be
described by a Gibbs distribution with a positive temperature,
and negative temperature assumptions lead to a divergence of
the partition function (technically this happens only on infinite
systems; we will assume here that our considered system sizes
are large enough for this statement to apply). Recently these
results were generalized to Gross-Pitaevskii lattices with any
lattice dimension and disorder, and even to corresponding
quantum many-body interacting Bose-Hubbard lattices [9].
While the zero-temperature line y0(x) renormalizes in the
presence of a disorder potential, the infinite temperature line
y∞(x) = x2 is invariant under the addition of disorder.

We use a symplectic scheme [12–14] to numerically in-
tegrate Eq. (3). The details of the symplectic integration
method SBAB2 can be found in Refs. [15–17]. We con-
sider time steps �t = 0.005 to keep the relative error in en-
ergy �H = (H(t ) − H(0))/H(0) and norm �N = (N (t ) −
N (0))/N (0) smaller than 10−3.

FIG. 1. Schematic distribution of the initial wave-function norm
|ψm,n|2 profile on a square lattice of size L × L with fixed boundary
conditions. Inside the square lattice the initial wave function is
strictly zero for m > L/2.

III. QUENCH DYNAMICS

We consider a square lattice of size L × L with L = 16.
We set the total norm N = 125 in loose analogy to the
experiments [2] which trapped 125 atoms. Thus roughly
one unit of norm in our numerical experiments corresponds
to one atom. We prepare an initial state of plane waves
ψm,n(t = 0) = √

a0eiφm,n (t=0) if m ∈ {1, 2, 3, . . . , � L
2 �} occu-

pying one (left) half of the system L, i.e., ψm,n = 0 for m
∈ {� L

2 � + 1, � L
2 � + 2, . . . , L} in the right half of the system

R. Figure 1 shows the schematic representation of the ini-
tial state. The initial norm density in the excited half L of
the system is a0 = 125

L2/2 ≈ 0.98 (before the quench). If the
excitation spreads over the entire system, the expected final
norm density in the entire system (after the quench) becomes
a = 125

L2 ≈ 0.49.
We follow the evolution of the local norm density |ψm,n|2.

In addition to the real space imaging of |ψm,n|2 at the final
time, we measure the time evolution of the left-right norm
imbalance ratio:

I (t ) =
∑

(m,n)∈L |ψm,n(t )|2 − ∑
(m,n)∈R |ψm,n(t )|2∑

(m,n)∈L |ψm,n(t )|2 + ∑
(m,n)∈R |ψm,n(t )|2 . (5)

The imbalance is bounded by |I| � 1. At t = 0 it fol-
lows I (0) = 1. Further, at equilibrium

∑
(m,n)∈L |ψm,n|2 =∑

(m,n)∈R |ψm,n|2. Hence after some equilibration time teq the
norm imbalance practically vanishes I (t � teq) ≈ 0.

In the absence of nonlinearity, U = 0, Eq. (3) is integrable
and analytically solvable. For the linear ordered case U = 0,
W = 0 a set of plane waves appear as the eigenfunctions. In
this case it follows that the imbalance ratio will show large
amplitude oscillations with time, without any tendency to
thermalize and diminishing of the oscillation amplitudes. In
the presence of disorder, W 	= 0, the system shows Anderson
localization [18]. The initial state will not propagate into
the entire system, and the imbalance I will saturate at some
nonzero value depending on W . The presence of nonlinearity
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FIG. 2. Small nonlinearity x 
 1. Phase diagram for the ordered
case in the density parameter space (x, y). The blue dashed curve is
the transition line y = x2 between the Gibbs [cyan (deep gray)] and
non-Gibbs [yellow (light gray)] regimes (β = 0). The green dotted
line is the ground-state line for the ordered system y = −4x + x2/2
(β = ∞). Each pair of symbols connected by lines with arrows
denotes an initial state (larger norm density x) and the expected final
state after the quench (smaller norm density x). The corresponding
values of U = 0.1 and U = 0.3 are denoted right to the pair lines.

destroys integrability. This will usually lead to a restoring of
ergodicity, and thermalization. Consequently the imbalance is
expected to saturate at value zero. At variance to classical field
equations, quantum many-body interacting systems can show
many-body localization phases which withstand the above
scenario [7], so that the imbalance is expected to saturate at
a nonzero value. This precise prediction was tested in the
experiments on cold atoms [2]. However, the DGP system
while being classical also possesses nonergodic phases as dis-
cussed above. In order to study the impact of the nonergodic
DGP phase on the quench dynamics, we will study the quench
dynamics in the regime of weak nonlinear interactions x 
 1,
strong nonlinear interactions x � 1, and for strong nonlinear
interactions tuned close to the experimental parameters in
Ref. [2]. We will use J = 1, so that all energy scale parameters
such as U , W will be used in units of J , which facilitates
comparison to experimental data. Further, our dimensionless
time translates into physical time units of experimental data
by dressing J with a suitable energy unit and obtaining a
dimensionful time τ = t h̄/J .

