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A dc (e.g., electric) field with commensurate lattice direction turns a single-particle band structure in d = 3
dimensions into an infinite set of equally spaced irreducible (d — 1) = 2-dimensional Wannier-Stark (WS) band
structures that are spatially localized along the field direction. Particle transport is expected to be suppressed
once the WS bands are gapped in energy. The topological character of the irreducible band structure leads
to one-dimensional sets of boundary states which fill the energy gaps. As a result, eigenmodes are smoothly
connected in energy and space and yield anomalous particle transport throughout the ladder. The number of
chiral boundary modes can be tuned by the dc field strength and manifests through the distribution of dissipated
energy and spatial motion, and the temperature dependence of angular momentum carried by particles.
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I. INTRODUCTION

Particle transport in quantum mechanical systems is of
fundamental interest in condensed matter physics. When ex-
posed to two thermalized reservoirs with different chemical
potentials, particles are transferred due to incoherent en-
ergy relaxation. For systems with almost perfect conductance
such as Dirac semimetals and boundary modes in topolog-
ical insulators, energy relaxation is mostly confined to the
reservoir contacts [1,2]. If the chemical potential difference
between two reservoirs is increased to values such that the
potential drop between neighboring lattice sites is larger than
li/tine Where T is a characteristic inelastic scattering time,
a Wannier-Stark (WS) ladder begins to develop (for a review,
see Refs. [3,4]).

The Stark effect is well known in the study of atomic
energy splitting by external electric fields. When a strong
dc electric field is applied to a lattice system, its electronic
band structure shows a similar splitting. A dc (e.g., electric)
field with commensurate lattice direction, e.g., parallel to any
lattice vector of finite length, turns a single-particle band
structure in d dimensions into an infinite set of equally spaced
irreducible (d — 1)-dimensional WS band structures [5]. With
the advance of experimental techniques in both superlattice
semiconductors [6] and cold atoms in optical lattices [4,7],
photonic lattices [8], and bulk GaAs using the transient bias
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technique [9], the WS ladder spectrum has been well con-
firmed experimentally. WS systems contain the physics of
strong electric fields under nonequilibrium conditions [10,11],
strongly localized states in space [12], disorder and corre-
lation effects [13,14], and topological characters associated
with multiple bands [15-17] and stay in the focus of current
research [18-21].

WS Hamiltonians are closely related to time-periodic Flo-
quet Hamiltonians, Hrioq(t + T') = Hrioq(?). A static external

electric field F can be gauged into a wave vector: k—k—
Ft. With discrete translational symmetry it follows H (k) =
H(k + 2 /a) (a is a lattice constant; we drop the vector nota-
tion for convenience), and the gauged WS Hamiltonian H (k —
Ft) is Floquet time-periodic with period T = 2 /(Fa). The
first attempt to make use of the Floquet formalism to obtain
WS states was reported by Gliick et al. [22-24]. The connec-
tion between a single-particle d-dimensional WS Hamiltonian
and a (d — 1)-dimensional Floquet Hamiltonian was later
studied with concrete examples carrying nontrivial topologi-
cal characters in Bloch bands [16,25]. Note, however, that the
WS wave functions live in the whole physical d-dimensional
space, at variance with Floquet systems where wave functions
are confined to a (d — 1)-dimensional physical space.

