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Abstract
We provide numerical evidence for a temporal quantum-mechanical interference phenomenon:
time molecules (TMs). A variety of such stroboscopic states are observed in the dynamics of two
interacting qubits subject to a periodic sequence of π-pulses with the period T. The TMs appear
periodically in time and have a large duration, δtTM " T. All TMs are characterized by almost zero
value of the total polarization and a strong enhancement of the entanglement entropy S up to the
maximum value of S # ln 2 indicating the presence of corresponding Bell state. Moreover, the TMs
demonstrate a stroboscopic switching between the two maximally entangled Bell states and a slow
leakage into other eigenstates. The TMs are generated by the commensurability of the Floquet
eigenvalues and the presence of maximally entangled Floquet eigenstates. The TMs remain stable
with detuned system parameters and with an increased number of qubits. In particular, we
observed the TMs in the dynamics of three interacting qubits, and these TMs show a stroboscopic
switching between the four Greenberger–Horne–Zeilinger states. The TMs can be observed in
microwave experiments with an array of superconducting qubits.

1. Introduction

Great attention has been devoted to an experimental and theoretical study of coherent quantum dynamics
of the various quantum system subject to a time-periodic external perturbation, i.e., so-called Floquet
quantum systems [1–3]. A large amount of spectacular quantum phenomena, e.g., the microwave-induced
Rabi oscillations [4], the ac Stark effect, the dynamic quantum tunneling [1, 2], and the quantum ratchet
effect [3], to name a few, has been predicted, analyzed and observed in different condensed matter and
optical systems.

Most of these effects that can be called temporal quantum interference and demonstrate long-living
oscillations of the physical quantities. The frequency of such oscillations is substantially different from the
one of the applied time-periodic external potential. For example, microwave-induced Rabi oscillations for
the single particle have been observed for nuclear spins driven by a resonant ac magnetic field [4]. The
frequency of these Rabi oscillations is much smaller than the frequency of the applied microwave radiation.
Also, more complex temporal quantum interference patterns such as Ramsey fringes [5] and spin echo [6]
occur in quantum systems driven by a periodic sequence of dc or ac pulses. Note that these interference
patterns have also been observed in various macroscopic artificially prepared two-level qubit systems [7–9].
The Floquet eigenvalues of the system determine the frequency of these oscillations [1, 2].

An even wider variety of temporal interference patterns can be expected to occur in periodically driven
quantum systems composed of many interacting quantum particles [10–14]. Thus, different
non-equilibrium coherent quantum phases and quantum phase transitions between them were predicted in
various spatially extended Floquet quantum systems [10, 11, 15, 16]. These quantum phases display a
broken temporal-translation symmetry of the underlying time-periodic perturbation and an enhanced
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quantum entanglement. Here, the analogy can be drawn with with the quantum entanglement of spatially
extended equilibrium quantum systems, which is strongly enhanced as the system is tuned towards a
quantum phase transition point [17, 18]. The Floquet quantum systems [2] have attracted even more
attention recently due to the prediction [19–21] of a novel coherent quantum state—the time crystal
[22–26]. Subsequent observations [27, 28] were reported in atomic and solid-state systems. Such time
crystals show stable quantum sub-harmonic oscillations with period nT (here, n is a natural number),
where T is the period of an applied pulse-sequence, in spite of the unavoidable disorder and pulse-sequence
imperfection. In reference [23] the firm relationship between this effect and equally spaced Floquet
quasienergies with the minimum energy difference is equal to 2π/(nT), has been established.

Therefore, next questions that naturally arise in this field: is it possible to obtain complex temporal
interference pattern for a few interacting particles? What is the relationship between these temporal
interference patterns and the specific properties of Floquet quasienergies and eigenstates?