A. Quench dynamics in the Gibbs regime

We first consider quenches which start and end in the
Gibbs regime. We use φm,n(t = 0) = 0. This choice starts the
dynamics close to the ordered system ground-state line y =
−4x + x2/2 and keeps the system in the Gibbs regime after
the quench, irrespective of the value of U . For weak nonlinear-
ity U = 0.1 the quench line is shown in Fig. 2 to connect the
red (black) filled circle and square. The evolution outcome is
shown in Fig. 3 for three different values of disorder strength
W = 0, 10, 20. As expected, for W = 0 the imbalance I (t )
shows nondecaying large amplitude oscillations around zero.
It indicates absence of thermalization of the system up to the
final evolution time, as also seen from the final time density
plot snapshot in Fig. 3(b). As W increases, Anderson local-

(a)

FIG. 3. Quench dynamics for the U = 0.1 path in Fig. 2. (a) Im-
balance I (t ) for W = 0 (orange solid line), 10 (thick blue dotted
line), 20 (thin black dashed line). (b)–(d) Norm density distribution
at final time t = 5000. (b) W = 0, (c) W = 10, (d) W = 20. All data
for W 	= 0 are averaged over 20 disorder realizations.

ization prevails on the time scales of the runs. The imbalance
decay is slowing down and nearly saturates during the later
time of evolution for W = 10, 20. The snapshots of the final
time density plots in Figs. 3(c) and 3(d) confirm the above
findings.

For strong nonlinearity U = 10 the quench line is shown
in Fig. 4 to connect the red (black) filled circle and square.
We observe thermalization and a decay of the imbalance to
zero for all values of disorder W = 0, 10, 20 in Fig. 5. The
thermalized density clouds at the final simulation times are
shown in Figs. 5(b)–5(d).

FIG. 4. Large nonlinearity x � 1. Notations are as in Fig. 2.
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(a)

FIG. 5. Quench dynamics for the U = 10 path in Fig. 4. (a) Im-
balance I (t ) for W = 0 (orange solid line), 10 (thick blue dotted
line), 20 (thin black dashed line). (b)–(d) Norm density distribution
at final time t = 5000. (b) W = 0, (c) W = 10, (d) W = 20. All data
for W 	= 0 are averaged over 20 disorder realizations.

B. Quench dynamics in the non-Gibbs regime

We consider quenches which either start in the non-Gibbs
regime and therefore stay in it, or which start in the Gibbs
regime, but transit into the non-Gibbs one. We initialize our
system wave function with phases φm,n(t = 0) = π (m + n)
so that the phase difference between any two nearest lattice
neighbors is π . For weak nonlinearity U = 0.3 the quench
path connects the red (black) filled diamond and the star
in Fig. 2. The evolution outcome is shown in Fig. 6. For
W = 0 we observe the formation of three persistent long-lived
strongly localized large amplitude excitations in Fig. 6(b).
Each of them confines a norm of about 30, which leaves a
norm of about 35 to the background (barely visible). Since two
of the peaks are located in the left part and one in the right,
the imbalance should take a value of about 30/125 = 0.24
assuming that the background thermalizes. The dependence
I (t ) in Fig. 6(a) nicely confirms these findings. Note that pre-
vious studies have observed and discussed the condensation of
excess norm into strongly localized excitations such that the
background will evolve at an infinite temperature [10,11,19].
Increasing the strength of disorder to W = 10 we still observe
remnants of this non-Gibbs dynamics, while even stronger
disorder W = 20 reinforces Anderson localization features.

For strong nonlinearity U = 10 the quench path connects
the red (black) filled diamond (Gibbs) and star (non-Gibbs)
in Fig. 4. The evolution outcome is shown in Fig. 7. For
W = 0 we again observe the formation of several (5–6) persis-
tent long-lived strongly localized large amplitude excitations
Fig. 7(b). Each of them confines a norm of about 5 so that the
imbalance should take values about 0.04...0.1 which is close

(a)

FIG. 6. Quench dynamics for the U = 0.3 path in Fig. 2. (a) Im-
balance I (t ) for W = 0 (orange solid line), 10 (thick blue dotted
line), 20 (thin black dashed line). (b)–(d) Norm density distribution
at final time t = 5000. (b) W = 0, (c) W = 10, (d) W = 20. All data
for W 	= 0 are averaged over 20 disorder realizations.

