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We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the
initial phase of the instability development captured by the linear stability analysis, long wavelength
instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band inversions. At
longer timescales, nonlinear wave mixing induces spreading of energy through the entire band and
spontaneous creation of wave polarization singularities determined by the band Chern number. Our
analytical and numerical results establish modulational instability as a tool to probe bulk topological
invariants and create topologically nontrivial wave fields.
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Topological photonic bands can be combined with
appreciable mean-field nonlinear interactions in a variety
of platforms [1–3], including exciton-polariton condensates
in structured microcavities [4,5], waveguide arrays [6],
metasurfaces [7], and ring resonators [8]. These nonlinear
topological photonic systems are of growing interest due to
not only potential applications such as lasers and optical
isolators, but also their ability to host novel effects with no
analog in electronic topological materials. For example,
several previous studies have revealed the existence of
self-localized wave packets such as edge and bulk solitons
[9–16]. However, as the size of a soliton is determined by
its total power, they require fine-tuned excitation conditions
to create, making experiments challenging. It is therefore
timely to unveil novel phenomena that can emerge sponta-
neously in nonlinear topological photonic systems, without
requiring fine-tuning.
In this Letter, we study the nonlinear dynamics of Bloch

waves in topological bands, establishing their sensitivity to
topological invariants such as the Chern number. We show
that the generic phenomenon of modulational instability can
lead to the spontaneous formation of wave fields charac-
terized by nontrivial Chern numbers inherited from the linear
bands. The mechanism is the energy-dependent parametric
gain provided by the modulational instability [17–24], which
enables population of a single band starting from a simple
plane wave initial state. In addition to providing a simple
way to sculpture novel structured light fields, the modula-
tional instability enables measurement of bulk topological
invariants of bosonic wave systems. This is usually chal-
lenging unless the band eigenstates are known a priori, time-
consuming Bloch band tomography is performed [25–28],
or the bulk-edge correspondence is employed [29–31].

We first characterize the short time dynamics of non-
linear Bloch waves using the linear stability analysis. The
Bloch waves at high symmetry points of the Brillouin
zone exhibit a familiar long wavelength instability in the
presence of weak nonlinearities, but they become stable at a
critical nonlinearity strength. This critical strength coin-
cides with the bifurcation of a nonlinear Dirac cone [32],
where additional symmetry-breaking nonlinear Bloch
waves emerge and their stability becomes sensitive to
the band topology. Second, we use numerical simulations
to study the modulational instability at longer propagation
times. For weak nonlinearities, the instability remains
confined to the initially excited band. Nonlinear wave
mixing processes lead to the excitation of all the band’s
linear modes, imprinting the band’s Chern number on the
wave field’s polarization [33,34]. Interestingly, the polari-
zation field converges to a quasiequilibrium state well
before the system thermalizes [35–38]. Thus, the topologi-
cal properties of the band are imprinted on the modulational
instability at small and large time and nonlinearity scales.
We consider a two-dimensional photonic lattice

governed by the nonlinear Schrödinger equation

i∂tjψðr; tÞi ¼ ðĤL þ ĤNLÞjψðr; tÞi; ð1Þ

where t is the evolution variable (time or propagation
distance), jψðr; tÞi is the wave field profile, ĤL and ĤNL
are linear and nonlinear parts of the Hamiltonian, and
r ¼ ðx; yÞ indexes the lattice sites. We consider the chiral-
π-flux model illustrated in Fig. 1(a). This is a two band tight
binding model for a Chern insulator on a square lattice with
two sublattices a and b, i.e., jψi ¼ ðψa;ψbÞT , described by
the Bloch Hamiltonian [39]
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ĤLðkÞ ¼ dðkÞ · σ̂; dz ¼ Δþ 2J2ðcos kx − cos kyÞ;
dx þ idy ¼ J1½e−iπ=4ð1þ eiðky−kxÞÞ þ eiπ=4ðe−ikx þ eikyÞ�;