To answer these questions in this paper, we present numerical simulations of the coherent quantum
dynamics of periodically driven qubit chains consisting of a few interacting qubits. The drive is provided by
an externally applied periodic sequence of short spin-flip pulses. We observe various temporal interference
patterns in the total polarization of the qubits measured at stroboscopic times. These interference patterns
depend strongly on two important parameters of the problem—the interaction strength between the qubits
and the spin-flip pulse imperfection. For a suitable set of these parameters, we obtain dynamical states
coined time molecules (TMs). TMs appear periodically in time, have a long duration, δtTM " T, and show
an almost zero value of the total polarization and a quantum entanglement entropy close to the maximal
value, S # ln 2. The latter observation indicates that the TMs are in one of the maximally entangled states.
For example for two interacting qubits the observed TMs are in one of the Bell states and demonstrate
stroboscopic switching between two Bell states. Similarly, for a system composed of three interacting qubits,
we obtain stroboscopic switching between four different Greenberger–Horne–Zeilinger (GHZ) states
[29, 30]. The analysis of the Floquet eigenvalues and eigenstates allows us to explain the formation and the
dynamical properties of TMs. Such TMs can be directly observed in two-tone dispersive measurements of
short arrays of interacting superconducting qubits.

2. Model and numerical procedure

Let us consider a one-dimensional chain of N interacting qubits, i.e., artificially fabricated two-level systems
subject to a periodic sequence of spin-flip pulses. The period of the pulse sequence is T. The
time-dependent Hamiltonian acting over a single period T is written in the spin representation as

Ĥsys = Ĥ1 + Ĥ2,

Ĥ1 =
!α
2t1

N∑

i=1

σ̂x,i, 0 < t < t1,

Ĥ2 =
!

T − t1

N∑

i=1

δi(σ̂z,i + 1) +
!g

T − t1

∑

〈i,j〉

(σ̂x,iσ̂x,j + σ̂y,iσ̂y,j), t1 < t < T, (1)

where σ̂x,i, σ̂y,i and σ̂z,i are the corresponding Pauli matrices of the ith qubit and g is the dimensionless
coupling strength of the exchange interaction between a pair of qubits, 〈i, j〉. A single spin-flip pulse is
characterized by two parameters, the dimensionless pulse strength α and the pulse duration time
t1 (t1 ' T). The parameter α is chosen to be close to the π-pulse: α = π − 2ε. The parameter ε quantifies
the imperfection of the π-pulse. The implementation of different coefficients δi in Ĥ2 allows one to
simulate a spread of the qubit frequencies. Such model is based on the instantaneous gate approximation as
the detuning and interaction between qubits are absent in the time interval, 0 < t < t1. The validity of such
approximation is discussed in the appendix A.

The coherent Floquet dynamics of such a system is determined by the discrete time unitary map:

Ψ(nT) =
[

e−iĤ2(T−t1)/! · Ûε

]n
Ψ(0), (2)

where the unitary operator Ûε is written explicitly as

Ûε =
N⊗

i

(
sin ε −i cos ε

−i cos ε sin ε

)
. (3)

Here, Ψ(0) is the wave function of an initial state, and n is the discrete time measured in units of T.
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Figure 1. (a)–(c) Instantaneous total polarization 〈σ̂z〉 as a function of the discrete time n and the pulse imperfection ε for two
interacting qubits. The interaction strengths are (a) g = 0, (b) g = 0.05, and (c) g = 0.3, respectively. The detuning δ1,2 between
the qubits is set to zero. (d)–(f) Cross-sections of the plots in (a)–(c) at ε = 0.0436 indicated with dashed lines.

We present numerical simulations of the above unitary map for various arrays composed of a few qubits
(N = 2, 3, 5). The exchange interaction is provided between all pairs of qubits. We vary the parameters ε
and g, and measure two observables: the total polarization (z-projection of the total spin)
〈σ̂z〉 =

∑N
i 〈σ̂z,i〉 = 〈Ψ(nT)|

∑N
i σ̂z,i|Ψ(nT)〉, and the entanglement entropy S(nT) calculated by applying

standard methods of quantum statistical physics (see, appendix B and [31]).
In the numerical simulations, the initial ferromagnetic state is chosen as | ↑↑ . . . ↑〉. A small number of

qubits and the periodic time-dependence of the Hamiltonian Ĥsys (equation (1)) allows to study the
dynamics of the system up to large stroboscopic times, e.g., n > 1000. The typical dynamics for times
0 < n < 150 is shown in figures 1–5. The pulse-imperfection parameter ε is varied from 0 to 0.2.