(a)

FIG. 7. Quench dynamics for the U = 10 path in Fig. 4. (a) Im-
balance I (t ) for W = 0 (orange solid line), 10 (thick blue dotted line),
20 (black dashed thin line). (b)–(d) Norm density distribution at final
time t = 5000. (b) W = 0, (c) W = 10, (d) W = 20. All data for
W 	= 0 are averaged over 20 disorder realizations.
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FIG. 8. I (τ ) for various disorder strength values parametrized
through the full width half maximum � (see text for details), as
observed in the experiment. Solid curves guide the eye and corre-
spond to I (τ ) = I0 exp(−τ/τs ) + I∞. We read I∞ off the last three
experimental data points, and τs from the inset of Fig. 2 in Ref. [2].

to the observed dependence I (t ) in Fig. 7(a). Increasing the
strength of disorder to W = 10 we still observe remnants of
this non-Gibbs dynamics with an additional delay in the relax-
ation of I (t ), while even stronger disorder W = 20 reinforces
Anderson localization features.

IV. REVISITING EXPERIMENTAL DATA

The experiments with interacting ultracold bosonic atomic
gases loaded into two-dimensional disordered optical poten-
tials discussed in the introduction result in imbalance curves
shown in Fig. 8. The experimental curves show that the imbal-
ance relaxation slows down with increasing disorder strength,
and develops a nonzero asymptotic value. We note that the
disorder potential in the experiment had a Gaussian distribu-
tion, with full width at half maximum � which corresponds
to a variance �2/(8 ln(2)) [2]. The box disorder which we
use in this work has variance σ 2 = W 2/12, thus we assume
�/J = √

2 ln(2)/3W . Mapping the experimental setup onto
models of interacting bosons results in an interaction strength
of U = 24.4 [2]. We also note that the experimental records
extend to a largest observation time of t = 300.

In order to compare the experimental results to the DGP
dynamics, we use our previous setup with U = 24.4 and
launch the system in the Gibbs regime with initial conditions
as in Sec. III A. The Gibbs regime choice follows from
the experimental data which show a quick relaxation of the
imbalance in the absence of disorder. Our results are shown
in Fig. 9. We observe that the imbalance relaxation is actually
delayed for the ordered case compared to the disordered cases.
The reason is that the energy shift U |ψm,n|2 at each excited
cite amounts to 24.4. Recall that the spectral width of the
unexcited lattice part amounts to �ω = 8 + W . It follows
that the excited half of the lattice at W = 0 is tuned out of
resonance (similar to self-trapping) with the unexcited one.
At variance, nonzero disorder removes the out-of-resonance
feature of the initial state, leading to faster initial decay of
the imbalance. At the same time, stronger disorder hinders
full propagation of the excitation into the entire system,

(a)

FIG. 9. Gibbs quench dynamics for U = 24.4. (a) Imbalance I (t )
for W = 0 (orange solid thin line), 10 (blue solid thick line), 20 (black
dashed-dotted line), 30 (red dotted line), 40 (green dashed line).
(b)–(d) Norm density distribution at final time t = 500. (b) W = 0,
(c) W = 20, (d) W = 40. All data for W 	= 0 are averaged over 20
disorder realizations.

which results in a substantial delay of the imbalance decay
at larger time, with almost freezing features at W = 40. We
conclude that the experimental data obtained in the deep
quantum regime show some similarities and differences to the
classical runs.

V. DISCUSSION AND CONCLUSIONS

We investigated the quench expansion dynamics of an
initially confined state in a two-dimensional Gross-Pitaevskii
lattice in the presence of external disorder. The expansion
dynamics can show qualitatively different outcomes for the
imbalance evolution I (t ), which depend on the system path in
the control parameter space of the energy and norm densities.
The density space contains a non-Gibbs region. The dynamics
in that region leads to strong self-trapping and focusing of
potentially large (compared to the average density) norm on
essentially single lattice sites. Thermalization in the non-
Gibbs regime can or will be substantially delayed if not com-
pletely suppressed, leading to a freezing of the imbalance. On
the other side, quenches in the Gibbs regime in general result
in an imbalance decay, which, however, can be tremendously
postponed by adding strong disorder.

We compared our results to recent experiments with in-
teracting ultracold bosonic atomic gases loaded into two-
dimensional disordered optical potentials [2]. Non-Gibbs dy-
namics is possible for quantum interacting systems as well [9].
However, the experimental setup reported at most double
occupancy per site, which means that the optical potential
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setup was not capable of trapping more interacting atoms
per site. Therefore, the impact of non-Gibbs phases can be
excluded for the experimental setup. At the same time we
find at least qualitatively similar results for the imbalance
relaxation in the Gibbs regime of our system.
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