Recent research into Floquet physics has focused on con-
structing topological quantum systems [26-30]. At the same
time WS research has focused on computing particle currents
under strong electric fields as a way to observe the WS ladder
[31-33]. In this work, we present a study of edge particle
and thermal transport along the dc electric field direction of
a WS ladder with a nontrivial topological character in d = 3
space dimensions. Below a certain electric field strength, one-
dimensional (1D) boundary modes are generically connecting
energy-spaced WS bands. The boundary mode number is
controlled by the electric field strength. Because of coupling
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FIG. 1. Sketch of the topological WS ladder. (a) Between two reservoirs with chemical potential difference Vj, 2D Chern insulators are
connected in the Z direction, along which the system carries a steady particle current. (b) Sketch of band inversion between the WS bands.
A strong electric field F (> W) separates the energy spectrum of each 2D layer, with 1D boundary modes filling the energy gap of a pair of
Chern bands. Upon lowering the external field strength (F; < W), band inversions take place, followed by doubling of the boundary modes
at £ = £+F, /2. Further decreasing the electric field (/3 < W/2), the of boundary modes is tripled at E = 0, &F5. (c) Occupation number of
particles as a function of voltage drop V; divided by a bandwidth of the 3D lattice model without bias. (d) Particle current between two
reservoirs in steady states with increasing voltage drop at different cross section L, = L, = 8,10, 12 and L, = 9.

to an incoherent scattering source, particles can propagate
along the WS ladder as they relax energy to the bath.

As opposed to in-gap impurity states for which spatially lo-
calized modes have random energies and spatial locations, the
topological protection of boundary states ensures continuous
distribution of eigenmodes in energy space with a finite spatial
overlap among neighboring modes. This therefore provides a
weak but robust transport of particles across the energy gap
regardless of the cutoff energy of heat bath, which otherwise
will show transport properties similar to insulators.

II. TOPOLOGICAL WANNIER-STARK LADDER

Figure 1 provides a schematic understanding of the energy
spectrum of the topological Wannier-Stark ladder (TWSL). A
three-dimensional (3D) lattice model is composed of layers of
a two-dimensional (2D) Chern insulator with chiral boundary
modes circling on the open boundary. When a strong external
electric field F = eV;/L, is applied along the z direction, the
spectrum of the Chern insulators is identically repeated with
every AE = ea.F (lattice constant a.), forming a set of the
WS bands extended in the xy plane while localized in the z
direction. The density of states (DoS) within the energy gap

W of two WS bands is filled with chiral boundary modes. In
Fig. 1(b) the three sets of WS bands near zero energy are
colored to enhance visualization. With decreasing electric
field strength, the first band inversion takes place at E =
+W/2 and is followed by a stepwise increment of the DoS
inside the bulk energy gap. With further decreasing of the field
strength (FF = 1.4W, F = 0.7W, F = 0.4W), energy gaps are
flooded with additional sets of boundary modes. Their maxi-
mum number is limited by the ratio of the energy gap W and
the intrinsic band width and other inelastic scattering sources
broadening the spectrum. With the set of chiral boundary
modes connecting WS bands, our main question concerns
their role in particle transport from one particle reservoir
to the other and the related thermal energy emission in the
course. Figures 1(c) and 1(d) show the distribution of particle
occupancy and the particle current between the two reservoirs
in a steady state as the external electric field is tuned, re-
spectively. The details of the calculations will be explained
in the following section. The emergence of the WS ladder
is shown with increasing voltage drop Vy normalized by a
bandwidth W, of the 3D lattice model without bias (F = 0).
The distribution begins to show a dramatic deviation from
the Fermi-Dirac one at Vy/W, = 1, and at the same time
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the differential conductance dI/dV turns negative, signifying
deviation from the transport of conventional conductors.

III. MODEL HAMILTONIAN AND PAULI MASTER
EQUATION

To be specific, we employ a model tight-binding Hamil-
tonian of the Floquet topological insulator on a cubic lattice
with two states per site [28]:

A - - 1 A
Hys =) ld & = Frlclen + —o3(cy 00+ clens), (D

n

where d; = asink,, dy =asink, d3=pu—J—-28(2—
cosk, — cosky) + J cosk, cosk,), and & = (01,02, 03) are
the Pauli matrices. The lattice spacings are a, = a, = a, = 1
and e = 1. The hopping strength between layers A = 10, and
the intralayer hopping strengths u =3, ¢« =4, J = = 1.4,
are chosen such that each 2D WS band carries the Chern
number *+1 in the large field limit, ¥/W, > 1. The index
n labels the 2D layers with Hyp = d -G in the xy plane, as
shown in Fig. 1(a). The lattice translation symmetry is broken
in the z direction due to the presence of the electric field F,
which adds a stepwise increase of potential energy to the 2D
layers. Instead, the model acquires a combined symmetry Ty
of discrete translation and energy shift in the z direction {n —
n+1,E — E — F}, as observed in the energy spectrum of
eigenmodes in Fig. 2(a).