ð2Þ

where the wave vector k ¼ ðkx; kyÞ is restricted to the first
Brillouin zone kx;y ∈ ½−π; π�, σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ are Pauli
matrices acting on the sublattice (pseudospin) degree of
freedom, J1;2 are nearest and next-nearest neighbor hop-
ping strengths, and Δ is a detuning between the sublattices,
which we use to tune between trivial and nontrivial
topological phases. We will fix J2 ¼ J1=

ffiffiffi
2

p
, which enhan-

ces nonlinear effects by maximizing the band flatness [39].
For the nonlinear part of the Hamiltonian ĤNL we consider
an on-site nonlinearity of the form

ĤNL ¼ Γdiag½fðjψaðrÞj2Þ; fðjψbðrÞj2Þ�; ð3Þ

where Γ is the nonlinear interaction strength and f is the
nonlinear response function, which describe the intensity
dependence of the site energies.

The Bloch wave eigenstates of Eq. (2) form two
energy bands E�ðkÞ, i.e., ĤLðkÞju�ðkÞi ¼ E�ðkÞju�ðkÞi.
Figure 1(b) shows the spectrum of ĤL, E2

�ðk;ΔÞ ¼
4J21½1þ cos kx cos ky� þ ½Δþ 2J2ðcos kx − cos kyÞ�2, as a
function of Δ=J1, which exhibits topological phase tran-
sitions at Δ=J1 ¼ 2

ffiffiffi
2

p
and −2

ffiffiffi
2

p
, where the gap closes at

one of the high symmetry points of the Brillouin zone
k0 ¼ ðπ; 0Þ and ð0; πÞ, respectively. The phase transitions
correspond to changes in the quantized Chern numbers C�,
which is computed as the integral of the Bloch waves’
Berry curvature over the Brillouin zone [40,41].
We focus on the nonlinear wave dynamics at the k0 ¼

ðπ; 0Þ high symmetry point. The linear Bloch wave can be
continued as a nonlinear Bloch wave [42,43] jϕðrÞi ¼
ð ffiffi

I
p

0; 0ÞTeiπx satisfying ðĤL þ ĤNLÞjϕi ¼ ENLjϕi, with
energy ENL ¼ Δ − 4J2 þ ΓfðI0Þ bifurcating from the
lower band when Δ < 4J2 and from the upper band when
Δ > 4J2 [see purple line in Fig. 1(b)].
Performing the linear stability analysis, we consider the

time evolution of a small perturbation to the steady state
jϕi, jψðtÞi ¼ ðjϕi þ jδϕðtÞiÞe−iENLt. By linearizing the
equation of motion Eq. (1) about jϕi we obtain an
eigenvalue problem for the spectrum λðkÞ of perturbation
modes jδϕðtÞi ¼ juie−iλt þ jv�ieiλ�t, which occur in
complex conjugate pairs λ; λ� due to the particle-hole
symmetry of the linearized eigenvalue problem (see
Supplemental Material [44] for details). Perturbations
with growth rate ImðλÞ > 0 are linearly unstable. For
the nonlinear response function, we consider pure Kerr
nonlinearity fðIÞ ¼ I; however, the qualitative features of
the perturbation spectrum are insensitive to the precise
form of fðIÞ [44].
Figures 1(c) and 1(d) plot the growth rate and

wave vector kc of the most unstable perturbation
mode, i.e., the mode with the maximum growth rate
Im½λðkcÞ� ¼ maxkIm½λðkÞ�, as a function of Δ and Γ. For
weak nonlinearities Γ we observe behavior qualitatively
similar to the scalar nonlinear Schrödinger equation: Bloch
waves at the band edge exhibit a long wavelength
instability under self-focusing nonlinearity, i.e., when
Γmeff < 0, where meff ¼ Δ − 4J2 is the wave effective
mass at k0. Interestingly, a second long wavelength
instability occurs for stronger nonlinearities in the vicinity
of the stable line ΓI0=2 ¼ −meff . This critical line occurs
when the nonlinearity-induced potential closes the
band gap and corresponds to a transition from an expo-
nential instability at weak Γ to an oscillatory instability at
strong Γ.
To reveal the generic behavior in the vicinity of the

critical line, we consider the effective Dirac model obtained
as a long wavelength expansion of Eq. (2), i.e., k ¼ k0 þ p
with jpj ≪ 1 [44],