3. Results

3.1. Total polarization
We first focus on the dynamics of two identical interacting qubits with δ1,2 ≡ δ1 − δ2 = 0. For all values of
interaction strength g, the dynamics shows stroboscopic oscillations with the frequency, π/T. For g = 0, the
total polarization displays quantum beats with a large characteristic period πT/(2ε) " T (see the detailed
analysis of quasienergies in appendix C). The quantum beats are shown in the plots of figures 1(a) and (d).
Notice that at discrete times n ≈ π(2m + 1)/(4ε), m = 0, 1, 2, . . . , the total polarization is zero (white lines
in figure 1(a)). A slight increase of the interaction strength g ' ε results in a distortion of the quantum
oscillations, and a moderate increase of the beating period (not shown). In the opposite case g " ε the
quantum beats in figures 1(c) and (f) gain very large periods πgT/(2ε2) (see the analysis in appendix C).

A most interesting and intriguing dynamics is obtained in the range of intermediate values of g # ε
(figures 1(b) and (e)). For particular values of ε one can see a proliferating set of periodically distributed flat
regions in the dependence of the total polarization on time. In these flat regions 〈σ̂z〉 displays almost
vanishing fluctuations around zero. The time duration of the flat regions δtTM varies from # 10T up to
# 30T (figures 2(a) and (b)). We coin these long-lived metastable states of the Floquet dynamics of two
interacting qubits as TM states.

A detailed study of the TM dynamics results in an interesting observation: for a fixed value of g these flat
regions are grouping around particular times which are periodically distributed. For example, for g = 0.05
and the time interval of 0 < n < 150 we obtain two groups of flat regions of 〈σ̂z〉 concentrating on times
around n = 30 and n = 100 (figure 2(a)). We label the flat regions with indices (k, l) as shown in figure 2(a)
for k = 1 and 2. The dynamics of the TMs of different groups is presented in figure 2(b). We obtain that
extremely small fluctuations ∆〈σ̂z〉 increase as the indices k and l grow. In particular, the fluctuations of the
total polarization vary from ∆〈σ̂z〉(1,1)/4 ≈ 0.1% and ∆〈σ̂z〉(2,2)/4 ≈ 0.25% up to ∆〈σ̂z〉(1,3)/4 ≈ 0.6% and
∆〈σ̂z〉(2,8)/4 ≈ 0.7%.
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Figure 2. (a) Instantaneous total polarization 〈σ̂z〉 as a function of the discrete time n and the pulse imperfection ε for two
interacting qubits with g = 0.05. The indices (k, l) indicate different TM states. (b) Cross-sections at the values of ε shown in
(a) with dashed lines. (c) Generalized ratio of the quasienergies, ξk = (k + 1)(π − εFL)/g, as a function of ε for different values of
commensurability parameter k = 1 (blue curves) and k = 2 (red curves). The TMs of the first (second) group are observed when
ξk with k = 1 (k = 2) becomes an even integer (circles at the crossing points with dashed lines).

We also study the process of TM destruction as the parameter ε deviates from the specific values ε(k, l) at
which the flat regions were obtained. The results for the TM (2, 1) are presented in figure 3. The fluctua-
tions of total polarization ∆〈σ̂z〉 increases linearly (blue lines in figure 3) as ε differs from ε(k, l) (the TM
state obtained for ε(2, 1) is shown in figure 3 by the red line).

3.2. Entanglement entropy
Here, we follow the time dependence of entanglement entropy S(nT) for different values of ε and g. Typical
results are presented in the color plot of figure 4(a) for the interaction strength g = 0.05. The entanglement
entropy demonstrates a periodic dependence on time. Since the initial state in our simulations was chosen
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Figure 3. Instantaneous total polarization 〈σ̂z〉 as a function of the discrete time n for the TM (2, 1). The red line represents the
TM for specific value ε(2, 1) at which the flat region occurs, while the blue lines show the TM destruction as ε deviates from
ε(2, 1) with the maximum deviation of ±1.6%. At the maximum deviation of ε we obtain the fluctuations ∆〈σ̂z〉/4 is # 0.75%.

Figure 4. (a) Entanglement entropy S as a function of the discrete time n and the pulse imperfection ε for two interacting qubits
(g = 0.05). (b) Cross-section of the plot in (a) at ε = 0.012 (blue), ε = 0.0436 (cyan), and ε = 0.185 (green), respectively. The
maximum entropy S # ln 2 is obtained at times where TMs are formed (figure 2).

to be a product state, we observe that at discrete times n < 1/ε, the entanglement entropy takes small values
(the left-most white regions). However, one can see that in the flat regions of 〈σ̂z〉, where the TMs are
formed, the entanglement entropy reaches its maximum value of S # ln 2.