We assume a finite extension of the system in the z
direction with —L./2 < z < L;/2 and sizes Ly, L, in the x
and y directions, respectively. Particles at chemical potential
n1 = Vo/2 are released from the reservoir 1 at z = L, /2. For
them to reach reservoir 2 with u, = —Vp/2 at z = —L;/2, a
corresponding energy difference ~eV, must be released or
dissipated. We add an incoherent scattering source (for ex-
ample, phonons) with a well-defined temperature interacting
with the fermionic particles in the system. To maintain the
integrity of the WS ladder, we assume the coupling strength
to be small and the maximum energy carried by one phonon
(hwp, the Debye frequency) to be smaller than the potential
difference between neighboring 2D layers, F'. We will discuss
below the impact of variations wp on the transport properties
of TWSL. The Pauli master equation, which is valid for the
calculation of steady states [34,35], is employed to compute
the occupation numbers f, := f(€,) of eigenmodes n:

dfy
d—: = mZ#P,,m,

= Wan(l = f)for = WL = fudfur ()
m#n

where P, is the scattering rate from eigenmode m to n. The
scattering strength W, is determined by the density overlap
between two eigenmodes, the temperature of phonon bath,
and the phonon DoS (see Appendix A for details).

Figure 1(d) shows the rate of particle number going into
reservoir 2 from the TWSL as a function of the electric field
strength for three cross-sectional sizes (L, x Ly) with L, =9
in steady states, which is equal to the rate of particle number
getting out of reservoir 1 (see Appendix A for the setup
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FIG. 2. Energy-momentum dispersion relation and nonequilib-
rium steady states in the TWSL. (a) E (k,) at F' = 15. The color code
indicates the average position Z of each eigenmode. (b) Occupation
number f(€,) in steady states at temperature k7 = 0.1—1.0, filling
fraction v = 0.5. (c) Energy dissipation rate Jy(¢,) associated with
each eigenmode n. (d) Spatial current J,(€,) in the direction of the
external field. For the calculation of steady states, we use N, = N, =
22 with open boundary conditions.

of reservoirs). At a small voltage drop Vy = FL, < W, the
current is increasing with V) as more active transport channels
become available. The slope dI/dV is not constant since
the DoS depends on energy. On the other hand, when the
field strength is further increased, the current decreases with
oscillations reflecting the series of energy gap closings in the
WS bands. The occurrence of the WS ladder is visible in the
map of occupation numbers in Fig. 1(c) through the sequence
of occupied and unoccupied energy bands.

IV. NONEQUILIBRIUM STEADY STATES

Using the model Hamiltonian and the Pauli master equa-
tion, in this section we present steady-state results for occupa-
tion number f(€,), energy dissipation rate Jr (¢, ), and spatial
currents J, (¢, ) associated with each TWSL eigenmode . These
three quantities show distinct behavior in the bulk and chiral
boundary modes, signifying their crucial role in the particle
transport of the TWSL (see Appendix B for a comparison to
in-gap impurity states).
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Figure 2(a) shows the dispersion relation of the TWSL
for F = 15. Here the periodic boundary condition is assumed
along the x direction in order to illustrate the chiral boundary
mode dispersion in momentum k,. With open boundaries at
y ==£L,/2, two boundary modes with opposite chiralities
appear in a pair. The color code indicates the expectation
value (Z) of the z position of the eigenmodes. While the
overall position (Z) decreases with energy the potential energy
Voot = —Fz does as well, at energy E = F'/2 where boundary
modes appear as a result of the band inversion the position
(2) increases with energy. Using the set of eigenmodes of
the WS system, we compute particle and energy transport
characteristics by solving the Pauli master equation (2). Due
to the presence of the symmetry 77z we pick one irreducible
eigenmode set, —F /2 < E < F/2, and add periodic boundary
conditions in the energy domain. This allows us to compute
the steady nonequilibrium state of the system for a region with
energy E away from the reservoirs, e.g., |E — Vp|/F > 1. For
the setup of Figs. 2(b)-2(d), we take the number of particles to
fill one half of the eigenmodes in the irreducible TWSL band:
v=>" f(€,)/(2N:N,) = 0.5.