ĤD ¼ J1
ffiffiffi
2

p
ðpxσ̂y −pyσ̂xÞ þ ðmeff þ J2½p2

x þp2
y�Þσ̂z: ð4Þ

(a)

(c) (d)

(b)

FIG. 1. Linear stability of the k0 ¼ ðπ; 0Þ nonlinear Bloch
waves in the chiral-π-flux model. (a) Schematic of the lattice,
consisting of two sublattices ða; bÞ with detuning Δ and inter
(intra)sublattice couplings J1 (J2). Inset: the Brillouin zone.
(b) Linear bands (shaded regions) characterized by Chern
numbers C� as a function of Δ, for J2 ¼ J1=

ffiffiffi
2

p
. (c) Growth

rate and (d) magnitude of the most unstable perturbation wave
vector kc. Purple dashed line in (c),(d) marks the nonlinearity-
induced gap closure at k ¼ k0, and the nonlinear Bloch wave is
stable in the dark blue areas.
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The quadratic J2½p2
x þ p2

y�σ̂z term is required to reproduce
the correct Chern numbersC� ¼ � 1

2
ð1 − sgn½J2meff �Þ [45]

and the main features of perturbation spectrum.
The full nonlinear Bloch wave spectrum of Eq. (4) can be

obtained analytically (see Supplemental Material [44]) and
is shown in Figs. 2(a)–2(c). We observe that the critical line
coincides with the formation of a nonlinear Dirac cone at
k0, with jpj ¼ pI ¼ 0 [32], i.e., a symmetry-breaking
bifurcation [labeled I in Fig. 2(a)] of the nonlinear
Bloch waves, which produces the linear band crossing
in Fig. 2(b). At the bifurcation new modes jϕðrÞi ¼
ð ffiffiffiffiffi

Ia
p

eiφ;
ffiffiffiffiffi
Ib

p Þeiπx emerge, where both sublattices have
nonzero intensities satisfying I0 ¼ Ia þ Ib and the relative
phase between them φ forms a free parameter. Moreover, in
the nontrivial phase (C� ¼ �1, jΔ=J1j < 2

ffiffiffi
2

p
), an addi-

tional bifurcation [labeled II in Fig. 2(b)] occurs at higher
intensities at jpj ¼ pII ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − Δ=J2

p
, corresponding to

dzðpÞ ¼ 0. The new branches emerging from this bifurca-
tion merge with the lower band as ΓI0 is increased
[see Fig. 2(c)], producing a gapless nonlinear Bloch
wave spectrum, while in the trivial phase (C� ¼ 0,

jΔ=J1j > 2
ffiffiffi
2

p
), the nonlinear Bloch wave spectrum

remains gapped [44].
The nonlinear Dirac cone at p ¼ 0 occurs in both

topological phases, but the modes’ stability in the vicinity
of the bifurcation point is sensitive to the linear band
topology. For example, in both the tight binding and
continuummodels, the critical stable line terminates abruptly
in the trivial phase at Δ ¼ Δc ¼ 4J2 þ ðJ21=2J2Þ, as shown
in Figs. 2(d) and 2(e). Beyond this critical detuning, the most
unstable wave vector is jpcj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΓI0J2 þ J21j=J22

p
; the

length scale of the instability is dictated by the quadratic
J2ðp2

x þ p2
yÞ term and vanishes in the usual linear Dirac

approximation, which neglects p2
x;y terms. As a second

example, Fig. 2(f) shows the angular (directional) depend-
ence of the maximal instability growth rate of the symmetry-
breaking nonlinear Bloch wave. In the nontrivial phase, the
instability is strongly anisotropic [44], with wave vectors in
the direction perpendicular to the direction of the pseudospin
remaining stable, whereas in the trivial phase, instabilities
occur for all angles.
To understand these topological phase-dependent stabil-