We observe various types of the time-dependence of S(nT) (see figure 4(b)) which depend on the ratio
of the interaction strength g and the pulse imperfection ε. For g " ε a slight increase of S up to some
moderate value of S # 0.3 is observed in the time region 0 < n < 150 (blue line). For g ' ε, S(nT) shows
an additional and frequent step-like incremental and decremental modulation (green curve). The positions
of the steps correspond to the stroboscopic times where the total polarization vanishes (see figure 2(a)). For
g # ε regime, S(nT) performs strongly anharmonic and sharp modulations between values 0 to # ln 2 (or
vice versa) at the stroboscopic times where the TMs start to form (or disappear). These observations
indicate that the metastable TMs are in a maximally entangled state, and the value of S # ln 2 does not vary
during the TM duration time δtTM.

To explain the flat regions in the time dependence of 〈σ̂z〉 and the enhancement of the entanglement
entropy S(nT), we calculate the quasienergies and Floquet eigenstates of the periodically driven system (see
appendix C and [2]). In the general case of two interacting periodically driven qubits, there are four
quasienergies varying with ε and g. However, for this particular Floquet problem the quasienergies are fixed
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Figure 5. (a) Instantaneous total polarization 〈σ̂z〉 as a function of the discrete time n and the pulse imperfection ε for two
interacting qubits in the presence of a large detuning, δ1 = 0 and δ2 = 0.7. The qubit interaction strength is set to g = 0.05
(b) instantaneous entanglement entropy S(nT) as a function of the discrete time and the detuning δ2 (δ1 = 0). The pulse
imperfection is chosen as ε = 0.05. The qubit interaction strength is set to g = 0.05.

at E1 = 0; E2 = 2!g/T; E3 = !εFL/T; E4 = −!(εFL + 2g)/T, where a dimensionless parameter
εFL = π − g −

√
g2 + 4ε2 as {ε, g} ' 1 (see details in the appendix C). The Floquet dynamics shows

oscillations with a few small frequencies, i.e. ω1 = π/T − E3/! = (π − εFL)/T and ω2 = E2/! = 2g/T, and
we observe that the TMs form as the generalized ratio of these frequencies ξk(ε, g) = 2(k + 1)ω1/ω2

= (k + 1)(π − εFL)/g is equal to (, where k is the commensurability parameter, and ( is an even integer
number. In figure 2(c) the dependencies of ξk(ε, g) for two groups of TMs with k = 1 and k = 2 are
presented.

The largest entanglement entropy of the TMs is explained by inspecting the properties of the Floquet
eigenstates. We find two Floquet eigenstates with maximal entanglement entropy S = ln 2: ψ1 = (1/

√
2)

(|↑, ↑〉 − |↓, ↓〉) and ψ2 = (1/
√

2)(|↑, ↓〉 − |↓, ↑〉). These two Floquet eigenstates form a pair of Bell states.
The two remaining Floquet eigenstates ψ3,4 have low values of S which in addition strongly depend on ε and
g. The eigenstates ψ1 and ψ3,4 are symmetric with respect to a permutation of the qubits, while ψ2 is
anti-symmetric. Since the initial state is symmetric and the Hamiltonian in equation (C1) for identical
qubits conserves the state symmetry, the eigenstate ψ2 is not excited during the observed dynamics. Another
important property of the Floquet eigenvectors is that the total polarization is zero in all the Floquet
eigenstates. Moreover, the Floquet eigenstate ψ1 does not vary with time (E1 is zero). Thus, we arrive at the
following scenario of the two-qubit dynamics: for finite ε and g the system is oscillating with period T
between different states and slowly approaches the states in which 〈σ̂z〉 = 0 (white lines in figures 1 and 2).
After that, the system arrives at the TM state where the dynamics is a stroboscopic switching between the
two maximally entangled Bell states: (1/