Figure 2(b) shows the steady-state occupation numbers
of the WS eigenmodes for temperatures k7 = 0.1—1 with
wp/F = 0.02. Within the bulk bands, particles can efficiently
relax their energy as there are roughly ~2L,L, scattering
channels. On the other side, the boundary modes between
two WS bands have only few scattering channels at hand.
Therefore, the occupation number is nearly unity at the bot-
tom of each WS band where particles are passing through
a bottleneck to enter boundary channels. Then particles are
transported down to the top part of the next WS bulk band
where the occupation is close to zero. Since the Debye fre-
quency is much smaller than the energy gaps between the WS
bands, the interband particle transfer occurs predominantly
via boundary modes. Note that with varying temperature the
particle occupation of bulk modes follows closely the Fermi-
Dirac distribution, f(e,) >~ 1/(e~#)/kT 4 1) with the WS
band-dependent chemical potential i;, while the occupancy of
boundary modes is essentially independent of the temperature
and does not thermalize. As a consequence, certain physical
observables such as the angular momentum discussed below
show a nontrivial temperature dependence.

Figure 2(c) shows the energy dissipation rate associated
with WS eigenmodes:

Jr(€n) == (€1 = €m)Pum, 3)
m#n

where the scattering rate between eigenmodes is weighted by
the amount of released energy. Jy (€,) is always positive since
the scattering events of emitting phonons are more proba-
ble than those of absorbing a phonon, P,, > 0 for ¢, < ¢,
(see Appendix A). The energy dissipation rate per eigenmode
Jr(€y) is largest at E = 0 and E = +F/2 where the particle
distribution is far from the equilibrium, while it is suppressed
within WS bands, which are well thermalized as reflected
through the Fermi-Dirac distribution of their occupancies.

In addition to energy dissipation, the particle transport in
the TWSL yields spatial displacements in the direction of
the external field. In Fig. 2(d) the spatial current of particles

associated with each eigenmode is computed:

Jz(en) = Z(Zn - Zm)an’ (4’)
m#n

where z, = (n|Z|n). The spatial current J,(¢,) is again max-
imum at zero energy in the chiral boundary modes, while it
shows a reversed motion with negative sign at E = £F/2 =
£7.5 reflecting the presence of inverted WS bands. As is
clearly seen in Figs. 2(c)-2(d), both the energy dissipation
rate and spatial current show a certain correlation in their
magnitudes, which will be further discussed in the section on
physical observables.

V. TOPOLOGICAL PHASE TRANSITION IN TWSL

As shown in Fig. 1(b), a WS band inversion takes place
repeatedly with the decrease of electric field strength F. Fig-
ure 3(a) shows numerical results for the occupation number
f(€,) of eigenmode n as a function of energy E and field
strength F. The eigenenergies as functions of F' are plotted
with thin solid lines indicating the location of the WS bands
and the edge/boundary modes which fill in the energy gap
with a relatively larger energy spacing. For three values of
the electric field strength F = 12,7, and 3.5 we show the
dispersion relations in Figs. 3(c)-3(e) with the expectation
value of § in the color coding to emphasize eigenmodes
localized near the open surface aty = —L, /2. The above cases
demonstrate that the number of 1D edge/boundary modes
localized at the open boundary at E =0 and E = £F/2
are tuned by the external electric field strength. The bound-
ary modes are connecting fully occupied bulk modes with
f(e,) = 1 (yellow) to almost empty bulk modes f(e,) >~ 0
(dark blue) in Fig. 3(a). By releasing energy through scattering
off phonons, particles slide down through boundary modes
in energy between two WS bands. With a steep gradient of
occupation number and only a few channels to scatter into,
the rate of thermal energy emission Jr(€,) is particularly
enhanced at £ =0 and E = £F/2 as shown in Fig. 3(b).
The two sets of figures show the topological phase tran-
sition with external electric field F, accompanied by the
change of particle occupation in steady states and the ther-
mal energy emission signified by the presence of boundary
modes.