ity properties, we note that in the trivial phase the
perturbation modes maintain a similar polarization to the
nonlinear Bloch wave, enabling efficient nonlinear wave
mixing and promoting instabilities. On the other hand, in
the nontrivial phase, the perturbation modes’ polarization
rotates away to the opposite pole of the Bloch sphere,
reducing the strength of the nonlinear wave mixing due to
poor spatial overlap between the nonlinear Bloch wave and
the perturbation modes [44]. While this difference may
seem minor, it can play a critical role close to bifurcation
points by lifting the degeneracy between the bands of
perturbation modes. Thus, the modulational instability does
not just depend on the energy eigenvalue dispersion, but is
also sensitive to the geometrical properties of the Bloch
waves, i.e., their polarization, and the band topology. This
is our first key result.
Next, we carry out numerical simulations of Eq. (1) to

study the modulational instability beyond the initial lin-
earized dynamics. To characterize the complex multimode
dynamics, we compute the following observables: (i) the
normalized real space participation number, which mea-
sures the fraction of strongly excited lattice sites

Pr ¼
P2

2N

�X
r
jψaðrÞj4 þ jψbðrÞj4

�
−1
; ð5Þ

where P ¼ P
rhψðrÞjψðrÞi is the total power, (ii)

the Fourier space participation number Pk,
which measures similarly the fraction of excited
Fourier modes, and (iii) the field polarization direction
n̂ψðkÞ ¼ hψðkÞjσ̂jψðkÞi=hψðkÞjψðkÞi, which exhibits sin-
gularities sensitive to the band topology. We average these
observables over an ensemble of small random initial

(a)

(d)

(f)

(e)

(b) (c)

FIG. 2. (a)–(c) The transition in the nonlinear Bloch wave
spectrum across the critical line in the nontrivial (solid blue,
meff ¼ −1=2) and trivial (dashed red, meff ¼ 1=2) phases of the
effective Dirac model (4). Colored dots mark special points in
spectra with py ¼ 0;�pII. (d) Growth rate and (e) magnitude of
the most unstable perturbation wave vector along the critical line.
(f) Instability growth rate as a function of the polar angle
measured from the symmetry-breaking nonlinear Bloch wave
vector in the nontrivial (solid blue) and trivial (dashed red)
phases.
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perturbations to the nonlinear Bloch wave. The average
polarization hn̂ψðkÞi, in general, describes a mixed state
with n2ψ ¼ hn̂ψðkÞi · hn̂ψðkÞi < 1. When n2ψ > 0 for all k,
i.e., the “purity gap”minkðn2ψÞ remains open, the wave field
is characterized by a quantized Chern number [46–48].
Figure 3 illustrates the dynamics of the k0 ¼ ðπ; 0Þ

nonlinear Bloch wave with initial intensity I0 ¼ 1, when
each lattice site is subjected to a random perturbation with
amplitude not exceeding 0.01

ffiffiffiffi
I0

p
. We use saturable non-

linearity of the form fðIÞ ¼ 2I=ð1þ IÞ, which takes into
account the inevitable saturation of nonlinear response at
high intensities, a system size of N ¼ 32 × 32 unit
cells with periodic boundary conditions [49], and average
observables over 100 initial perturbations. We consider
parameters corresponding to different instability regimes:
exponential focusing, exponential defocusing, and
oscillatory defocusing.
The focusing instability generates a collection of local-

ized solitons, resulting in a decrease in hPri in Fig. 3(a). On
the other hand, the defocusing nonlinearity spreads energy
over both sublattices, resulting in a small increase in hPri.
In all cases, hPki increases due to other Fourier modes
being populated via nonlinear wave mixing. For the
exponential instabilities, this is accompanied by the
purity gap opening and emergence of a well-defined
Chern number corresponding to the band Chern number.
Interestingly, the purity gap opens before hPr;ki reach a
steady state. Under the oscillatory instability, the purity gap
remains negligible due to competition between pairs of
instability modes with the same growth rates. Further
details of the propagation dynamics in these different
regimes may be found in the Supplemental Material [44].
To explore the emergence of a purity gap in more detail,