√
2)(|↑, ↑〉 − i|↓, ↓〉) and (1/

√
2)(|↑, ↑〉 + i|↓, ↓〉), and a rather

slow leakage into other eigenstates. These maximally entangled Bell states are formed from the particular
superposition of eigenstates ψ1, ψ3 exp[−iE3nT/!] and ψ4 exp[−iE4nT/!].
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Figure 6. Instantaneous total polarization 〈σ̂z〉 as a function of the discrete time n and the pulse imperfection ε for two
interacting qubits in the presence of nonuniform pulse imperfections, (a) ∆ε = 0.02 and (b) ∆ε = 0.05 (dashed lines in
figure 6(c)). (c) Instantaneous entanglement entropy, S(nT), as a function of the discrete time n and nonuniform pulse
imperfection, ∆ε. The pulse imperfection was chosen as ε = 0.04 (dashed line in figures 6(a) and (b)). The disorder in qubits
frequencies is absent, and the interaction strength is set to g = 0.05.

3.3. Two types of disorder
So far, our numerical study was carried out for identical qubits δ1 = δ2 = 0. For the case of different qubit
frequencies with δ1 = 0 and δ2 = 0.7, the dynamics of the total polarization is presented in figure 5(a). The
TMs of both groups are still present, but the stroboscopic formation times of the TMs shift to larger values.
Such shifts are especially pronounced for large values of ε (cf figures 2(a) and 5 (a)). With this type of
disorder, the entanglement entropy reaches the maximum value as the TMs form. However, one can see that
for the large disorder, δ = (δ2 − δ1) ! 0.7, the maximum value of S is slightly less than ln 2 (see
figure 5(b)).

We also study the Floquet dynamics of two interacting qubits in the presence of other type of disorder,
namely, two slightly different spin-flip pulses with not equal values of ε1 and ε2. We observe that the Floquet

7



Quantum Sci. Technol. 6 (2021) 035012 K V Shulga et al

Figure 7. (a) Instantaneous total polarization 〈σ̂z〉 as a function of the discrete time n and the pulse imperfection ε for three
interacting qubits. (b) Cross-section of the plot in (a) at ε = 0.04 indicated with the dashed line in (a). The disorder in qubits
frequencies is absent, and the interaction strength is set to g = 0.05.

Table 1. The stroboscopic evolution of the wave function Ψ(nT) for four consecutive times, where the TM occurs. The parameters
g = 0.05 and ε = 0.04 were chosen. It corresponds to the case presented in figure 7(b). The maximally entangled GHZ states are
indicated.

Basis vectors

Period n | ↑↑↑〉 | ↓↑↑〉 | ↑↓↑〉 | ↓↓↑〉 | ↑↑↓〉 | ↓↑↓〉 | ↑↓↓〉 | ↓↓↓〉

100 −0.496 + 0.005 + 0.005 + −0.046 + 0.005 + −0.046 + −0.046 + −0.477 −
0.499i 0.072i 0.072i 0.055i 0.072i 0.055i 0.055i 0.497i

101 0.5 − −0.045 − −0.045 − −0.047 − −0.045 − −0.047 − −0.047 − −0.499 −
0.484i 0.019i 0.019i 0.005i 0.019i 0.005i 0.005i 0.502i

102 0.507 − 0.018 − 0.018 − −0.007 − 0.018 − −0.007 − −0.007 − 0.488 +
0.499i 0.028i 0.028i 0.028i 0.028i 0.028i 0.028i 0.5i

103 −0.498 + 0.005 − 0.005 − 0.012 + 0.005 − 0.012 + 0.012 + 0.496 +
0.49i 0.03i 0.03i 0.033i 0.03i 0.033i 0.033i 0.509i

dynamic does not change for ∆ε = |ε2 − ε1| " g (figure 6(a)) and shows a great distortion in the opposite
limit of ∆ε ! g (figure 6(b)). The maximum of entanglement entropy, S(nT), is diminished with ∆ε (see,
figure 6(c)).

3.4. Floquet dynamics of chains of interacting qubits: N = 3 and N = 5
We also carried out numerical calculations of the Floquet dynamics of interacting qubits chains with a
larger number of qubits, i.e. for N = 3 and N = 5. For N = 3 chain of qubits the results for the
instantaneous total polarization 〈σ̂z〉 are presented in figure 7. In figure 7(a) one can observe numerous
although distorted and shifted flat regions of 〈σ̂z〉(nT) indicating the presence of various TMs in chains
with three interacting qubits. The typical stroboscopic time dependence of 〈σ̂z〉(nT) showing the formation
of TM is shown in figure 7(b).