VI. EXPERIMENTAL OBSERVABLES

In the previous section, we showed the comprehensive
maps of the occupation number of particles in the topolog-
ical WS ladder and the map of energy dissipation rate of
eigenmodes. As the external electric field F is tuned, the
number of boundary modes within the energy gap varies as
well as the Chern invariant of the WS bulk bands. While the
two quantities, f(¢,) and Jr(€,), provide useful microscopic
information of the TWSL, eigenenergy-resolved quantities
are hardly accessible in experiments. Instead, their energy-
integrated statistics can be measured. This section discusses
the following physical observables related to the boundary
modes in the TWSL: (1) the distribution of dissipated energy,
(2) the distribution of spatial displacements of particles in the
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FIG. 3. Energy-resolved occupation numbers and energy dissipation rate. (a) The occupation numbers f(e€,) of particles in eigenmode n,
within one irreducible set of WS band in E' € [—F /2, F /2] as a function of the external field strength F. Thin black lines indicate the trace of
eigenenergy in TWSL as a function of F. For three values of the external field strength, F = 3.5, 7, and 12, the energy windows of the WS
bulk modes are marked with thick solid vertical lines, and the ones of the chiral boundary modes with dotted lines. (b) Energy dissipation rate
Jr(€,) from scatterings associated with eigenmode n. (c—e) Momentum-energy dispersion relation E (k,) for three representative electric field
values F' = 12,7, 3.5 with a sizable energy gap. The color coding is chosen to emphasize eigenmodes near the open surface at y = —L, /2

(black).

transport direction, and (3) the sum of angular momentum
carried by particles as a function of temperature and filling
fraction.

A. Distribution of dissipated energy and spatial displacements

Figures 4(a) and 4(b) show the distribution of dissipated
energy AE and spatial displacements of particles along the z
direction Az in the steady state of the TWSL for several Debye
frequencies wp = 0.3,0.6,0.9, 1.2:

P(AE) =) Pund(éy — € + AE), ()
P(AZ) =) Punb(zn — 2m — A2). (6)

where the sum runs over the eigenmodes of TWSL. To reduce
the finite-size effect, §(x) ~ 7 ~'n/(x* + n?) with n = 0.1 is
used. External field strength F = 7 is chosen without loss

of generality. For both plots, the main peaks are located at
AE = Az = 0 and appear due to particles of the bulk modes
with occupation close to unity. The distribution is markedly
asymmetric reflecting the fact that particles are moving to
lower energies and positions z. The broad secondary peaks
following the main one are caused by interband scattering,
whose rate increases with the increase of the Debye frequency
wp. In the presence of boundary modes connecting neighbor-
ing WS bands, no matter how small a Debye frequency wp
is, particles can always find their paths to lower energy, and
the dips between the peaks are filled by particle motions via
boundary modes.

The particle occupancies f(¢,) for different wp are shown
in Fig. 4(c). For small wp particles follow the Fermi-Dirac
distribution within the WS bands with phonon tempera-
ture kT = 0.1 [see Fig. 3(d) for the energy dispersion re-
lation]. However, with increasing wp this quasi-equilibrium
is lost, since more and more particles are efficiently
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FIG. 4. Dissipated energy and spatial displacements of particles in TWSL. (a—b) Distribution of dissipated energy and spatial displacements
of particles along Z at F = 7, kT = 0.1 for different Debye frequencies: wp = 0.3, 0.6, 0.9, 1.2. (c) Occupation number of particles f(e,) for
the same set of Debye frequencies (the same color code). (d—g) Correlations of dissipated energy and spatial displacements of particles. Color
indicates the expectation value of p = [(2%/L,)* + (29/L, )2]1/ * of eigenmodes associated with scatterings, distinguishing boundary modes

from the WS bulk modes: scatterings marked by yellow take place near

scattered to the next WS band via fast direct intraband energy
relaxation.