we present in Fig. 4(a) its value at t ¼ tf ¼ 40J1 as a

function of Δ, which tunes between the trivial and non-
trivial phases [39]. For Δ > 0, we observe good corre-
spondence with the results of the linear stability analysis in
Fig. 1: the size of the purity gap follows the instability
growth rate, and the purity gap vanishes when the Bloch
wave is linearly stable or exhibits an oscillatory instability,
because the polarization becomes sensitive to the initial
random perturbation. The purity gap also closes at
Δ ≈ −2J1, despite no change in the fastest growing
instability mode, corresponding to a nonlinearity-induced
closure of the band gap at k ¼ ð0; πÞ.
While the trivial and nontrivial phases exhibit similar

purity gaps, their differing topology can be observed by
measuring the field polarization hn̂ψðkÞi ¼ ðnx; ny; nzÞ at
long times, as illustrated in Figs. 4(b) and 4(c). In experi-
ments, hn̂ψðkÞi can be readily obtained by measuring the
field’s sublattice (spin) components in Fourier space;
nzðkÞ ¼ ðjψaj2 − jψbj2Þ=ðjψaj2 þ jψbj2Þ is the relative
population imbalance between the two sublattices at k,
while nx;y depend on the relative phase between the two
sublattices. Employing the method of Ref. [33], the Chern
number can hence be obtained by summing the charges
of the phase singularities of the polarization azimuth
θ ¼ 1

2
tan−1ðnx=nzÞ weighted by sgnðnyÞ. In the trivial

phase (large Δ), the field is predominantly localized to a
single sublattice, such that nz remains nonzero and there are
no phase singularities in θ; hence C ¼ 0. In the nontrivial
phase, hn̂ψðkÞi spans the entire Bloch sphere, correspond-
ing to a pair of opposite charge phase singularities with

(a)

(b)

(c)

FIG. 3. Long time instability dynamics in the different insta-
bility regimes: focusing exponential (blue), defocusing exponen-
tial (red), and oscillatory instability (brown). (a) Real space
participation number. (b) Fourier space participation number.
(c) Purity gap.
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FIG. 4. (a) Purity gap at time t ¼ tf ¼ 40=J1 as a function ofΔ.
Field polarization textures at tf in the (b) trivial (Δ ¼ −3J1) and
(c) nontrivial (Δ ¼ 0) phases. The Chern number is obtained by
summing the charges of the polarization azimuth vortices (in-
dicated by arrows) weighted by sgnðnyÞ at the vortex core
(indicated by �1) [33].
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opposite weights sgnðnyÞ ¼ �1, and hence C ¼ 1. Thus,
the long time instability dynamics can be used to measure
the band Chern number. This is our second important
finding.
In conclusion, we have studied how the modulational

instability of nonlinear Bloch waves can be used to probe
band topology. The linear stability spectrum describing the
short time instability dynamics exhibits bifurcations and a
reemergence of stability, which are sensitive to topological
band inversions. At longer evolution times, nonlinear wave
mixing can populate an entire band, enabling the sponta-
neous creation of topologically nontrivial wave fields from
simple plane wave initial states. Since the timescales
involved are shorter than the wave thermalization time,
these effects should be experimentally observable in non-
linear waveguide arrays [6], Bose-Einstein condensates in
optical lattices [22,23], or exciton-polariton condensates
[4,5]. While we focused on the chiral-π-flux model, we
have observed similar behavior in other topological tight
binding models. Lattices with a larger band flatness
typically exhibit emergence of a purity gap and well-
defined Chern number for a wider range of nonlinearity
strengths. It will be interesting to generalize our findings to
periodically driven Floquet systems such as the nonlinear
waveguide array employed in Ref. [6], where perfectly flat
topological bands have been demonstrated.
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