To understand the entanglement properties of the TMs forming in the chain of three interacting qubits,
we numerically calculated the stroboscopic evolution of the wave function Ψ(nT) corresponding to the case
presented in figure 7(b). The results for four consecutive times, n = 100–103, where the TM occurs, are
presented in table 1. Similarly to the case of two interacting qubits the TM state demonstrates periodic
switching between four highly entangled GHZ states and a slow leakage in low entangled states.

We also numerically calculate the evolution of total polarization 〈σ̂z〉 for chains with N = 5 interacting
qubits figure 8. Here, there are also flat regions of total polarization 〈σ̂z〉 = 0 in which jumps occur between
states close to the GHZ state, e.g. in the region with ε = 0.088 and n = 105. Notice here that for short time
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Figure 8. Instantaneous total polarization 〈σ̂z〉 as a function of the discrete time n and the pulse imperfection ε for five
interacting qubits. The disorder in qubits frequencies is absent, and the interaction strength is set to g = 0.05.

dynamics the range of parameters ε, where stable oscillations with the period 2T are observed, is greatly
extended with an increased number of qubits (compare figures 2(a), 7 (a) and 8). These oscillations indicate
the appearance of the time-ordering in a system with a few interacting qubits. For larger values of ε the flat
regions are shifted and distorted forming complex patterns in time-space domain.

3.5. Experimental proposal for the TMs observation
The TM states can be directly observed in microwave experiments with an array of interacting
superconducting transmon qubits. In such a setup the periodic sequence of ac pulses is applied to each
qubit. The frequency of ac pulses ω has to be chosen close to the qubit frequencies ωi and the amplitude of
the pulses determines the amplitude α in equation (C1). The spread of parameters reads δi = ω − ωi. The
qubit population imbalance (total polarization) 〈σ̂z〉 can be directly measured with a dispersive readout
regularly used for the study of quantum dynamics of superconducting qubit networks [32–34].

4. Conclusions

In conclusion, we provided numerical evidence and studied in detail a novel coherent quantum-mechanical
interference phenomenon where two interacting qubits subject to a periodic sequence of π − 2ε pulses with
the period T, form the time-molecule states. The TMs appear periodically in time and have a large
duration, δtTM " T. The TM states are characterized by almost zero value of the total polarization and a
strong enhancement of the entanglement entropy S up to the maximum value S # ln 2 indicating the
presence of corresponding Bell state. We obtain that the TMs display a stroboscopic switching between the
two maximally entangled Bell states and a slow leakage into other low entangled states. The TMs remain
stable with detuned system parameters. Similarly to the case of two interacting qubits, the TMs were
obtained in the Floquet dynamics of three interacting qubits, and these TMs demonstrate stroboscopic
switching between four maximally entangled GHZ states. The forming of TMs was explained by the
commensurability of the Floquet eigenvalues and the presence of maximally entangled Floquet eigenstates.
The TMs can be observed in microwave experiments with an array of superconducting qubits.
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Appendix A. Evaluation of the instantaneous gate approximation for experiments

In the main text, we use an instantaneous gate approximation in which the Hamiltonian H1 acts during the
time, t1 ' T. This model means that the interaction between qubits is absent (turned off) during the time
t1. Since this approximation is rather difficult to satisfy in experiments we study the influence of this
approximation on the Floquet dynamics of the TM. A simple evaluation of additional inhomogeneity that
the system will receive due to the presence of additional interaction during the spin-flip pulse is π ∗ gt1/T.
This imperfection can be viewed as an additional form of disorder that our system can withstand.

To check that, we introduce the time t1 explicitly in the computational model, and for the ratio
T/t1 ! 10 we still observe a stable dynamics of the TMs. Under this condition, the influence of the presence
of the interaction g during the t1 time is negligible. Therefore, the TMs can be observed in experiments e.g.
with superconducting qubits using current experimental methods.