Figures 4(d)—4(g) show the correlation between dissipated
energy AE (vertical axis) and the spatial displacements of
particles Az (horizontal axis) for the same set of Debye
frequencies, wp = 0.3, 0.6, 0.9, 1.2, for 10° scattering events.
The color of data points indicates the expectation value of p =
[(2%/Ly)? + (29/Ly)*]""* within eigenmodes associated with
scatterings, used as a measure distinguishing boundary modes
from bulk ones. Interestingly, the parameter space is divided
by alternating scattering regions with different colors. If the
boundary modes are absent, the regions of bulk scattering
modes are disconnected owing to the energy gaps between
WS bands. Thus, from the maps of correlations one is able
to identify the presence of boundary modes and their role in
TWSL.

B. Angular momentum

Next, we turn our attention to the angular momentum
carried by particles in the TWSL. Being localized on the open
surface of a 3D lattice, the chiral motion of boundary modes
generates a significant angular momentum along the Z axis.
Also the occupation of boundary modes is less sensitive to the
temperature compared to the bulk modes, as discussed earlier;
see Fig. 2(b). This provides an opportunity to characterize the
presence of boundary modes in TWSL from the direct mea-

surement of an angular momentum [36] or local magnetic field
if particles carry a charge [37]. In the following numerical
demonstration, the external field strength F = 15 is chosen,
which corresponds to the setup of Fig. 2.

The angular momentum in the direction of external field is
associated with position and velocity operators: £, = 20, —
0y, where O; = i[7, H]. Thus, the sum of angular momentum
of particles in TWSL in a steady state is

L= Zf(en)Lz(en)’ (7)

where £.(e,) = i(Y,|3H$ — PHZ|Y,) is the angular momen-
tum carried by eigenmode n. The sum runs over eigenmodes
n within an irreducible WS band structure around E = 0. The
occupancies of eigenmode f(¢,) for different filling fraction
v=>, f(&)/(2N:Ny) = 0.1-0.9 are plotted in Fig. 5(a).
With increasing filling fractions, the local chemical poten-
tial u; of each WS band is increasing to maintain a quasi-
equilibrium at k7" = 0.1. At the same time, the occupancy of
boundary modes stays highly in nonequilibrium with % > 0,
as they are connecting the two neighboring WS bands.
When the TWSL is completely filled, f(e,) = 1, the sum
of angular momentum Y, £ (¢,) = Tr(ﬁz) = 0, because we
can always choose a basis, such that |¢,) with (¢, |ﬁz|¢n) =0
for all n. However, for a filling fraction v < 1, £ is in general
nonzero because the distribution of particle occupation is
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FIG. 5. Angular momentum at different particle fillings and temperature in TWSL. (a) Occupation number of particles f(e,) at F = 15,
kT = 0.1, and filling fraction v = 0.1—0.9 (legend). (b) Angular momentum carried by particles sitting in eigenmode n, f(€,)L.(€,), is plotted
in the same set of filling fractions. As a guideline, the angular momentum L. (¢,) is plotted with dotted line. (c) The sum of angular momentum
L =73, f(e)L.(€,) as a function of temperature for different filling fractions. (d—e) Angular momentum carried by chiral boundary modes
Lchira and the WS bulk modes Ly, are plotted as a function of temperature, £ = Lepirar + Loulk-

strikingly different for the WS bulk modes and boundary
modes as a function of temperature and filling fraction. The
eigenenergy-resolved angular momentum carried by particles,
f(e.)L,(€,), is shown in Fig. 5(b) for the same set of filling
fractions v = 0.1—0.9. Note that angular momenta of chiral
boundary modes around E = 0 and E = £F/2 are distinc-
tively large compared to that of the WS bulk modes, since
the former is localized at the open surface with unidirectional
group velocity.

Unlike systems in equilibrium where the role of tempera-
ture is often reduced to energy broadening and the diminishing
of quantum effects, in TWSL the influence of temperature
on the angular momentum is dramatic. Figure 5(c) shows the
temperature dependence of the sum of angular momentum at
different fillings. At half filling v = 0.5, £ is nearly insensitive
to the change of temperature as a result of the symmetric an-
gular momentum £, (€, ) with respect to E = 0 [see the dotted
line in Fig. 5(b)], and the particle-hole symmetric occupation
number f(€,) ~ 1 — f(—e,) [see Figs. 5(a) and 2(b)]. As the
filling is tuned away from the half, £ becomes sensitive to
temperature and shows abrupt variations. In Figs. 5(d) and
5(e), L gets contributions from the boundary modes Lpry and
bulk modes Lyyuk. Surprisingly, the temperature dependence
of Lepirar and Lyyk for a given filling fraction marked by
the same color shows the opposite behavior, which is the
reason for the nontrivial temperature dependence of the sum
of angular momentum carried by particles in TWSL.

VII. DISCUSSION

The Stark effect in a lattice, the WS ladder, was experi-
mentally observed in semiconductor superlattice structures [6]
and cold atoms in optical lattices [7]. Despite its continued
interest, most experimental and theoretical studies are limited
to 1D lattices in a strong field. In this paper, we theoretically
study topological phases of a 3D WS ladder, which shares
the same topological property with Floquet topological phases
in (2 + 1) dimensions. Moreover, the occupation number of
particles in steady states is computed by solving the master

equation which allows us to compute transport-related physi-
cal observables.

The essential ingredient of our proposal, the topological
WS ladder, leads to layers of 2D topological bands and to
their coupling in the direction of an applied external field.
With intensive interest in topological matter, high-quality 2D
topological bands are engineered both in solid state devices
[38] and in ultracold atomic setups [39—41]. Thus, the ex-
tension to an array of 2D layers as described in Fig. 1(a) is
currently within experimental reach. We propose to introduce
a constant potential gradient across the 2D coupled layers to
induce the topological WS ladder accompanying the chiral
boundary modes in every energy gap between WS bands (see
Fig. 3). For this purpose, ultracold atoms in a 3D optical
lattice appear to be ideal, where the constant field is generated
by gravity in the direction perpendicular to the 2D layers.
The field strength can be tuned by accelerating the optical
lattice in the Z direction, as already demonstrated in previous
experiments with 1D structures. Furthermore, the transport of
particles can be realized by preparing two particle reservoirs
with different chemical potentials [42], for which the motion
of particles can be traced and therefore the angular momentum
discussed in Sec. VI B can be measured.
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APPENDIX A: SCATTERING MATRIX

Our calculations assume that the system-bath coupling is
sufficiently weak so that its influence on the WS electronic
structure is negligible. Scattering between eigenmodes of the
TWSL is mediated by incoherent scatterers such as back-
ground phonons and photons. The scattering strengths for
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FIG. 6. The overlap of the local DoS between modes n and m, B,,, = f d>%v,,(X)v, (%), is plotted for eigenmodes of model (i) (a) and

model (ii) (b) in the energy gap. See Appendix B for details.

emission and absorption are given by

Wom = p(0)[1 + nw]/d%_é V(%) v (X), (for e, < €,),

Wom = p(w)[nw]/d35f' Va(X) v (X), (for €, > €,), (Al

where phonons absorb/emit the energy difference between
two electronic eigenmodes w = |e,, — €,|, n, = (/¥ —
1)~!. The coupling strength between system and bath is
p(w) = cw’e ®/®» where the phonon energy has a Debye
frequency cutoff wp. We take s = 1 ohmic dissipation. The
minimum energy of the phonon is bounded by the system size,
wp = ¢/L;, and set to w, = 0.01 in our numerics. v,(X) =
[,(%)|? is the local DoS of eigenmode n obtained from the
diagonalization of the lattice model introduced in Eq. (1).