Appendix B. Entanglement entropy of two interacting qubits

The time dependence of the entanglement entropy S(t) for the coherent Floquet dynamics of two
interacting qubits is calculated by the following method [31, 35]. At stroboscopic times nT the wave
function Ψ(nT) is expressed as

Ψ(nT) =
4∑

i=1

Ci(nT)ψi, (B1)

where the basis wave functions are ψ1 = | ↑↑〉, ψ2 = | ↑↓〉, ψ3 = | ↓↑〉 and ψ4 = | ↓↓〉. The full density
matrix ρ with the dimension of 4 is constructed as following:

(ρ(nT))ij = C∗
i (nT)Cj(nT). (B2)

Next, we perform a partial trace operation, obtaining the 2 × 2 reduced density matrix ρ̃(nT) written
explicitly as

ρ̃(nT) =

(
ρ̃11 = ρ1,1 + ρ2,2; ρ̃12 = ρ1,3 + ρ2,4

ρ̃21 = ρ3,1 + ρ4,2; ρ̃22 = ρ3,3 + ρ4,4

)
. (B3)

Calculating the eigenvalues α1,2(nT) of the reduced density matrix ρ̃(nT) we obtain the entanglement
entropy

S(nT) = −
2∑

i=1

|αi| log(|αi|). (B4)

Note that S(nT) = 0 in the absence of quantum entanglement [i.e. the wave function Ψ(nT) becomes a
separable product state]. At variance, for completely entangled states (Bell states) the entanglement entropy
reaches its maximum value S(nT) = ln 2.

Appendix C. The quasienergies and the Floquet eigenstates of two-interacting qubits

Here, we calculate the quasienergies of two identical interacting qubits subject to the time-periodic pulse
sequence. The coherent quantum dynamics of such system is controlled by the time-periodic Hamiltonian:

Ĥsys = Ĥ1 + Ĥ2,

Ĥ1 =
!α
2t1

(σ̂x,1 + σ̂x,2), 0 < t < t1,

Ĥ2 =
!g

T − t1
(σ̂x,1σ̂x,2 + σ̂y,1σ̂y,2), t1 < t < T. (C1)

The pulse parameter α is chosen to be close to the π pulse: α = π − 2ε, and t1 ' T. In this particular case
the dynamics is determined by the discrete time unitary map as follows:

Ψ̂(T) = F̂Ψ̂(0) =
[
Ûg · Ûε

]
Ψ̂(0), (C2)

where the unitary operator of Uε is written explicitly as

Ûε =

(
sin ε −i cos ε

−i cos ε sin ε

)
⊗
(

sin ε −i cos ε
−i cos ε sin ε

)
(C3)
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and the unitary interaction operator of Ug is written as

Ûg =





1 0 0 0
0 cos (2g) i sin (2g) 0
0 i sin (2g) cos (2g) 0
0 0 0 1



 . (C4)

The unitary map F̂ has eigenvalues of the form, exp(−iEiT/!), where Ei are quasienergies, and i = 1, . . . , 4.
Next, we explicitly calculate the quasienergies Ei in the particular limit as {ε, g} ' 1. In this limit the

matrix F̂ is written as:

F̂ =





0 −iε −iε −1
−iε −2ig −1 −iε
−iε −1 −2ig −iε
−1 −iε −iε 0



 . (C5)

Diagonalizing the matrix F̂ we obtain the quasienergies Ei as: E1 = 0; E2 = 2!g/T; E3 = !εFL/T;
E4 = −!(εFL + 2g)/T, where εFL = π − g −

√
g2 + 4ε2. Thus, one can obtain the quasienergy εFL = π − 2ε

for g ' ε and εFL = π − 2g − 2ε2/g for the opposite regime g " ε.
The corresponding Floquet eigenvectors are written in an explicit form as:

ψ1 = (1/
√

2)(|↑, ↑〉 − |↓, ↓〉),

ψ2 = (1/
√

2)(|↑, ↓〉 − |↓, ↑〉),

ψ3 = (β/
√

2(1 + β2))[|↑, ↑〉 + |↓, ↓〉 − (1/β)(|↑, ↓〉 + |↓, ↑〉)]

ψ4 = (1/
√

2(1 + β2))[|↑, ↑〉 + |↓, ↓〉 + β(|↑, ↓〉 + |↓, ↑〉)],

(C6)

where β = (g +
√

g2 + 4ε2)/(2ε).
The Floquet dynamics displays quantum beats with various characteristic frequencies, e.g. in the limit of

g = 0 the quantum beats with the frequency 2(π − εFL)/T are obtained, and as g " ε the quantum beats
with an extremely small frequency 2(π − εFL − 2g)/T are obtained.
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