To compute the particle current across the system in
Fig. 1(d), we introduce two thermalized reservoirs with
the same temperature as the thermal bath of TWSL, lo-
calized at z = +L,/2 with chemical potential u = +V;/2,
coupled to eigenmode n in the system with strength A4, =
ady ., |Wnlx,y,z=+L/2)* at energy E = €, with a con-
stant a. Thus, the tunneling current, for example, to reservoir
2 is computed as

1
=Y A _
I=2_ 4 [f (€)= v 1 1}’ (A2)

where f(€,) is determined from the steady-state solution of
the Pauli master equation in (2).

APPENDIX B: TOPOLOGICAL BOUNDARY MODES VS
IN-GAP IMPURITY STATES

The topological protection of boundary modes ensures the
presence of eigenmodes continuously distributed in energy
space, which in turn leads to a smooth spatial overlap of the
local DoS among neighboring modes. Thus, the transport of
particles by thermal relaxation remains stable. In spite of the
significant reduction of the number of transport channels from
the WS band (~2N,N,) to the boundary modes [~4(N, +
N,)], the system is not insulating. In contrast, when a bulk en-
ergy gap is filled with impurity states, the transport of particles
is governed by the scattering of particles from one impurity
state to another. Because impurity states are spatially localized

in the full 3D space, the scattering strength is strongly reduced
compared to that of topological boundary modes. Even worse,
the scattering strength is exponentially decaying as a function
of energy difference between two modes. Thus, the transport
of particles through the energy gap filled with in-gap impurity
states is similar to an insulating phase.

In this Appendix we support the above argument by calcu-
lating the overlap of the local DoS between mode n and m:

Bun = / EE Y@ Y @), (B1)

which is a quantity directly related to the scattering strength
in Eq. (Al). Note that when n = m, the above expression
becomes the inverse participation ratio, which is a measure
of spatial localization of eigenmodes. In the following we
compute By, for two models: (i) The model introduced in (1)
with F = 12 [see Figs. 3(a) and 3(c) for the related energy
spectrum], and (ii) a model with the same set of microscopic
parameters (u, o, B,J, B, F) of the clean Hamiltonian but
with periodic boundary conditions in the x and y directions
so that edge/boundary modes are absent. In addition, for the
second model we add an onsite impurity potential:

Himp = Z(VnGO)C,I Cn,s

neX

(B2)

where the potential V, is added to a randomly chosen set of
lattice sites X = {ny, n, ..., ny} where M = 2N, (N, + N,),
such as to maintain the same number of topological boundary
modes as in model (i). The impurity potential is uniformly
distributed between [—2«, 2«], where oo = 4 is the hopping
strength in the xy plane. In this way, in-gap impurity states are
introduced between the WS bands.

Figures 6(a) and 6(b) show B,, for models (i) and (ii),
respectively, for 40 eigenmodes near zero energy. First, the
energy spacings (width between parallel lines) among neigh-
boring topological boundary modes are remarkably uniform
due to the level repulsion, while those of impurity modes are
random as they are spatially localized in 3D space. Second,
it follows that the overlap of the local DoS, B,,,, of model
(1) is the largest for the nearest neighbors, m = n + 1, and
the value is roughly constant regardless of their eigenenergies.
This provides advantages for the transport of particles through
the topologically protected boundary modes, as the scattering
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strength is exponentially decaying with energy difference,
w = €, — €,. In contrast, B, of model (ii) between impurity
modes does not show a conceivable correlation, indicating that
the transport of particle through the impurity states is much
less efficient.

Last, particles in topological boundary modes in model
(1) carry an angular momentum which linearly scales with
the system size L, , as discussed in Fig. 5. Instead, particles
transporting through impurity modes do not carry a measur-
able angular momentum.
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